Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 31;72(Pt 9):1353–1355. doi: 10.1107/S2056989016013645

Crystal structure of 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate

Augusto Rivera a,*, Ingrid Miranda-Carvajal a, Jaime Ríos-Motta a, Michael Bolte b
PMCID: PMC5120723  PMID: 27920933

The asymmetric unit comprises one 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol mol­ecule and one water mol­ecule. The two mol­ecular components are held together through an O—H⋯O hydrogen bond.

Keywords: crystal structure; hexa­hydro­pyrimidine; 1,3-diazinane; hydrogen bond

Abstract

In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intra­molecular O—H⋯N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O—H⋯O hydrogen bonds connect the 1,3-diazinane and water mol­ecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).

Chemical context  

Current research of our group is directed toward the synthesis of cyclic aminals with conformational inter­est, which may have the structural requirement for hydrogen-bonded inter­actions. Obvious targets are the 5-hy­droxy-1,3-diazinanes because a hydroxyl group in the six-membered 1,3-di­aza­cyclic ring may alter the conformational preferences resulting from the inter­actions of the hydroxyl group and the endocyclic nitro­gen atoms (Salzner, 1995). We gradually realized that the structural features of this class of compounds are much more complex than previously believed and defined. Thus, we intend to use X-ray investigations to complement the information on conformational preferences and electronic parameters of 5-hy­droxy-1,3-diazinanes obtained using NMR chemical shift data, spin–spin coupling constants, and their NOESY spectra.graphic file with name e-72-01353-scheme1.jpg

We have previously reported the synthesis and crystal structure of 1,3-bis­(3-tert-butyl-2-hy­droxy-5-meth­oxy­benz­yl)-1,3-diazinan-5-ol monohydrate (II) and this study has shown that the hydroxyl substituent on the 1,3-diazinane ring is disordered over two positions, namely one component equatorial and the other axial (Rivera et al., 2014). As a logical step in the progression of these studies, in this paper we discuss the synthesis and crystal structure of the title compound (I), 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate. The X-ray study again reveals that compound crystallizes with a solvent water mol­ecule that links to the organic mol­ecule through an O—H⋯O hydrogen bond. Furthermore, the hydroxyl group in the pyrimidine ring is also disordered over two positions (axial, equatorial).

Structural commentary  

The mol­ecular structure of the title compound is presented in Fig. 1. The structure consists of a 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol mol­ecule and a water mol­ecule. These components are connected by an O3—H3⋯O1W hydrogen bond (Table 1) with the water-O atom as the acceptor. The 1,3-diazinane ring adopts a chair conformation with puckering parameters: Q = 0.588 (2) Å, θ = 176.9 (5) and φ = 245 (9)°. Atoms N1 and N2 are essentially tetra­hedral (bond-angle sums are 331.5° for N1 and 331.6° for N2), with their benzyl substituents in equatorial positions and the lone pairs axial. The aromatic rings of these substituents are roughly parallel, with a dihedral angle between the two benzene rings of 19.7 (4)°. Intra­molecular O—H⋯N hydrogen bonds form between the pyrimidine N atoms and the OH groups of the benzyl substit­uents and the pyrimidine N atoms, each with an S(6) graph-set motif (Table 1). These inter­actions stabilize the mol­ecular conformation, with O1⋯N1 = 2.696 (5) and O2⋯N2 = 2.702 (5) Å. These distances are closely comparable to those observed in the related structure (II) (Rivera et al., 2014).

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines and, for clarity, only the major-disorder component (equatorial) of the –OH substituent on the pyrimidine ring is included.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (7) 1.84 (7) 2.696 (5) 148 (5)
O2—H2⋯N2 0.96 (6) 1.81 (6) 2.702 (5) 152 (5)
O3—H3⋯O1W i 0.76 (9) 2.12 (9) 2.882 (8) 177 (9)
O1W—H1WA⋯O3ii 0.94 1.98 2.873 (8) 158
O1W—H1WA⋯O3′ii 0.94 2.19 2.80 (2) 122
O1W—H1WB⋯O2 0.84 2.64 3.057 (7) 112

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The N2—C7 distance of 1.485 (6) Å is slightly longer than the typical value for an N—C bond [1.469 Å]. The remaining C—N bonds in the mol­ecule are also typical and compare well with those found in the the related structure (II) (Rivera et al., 2014). The C12—O1 and C22—O2 distances are typical of those for a hy­droxy substituent on an aromatic ring [1.376 (6) and 1.374 (5) Å, respectively]. Bond angles within the 1,3-diazinane ring are unexceptional. The hydroxyl group is disordered over two positions, with site occupancies refining to 0.794 (13) and 0.206 (13). The OH group of the major component is in the equatorial position with the minor component axial.

Supra­molecular features  

In the crystal, O3—H3⋯O1W hydrogen bonds form chains along b. These contacts are augmented by additional strong O1W—H1WA⋯O3 hydrogen bonds, this time with O3 as the acceptor (Fig. 2, Table 1). The chains are held together by van der Waals forces.

Figure 2.

Figure 2

Part of the crystal packing of the title compound, showing the extensive inter­molecular hydrogen-bonding inter­actions (dashed lines). For clarity, only the major-disorder components (equatorial) of the OH substituents on the pyrimidine rings are included.

Database survey  

Apart from the previously published structure (Rivera et al., 2014), there is only one similar entry in the CSD (Mendes et al., 2014). In this latter structure, the 1,3-diazinane mol­ecule acts as a ligand to an iron(III) cation, which would affect comparisons with the geometric parameters of the title compound.

Synthesis and crystallization  

The title compound was prepared according to our reported method (Rivera et al., 2016). The crude product was recrystallized from hexane solution, giving colorless crystals suitable for X-ray diffraction. M.p. 400 K, yield, 38%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The O3—H3 hydroxyl group is disordered over two positions, one with the OH group equatorial with the minor component axial. The site occupancies refine to 0.794 (13) and 0.206 (13), respectively. The H atom of the hydroxyl group of the major component was located in a difference map and refined freely while that of the minor component was fixed geometrically, both with U iso(H) set to 1.2U eq(O). The H atoms of the water mol­ecule were fixed in their found locations with U iso(H) set to 1.5U eq(O). C-bound H atoms were fixed geometrically (C—-H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with U iso(H) set to 1.2U eq of the parent atom. The crystal was a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).

Table 2. Experimental details.

Crystal data
Chemical formula C28H42N2O3·H2O
M r 472.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.11944 (9), 8.25445 (8), 33.8907 (3)
β (°) 97.8676 (4)
V3) 2804.26 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.25 × 0.25 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD three-circle
Absorption correction Multi-scan (SADABS; Bruker, 1998)
T min, T max 0.746, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25653, 3138, 2895
R int 0.053
θmax (°) 51.7
(sin θ/λ)max−1) 0.509
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.079, 0.207, 1.07
No. of reflections 3138
No. of parameters 333
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and XP in SHELXTL-Plus (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016013645/sj5503sup1.cif

e-72-01353-sup1.cif (862.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013645/sj5503Isup2.hkl

e-72-01353-Isup2.hkl (250.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013645/sj5503Isup3.cml

CCDC reference: 1500903

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). IMC is also grateful to COLCIENCIAS for his doctoral scholarship.

supplementary crystallographic information

Crystal data

C28H42N2O3·H2O F(000) = 1032
Mr = 472.65 Dx = 1.120 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54187 Å
a = 10.11944 (9) Å Cell parameters from 9999 reflections
b = 8.25445 (8) Å θ = 2–50°
c = 33.8907 (3) Å µ = 0.59 mm1
β = 97.8676 (4)° T = 173 K
V = 2804.26 (4) Å3 Plate, colourless
Z = 4 0.25 × 0.25 × 0.09 mm

Data collection

Bruker APEXII CCD three-circle diffractometer 2895 reflections with I > 2σ(I)
Radiation source: Incoatec microfocus source Rint = 0.053
ω scans θmax = 51.7°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −9→10
Tmin = 0.746, Tmax = 1.000 k = −7→8
25653 measured reflections l = −34→34
3138 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0797P)2 + 7.0703P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3138 reflections Δρmax = 0.28 e Å3
333 parameters Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.3254 (4) 0.7763 (5) 0.21069 (11) 0.0316 (10)
N2 0.3688 (4) 0.7733 (5) 0.28166 (11) 0.0328 (10)
O1 0.2304 (4) 0.5043 (4) 0.17291 (11) 0.0455 (10)
H1 0.255 (6) 0.578 (8) 0.1942 (19) 0.07 (2)*
O2 0.3143 (3) 0.5008 (4) 0.32058 (10) 0.0400 (9)
H2 0.329 (5) 0.575 (7) 0.2996 (17) 0.056 (17)*
O3 0.0542 (5) 0.9917 (7) 0.25116 (16) 0.0540 (19) 0.794 (13)
H3 0.091 (8) 1.073 (11) 0.251 (2) 0.05 (3)* 0.794 (13)
O3' 0.087 (2) 0.732 (3) 0.2516 (8) 0.084 (10) 0.206 (13)
H3' 0.1248 0.6581 0.2401 0.126* 0.206 (13)
C1 0.4256 (4) 0.8013 (6) 0.24530 (13) 0.0316 (11)
H1A 0.5012 0.7262 0.2441 0.038*
H1B 0.4600 0.9135 0.2451 0.038*
C2 0.2173 (5) 0.8935 (6) 0.21124 (14) 0.0375 (12)
H2A 0.1483 0.8753 0.1880 0.045*
H2B 0.2526 1.0047 0.2094 0.045*
C3 0.1561 (5) 0.8758 (6) 0.24922 (15) 0.0379 (13)
H3A 0.1156 0.7654 0.2495 0.046* 0.794 (13)
H3B 0.0914 0.9667 0.2503 0.046* 0.206 (13)
C4 0.2634 (5) 0.8907 (6) 0.28543 (14) 0.0370 (12)
H4A 0.3007 1.0017 0.2870 0.044*
H4B 0.2240 0.8695 0.3101 0.044*
C6 0.3872 (5) 0.7878 (6) 0.17401 (14) 0.0378 (13)
H6A 0.4694 0.7213 0.1772 0.045*
H6B 0.4135 0.9017 0.1703 0.045*
C7 0.4746 (5) 0.7809 (6) 0.31659 (14) 0.0387 (12)
H7A 0.5061 0.8942 0.3202 0.046*
H7B 0.5512 0.7140 0.3110 0.046*
C11 0.2987 (4) 0.7334 (5) 0.13747 (14) 0.0308 (12)
C12 0.2251 (5) 0.5891 (5) 0.13778 (14) 0.0310 (12)
C13 0.1507 (5) 0.5278 (6) 0.10314 (15) 0.0377 (13)
C14 0.1514 (6) 0.6207 (7) 0.06904 (15) 0.0485 (15)
H14 0.1022 0.5821 0.0450 0.058*
C15 0.2198 (6) 0.7672 (7) 0.06775 (15) 0.0490 (15)
C16 0.2925 (5) 0.8205 (6) 0.10255 (15) 0.0405 (13)
H16 0.3398 0.9199 0.1025 0.049*
C17 0.0760 (5) 0.3666 (6) 0.10303 (17) 0.0499 (15)
C18 0.0022 (8) 0.3268 (9) 0.0615 (2) 0.095 (3)
H18A −0.0621 0.4130 0.0530 0.143*
H18B 0.0667 0.3184 0.0425 0.143*
H18C −0.0452 0.2236 0.0625 0.143*
C19 0.1749 (6) 0.2298 (6) 0.1152 (2) 0.071 (2)
H19A 0.1268 0.1267 0.1151 0.106*
H19B 0.2399 0.2240 0.0963 0.106*
H19C 0.2216 0.2508 0.1420 0.106*
C20 −0.0288 (6) 0.3723 (7) 0.1317 (2) 0.0652 (18)
H20A −0.0921 0.4601 0.1239 0.098*
H20B −0.0767 0.2689 0.1308 0.098*
H20C 0.0156 0.3915 0.1589 0.098*
C21 0.4305 (4) 0.7238 (5) 0.35448 (14) 0.0292 (11)
C22 0.3553 (4) 0.5812 (5) 0.35560 (13) 0.0259 (11)
C23 0.3228 (4) 0.5197 (6) 0.39176 (13) 0.0307 (11)
C24 0.3686 (6) 0.6071 (7) 0.42536 (15) 0.0469 (14)
H24 0.3490 0.5673 0.4502 0.056*
C25 0.4417 (6) 0.7497 (7) 0.42547 (16) 0.0535 (16)
C26 0.4698 (5) 0.8058 (6) 0.38942 (15) 0.0431 (14)
H26 0.5180 0.9043 0.3886 0.052*
C27 0.2443 (5) 0.3604 (6) 0.39375 (15) 0.0370 (13)
C28 0.1069 (5) 0.3741 (7) 0.36836 (19) 0.0559 (16)
H28A 0.0569 0.4634 0.3783 0.084*
H28B 0.1185 0.3950 0.3406 0.084*
H28C 0.0577 0.2726 0.3700 0.084*
C29 0.3219 (6) 0.2220 (6) 0.3783 (2) 0.0593 (17)
H29A 0.3377 0.2457 0.3510 0.089*
H29B 0.4075 0.2094 0.3954 0.089*
H29C 0.2704 0.1215 0.3786 0.089*
C30 0.2210 (8) 0.3202 (9) 0.4363 (2) 0.081 (2)
H30A 0.1709 0.4084 0.4467 0.121*
H30B 0.1699 0.2193 0.4363 0.121*
H30C 0.3071 0.3072 0.4531 0.121*
C151 0.2103 (9) 0.8663 (9) 0.03030 (18) 0.090 (2)
H15A 0.1229 0.9194 0.0256 0.135*
H15B 0.2211 0.7956 0.0077 0.135*
H15C 0.2807 0.9487 0.0332 0.135*
C251 0.4875 (10) 0.8412 (10) 0.4634 (2) 0.105 (3)
H25A 0.4431 0.9469 0.4625 0.158*
H25B 0.5843 0.8570 0.4660 0.158*
H25C 0.4651 0.7793 0.4862 0.158*
O1W 0.1841 (5) 0.3019 (6) 0.2497 (2) 0.120 (2)
H1WA 0.1012 0.3526 0.2427 0.179*
H1WB 0.2232 0.3920 0.2488 0.179*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.027 (2) 0.028 (2) 0.040 (2) −0.0053 (18) 0.0046 (18) −0.0030 (18)
N2 0.031 (2) 0.029 (2) 0.037 (2) −0.0030 (19) −0.0001 (18) 0.0044 (18)
O1 0.052 (2) 0.030 (2) 0.053 (2) −0.0120 (18) 0.0012 (18) 0.0074 (19)
O2 0.048 (2) 0.032 (2) 0.039 (2) −0.0141 (17) 0.0033 (16) −0.0058 (17)
O3 0.037 (3) 0.046 (4) 0.080 (4) 0.009 (3) 0.013 (3) 0.000 (3)
O3' 0.054 (15) 0.10 (2) 0.101 (18) −0.040 (14) 0.025 (12) −0.002 (15)
C1 0.027 (3) 0.024 (2) 0.044 (3) −0.003 (2) 0.004 (2) 0.002 (2)
C2 0.034 (3) 0.031 (3) 0.046 (3) 0.005 (2) 0.000 (2) 0.003 (2)
C3 0.024 (3) 0.032 (3) 0.057 (3) 0.012 (3) 0.004 (2) 0.002 (2)
C4 0.034 (3) 0.029 (3) 0.048 (3) 0.004 (2) 0.009 (2) 0.002 (2)
C6 0.036 (3) 0.033 (3) 0.046 (3) −0.011 (2) 0.010 (2) 0.000 (2)
C7 0.034 (3) 0.030 (3) 0.050 (3) −0.006 (2) −0.005 (2) 0.003 (2)
C11 0.030 (3) 0.019 (3) 0.044 (3) −0.004 (2) 0.010 (2) −0.006 (2)
C12 0.028 (3) 0.020 (3) 0.045 (3) 0.004 (2) 0.007 (2) 0.003 (2)
C13 0.035 (3) 0.026 (3) 0.052 (3) 0.002 (2) 0.005 (2) −0.010 (2)
C14 0.052 (4) 0.051 (4) 0.040 (3) 0.001 (3) −0.001 (3) −0.014 (3)
C15 0.065 (4) 0.044 (4) 0.040 (3) −0.002 (3) 0.014 (3) −0.001 (3)
C16 0.051 (3) 0.030 (3) 0.043 (3) −0.004 (3) 0.016 (3) 0.001 (2)
C17 0.038 (3) 0.036 (3) 0.073 (4) −0.004 (3) −0.001 (3) −0.016 (3)
C18 0.106 (6) 0.072 (5) 0.100 (6) −0.043 (5) −0.015 (5) −0.030 (4)
C19 0.046 (4) 0.021 (3) 0.148 (6) −0.001 (3) 0.022 (4) −0.017 (3)
C20 0.035 (3) 0.041 (4) 0.121 (5) −0.004 (3) 0.016 (4) −0.006 (3)
C21 0.022 (3) 0.018 (3) 0.044 (3) −0.002 (2) −0.007 (2) −0.004 (2)
C22 0.023 (3) 0.017 (3) 0.035 (3) 0.004 (2) −0.007 (2) −0.008 (2)
C23 0.026 (3) 0.028 (3) 0.038 (3) 0.005 (2) 0.003 (2) −0.002 (2)
C24 0.059 (4) 0.046 (3) 0.036 (3) −0.003 (3) 0.009 (3) −0.005 (3)
C25 0.068 (4) 0.045 (4) 0.044 (3) −0.008 (3) −0.002 (3) −0.021 (3)
C26 0.046 (3) 0.027 (3) 0.053 (4) −0.007 (3) −0.006 (3) −0.010 (3)
C27 0.027 (3) 0.030 (3) 0.055 (3) 0.001 (2) 0.010 (2) 0.005 (2)
C28 0.031 (3) 0.040 (3) 0.098 (5) −0.004 (3) 0.014 (3) 0.003 (3)
C29 0.048 (4) 0.023 (3) 0.110 (5) −0.003 (3) 0.022 (3) 0.002 (3)
C30 0.103 (6) 0.069 (5) 0.073 (4) −0.024 (4) 0.023 (4) 0.014 (4)
C151 0.132 (7) 0.088 (5) 0.048 (4) −0.009 (5) 0.010 (4) 0.016 (4)
C251 0.157 (8) 0.097 (6) 0.059 (4) −0.050 (6) 0.006 (5) −0.036 (4)
O1W 0.081 (4) 0.058 (3) 0.220 (7) −0.002 (3) 0.022 (4) −0.010 (4)

Geometric parameters (Å, º)

N1—C1 1.456 (6) C17—C20 1.535 (8)
N1—C2 1.462 (6) C17—C18 1.536 (8)
N1—C6 1.469 (6) C18—H18A 0.9800
N2—C1 1.448 (6) C18—H18B 0.9800
N2—C4 1.460 (6) C18—H18C 0.9800
N2—C7 1.485 (6) C19—H19A 0.9800
O1—C12 1.376 (6) C19—H19B 0.9800
O1—H1 0.95 (7) C19—H19C 0.9800
O2—C22 1.374 (5) C20—H20A 0.9800
O2—H2 0.96 (6) C20—H20B 0.9800
O3—C3 1.415 (6) C20—H20C 0.9800
O3—H3 0.76 (9) C21—C26 1.375 (7)
O3'—C3 1.38 (2) C21—C22 1.405 (6)
O3'—H3' 0.8400 C22—C23 1.407 (6)
C1—H1A 0.9900 C23—C24 1.374 (7)
C1—H1B 0.9900 C23—C27 1.542 (7)
C2—C3 1.510 (7) C24—C25 1.390 (8)
C2—H2A 0.9900 C24—H24 0.9500
C2—H2B 0.9900 C25—C26 1.372 (8)
C3—C4 1.528 (7) C25—C251 1.507 (8)
C3—H3A 1.0000 C26—H26 0.9500
C3—H3B 1.0000 C27—C29 1.519 (7)
C4—H4A 0.9900 C27—C30 1.529 (8)
C4—H4B 0.9900 C27—C28 1.536 (7)
C6—C11 1.494 (7) C28—H28A 0.9800
C6—H6A 0.9900 C28—H28B 0.9800
C6—H6B 0.9900 C28—H28C 0.9800
C7—C21 1.493 (7) C29—H29A 0.9800
C7—H7A 0.9900 C29—H29B 0.9800
C7—H7B 0.9900 C29—H29C 0.9800
C11—C16 1.378 (7) C30—H30A 0.9800
C11—C12 1.406 (6) C30—H30B 0.9800
C12—C13 1.400 (7) C30—H30C 0.9800
C13—C14 1.388 (7) C151—H15A 0.9800
C13—C17 1.530 (7) C151—H15B 0.9800
C14—C15 1.397 (8) C151—H15C 0.9800
C14—H14 0.9500 C251—H25A 0.9800
C15—C16 1.374 (7) C251—H25B 0.9800
C15—C151 1.502 (8) C251—H25C 0.9800
C16—H16 0.9500 O1W—H1WA 0.9381
C17—C19 1.528 (8) O1W—H1WB 0.8447
C1—N1—C2 109.6 (4) C20—C17—C18 107.2 (5)
C1—N1—C6 110.0 (3) C17—C18—H18A 109.5
C2—N1—C6 111.9 (4) C17—C18—H18B 109.5
C1—N2—C4 110.4 (4) H18A—C18—H18B 109.5
C1—N2—C7 110.2 (4) C17—C18—H18C 109.5
C4—N2—C7 111.0 (4) H18A—C18—H18C 109.5
C12—O1—H1 108 (4) H18B—C18—H18C 109.5
C22—O2—H2 106 (3) C17—C19—H19A 109.5
C3—O3—H3 104 (6) C17—C19—H19B 109.5
C3—O3'—H3' 109.5 H19A—C19—H19B 109.5
N2—C1—N1 110.5 (3) C17—C19—H19C 109.5
N2—C1—H1A 109.6 H19A—C19—H19C 109.5
N1—C1—H1A 109.6 H19B—C19—H19C 109.5
N2—C1—H1B 109.6 C17—C20—H20A 109.5
N1—C1—H1B 109.6 C17—C20—H20B 109.5
H1A—C1—H1B 108.1 H20A—C20—H20B 109.5
N1—C2—C3 110.0 (4) C17—C20—H20C 109.5
N1—C2—H2A 109.7 H20A—C20—H20C 109.5
C3—C2—H2A 109.7 H20B—C20—H20C 109.5
N1—C2—H2B 109.7 C26—C21—C22 118.9 (4)
C3—C2—H2B 109.7 C26—C21—C7 120.0 (4)
H2A—C2—H2B 108.2 C22—C21—C7 121.0 (4)
O3'—C3—C2 113.6 (11) O2—C22—C21 118.8 (4)
O3—C3—C2 111.2 (4) O2—C22—C23 119.9 (4)
O3'—C3—C4 109.2 (12) C21—C22—C23 121.2 (4)
O3—C3—C4 110.5 (4) C24—C23—C22 116.1 (4)
C2—C3—C4 110.4 (4) C24—C23—C27 121.9 (4)
O3—C3—H3A 108.2 C22—C23—C27 122.0 (4)
C2—C3—H3A 108.2 C23—C24—C25 124.5 (5)
C4—C3—H3A 108.2 C23—C24—H24 117.8
O3'—C3—H3B 107.8 C25—C24—H24 117.8
C2—C3—H3B 107.8 C26—C25—C24 117.3 (5)
C4—C3—H3B 107.8 C26—C25—C251 120.8 (6)
N2—C4—C3 108.9 (4) C24—C25—C251 121.9 (6)
N2—C4—H4A 109.9 C25—C26—C21 122.0 (5)
C3—C4—H4A 109.9 C25—C26—H26 119.0
N2—C4—H4B 109.9 C21—C26—H26 119.0
C3—C4—H4B 109.9 C29—C27—C30 108.3 (5)
H4A—C4—H4B 108.3 C29—C27—C28 109.5 (5)
N1—C6—C11 114.0 (4) C30—C27—C28 107.4 (5)
N1—C6—H6A 108.8 C29—C27—C23 109.4 (4)
C11—C6—H6A 108.8 C30—C27—C23 111.9 (4)
N1—C6—H6B 108.8 C28—C27—C23 110.2 (4)
C11—C6—H6B 108.8 C27—C28—H28A 109.5
H6A—C6—H6B 107.7 C27—C28—H28B 109.5
N2—C7—C21 113.8 (4) H28A—C28—H28B 109.5
N2—C7—H7A 108.8 C27—C28—H28C 109.5
C21—C7—H7A 108.8 H28A—C28—H28C 109.5
N2—C7—H7B 108.8 H28B—C28—H28C 109.5
C21—C7—H7B 108.8 C27—C29—H29A 109.5
H7A—C7—H7B 107.7 C27—C29—H29B 109.5
C16—C11—C12 119.1 (4) H29A—C29—H29B 109.5
C16—C11—C6 120.4 (4) C27—C29—H29C 109.5
C12—C11—C6 120.4 (4) H29A—C29—H29C 109.5
O1—C12—C13 119.6 (4) H29B—C29—H29C 109.5
O1—C12—C11 118.7 (4) C27—C30—H30A 109.5
C13—C12—C11 121.6 (4) C27—C30—H30B 109.5
C14—C13—C12 115.8 (4) H30A—C30—H30B 109.5
C14—C13—C17 122.5 (5) C27—C30—H30C 109.5
C12—C13—C17 121.7 (5) H30A—C30—H30C 109.5
C13—C14—C15 124.3 (5) H30B—C30—H30C 109.5
C13—C14—H14 117.8 C15—C151—H15A 109.5
C15—C14—H14 117.8 C15—C151—H15B 109.5
C16—C15—C14 117.3 (5) H15A—C151—H15B 109.5
C16—C15—C151 121.0 (5) C15—C151—H15C 109.5
C14—C15—C151 121.6 (5) H15A—C151—H15C 109.5
C15—C16—C11 121.8 (5) H15B—C151—H15C 109.5
C15—C16—H16 119.1 C25—C251—H25A 109.5
C11—C16—H16 119.1 C25—C251—H25B 109.5
C19—C17—C13 109.7 (4) H25A—C251—H25B 109.5
C19—C17—C20 109.6 (5) C25—C251—H25C 109.5
C13—C17—C20 110.8 (4) H25A—C251—H25C 109.5
C19—C17—C18 107.9 (5) H25B—C251—H25C 109.5
C13—C17—C18 111.5 (5) H1WA—O1W—H1WB 90.3
C4—N2—C1—N1 −63.3 (5) C151—C15—C16—C11 177.9 (6)
C7—N2—C1—N1 173.7 (4) C12—C11—C16—C15 −2.2 (7)
C2—N1—C1—N2 62.5 (5) C6—C11—C16—C15 175.2 (5)
C6—N1—C1—N2 −174.0 (4) C14—C13—C17—C19 118.1 (6)
C1—N1—C2—C3 −58.2 (5) C12—C13—C17—C19 −60.6 (6)
C6—N1—C2—C3 179.4 (4) C14—C13—C17—C20 −120.7 (6)
N1—C2—C3—O3' −68.0 (13) C12—C13—C17—C20 60.6 (6)
N1—C2—C3—O3 178.0 (4) C14—C13—C17—C18 −1.4 (7)
N1—C2—C3—C4 55.0 (5) C12—C13—C17—C18 179.9 (5)
C1—N2—C4—C3 58.5 (5) N2—C7—C21—C26 −139.0 (4)
C7—N2—C4—C3 −179.0 (4) N2—C7—C21—C22 44.8 (6)
O3'—C3—C4—N2 70.9 (11) C26—C21—C22—O2 179.0 (4)
O3—C3—C4—N2 −178.0 (4) C7—C21—C22—O2 −4.8 (6)
C2—C3—C4—N2 −54.7 (5) C26—C21—C22—C23 −1.5 (6)
C1—N1—C6—C11 169.1 (4) C7—C21—C22—C23 174.7 (4)
C2—N1—C6—C11 −68.8 (5) O2—C22—C23—C24 179.6 (4)
C1—N2—C7—C21 −169.3 (4) C21—C22—C23—C24 0.1 (6)
C4—N2—C7—C21 68.0 (5) O2—C22—C23—C27 1.5 (6)
N1—C6—C11—C16 137.4 (5) C21—C22—C23—C27 −178.0 (4)
N1—C6—C11—C12 −45.3 (6) C22—C23—C24—C25 0.8 (8)
C16—C11—C12—O1 −179.0 (4) C27—C23—C24—C25 178.9 (5)
C6—C11—C12—O1 3.6 (6) C23—C24—C25—C26 −0.2 (9)
C16—C11—C12—C13 3.0 (7) C23—C24—C25—C251 179.2 (6)
C6—C11—C12—C13 −174.3 (4) C24—C25—C26—C21 −1.3 (8)
O1—C12—C13—C14 −179.7 (4) C251—C25—C26—C21 179.3 (6)
C11—C12—C13—C14 −1.8 (7) C22—C21—C26—C25 2.2 (7)
O1—C12—C13—C17 −0.9 (7) C7—C21—C26—C25 −174.1 (5)
C11—C12—C13—C17 177.0 (4) C24—C23—C27—C29 −117.7 (5)
C12—C13—C14—C15 −0.3 (8) C22—C23—C27—C29 60.2 (6)
C17—C13—C14—C15 −179.1 (5) C24—C23—C27—C30 2.3 (7)
C13—C14—C15—C16 1.1 (8) C22—C23—C27—C30 −179.7 (5)
C13—C14—C15—C151 −176.6 (6) C24—C23—C27—C28 121.8 (5)
C14—C15—C16—C11 0.2 (8) C22—C23—C27—C28 −60.2 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.95 (7) 1.84 (7) 2.696 (5) 148 (5)
O2—H2···N2 0.96 (6) 1.81 (6) 2.702 (5) 152 (5)
O3—H3···O1Wi 0.76 (9) 2.12 (9) 2.882 (8) 177 (9)
O1W—H1WA···O3ii 0.94 1.98 2.873 (8) 158
O1W—H1WA···O3′ii 0.94 2.19 2.80 (2) 122
O1W—H1WB···O2 0.84 2.64 3.057 (7) 112

Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+1/2.

References

  1. Bruker (1998). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Mendes, L. L., Fernandes, C., Franco, R. W. A., Lube, L. M., Wei, S.-H., Reibenspies, J. H., Darnesbourg, D. J. & Horn, A. Jr (2014). J. Braz. Chem. Soc. 25, 1050–1061.
  4. Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687–o688. [DOI] [PMC free article] [PubMed]
  5. Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). J. Chil. Chem. Soc. Accepted (Paper number, 4317).
  6. Salzner, U. (1995). J. Org. Chem. 60, 986–995.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016013645/sj5503sup1.cif

e-72-01353-sup1.cif (862.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013645/sj5503Isup2.hkl

e-72-01353-Isup2.hkl (250.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013645/sj5503Isup3.cml

CCDC reference: 1500903

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES