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Abstract

The Support Vector Machine (SVM) is a very popular classification tool with many successful 

applications. It was originally designed for binary problems with desirable theoretical properties. 

Although there exist various Multicategory SVM (MSVM) extensions in the literature, some 

challenges remain. In particular, most existing MSVMs make use of k classification functions for a 

k-class problem, and the corresponding optimization problems are typically handled by existing 

quadratic programming solvers. In this paper, we propose a new group of MSVMs, namely the 

Reinforced Angle-based MSVMs (RAMSVMs), using an angle-based prediction rule with k − 1 

functions directly. We prove that RAMSVMs can enjoy Fisher consistency. Moreover, we show 

that the RAMSVM can be implemented using the very efficient coordinate descent algorithm on 

its dual problem. Numerical experiments demonstrate that our method is highly competitive in 

terms of computational speed, as well as classification prediction performance. Supplemental 

materials for the article are available online.
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1 Introduction

Classification is a standard supervised learning technique to handle problems with 

categorical response variables. Among various existing classifiers, the Support Vector 

Machine (SVM, Boser et al., 1992; Cortes and Vapnik, 1995) is a popular method originated 
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from the machine learning community. It is a typical example of large-margin classifiers, 

that use a single classification function for prediction in binary problems. In particular, the 

binary SVM searches for a hyperplane in the feature space that maximally separates the two 

classes. It has been shown to be very useful and has achieved excellent performance on 

many applications in various disciplines. The corresponding theoretical properties, such as 

Fisher consistency and asymptotic convergence rates, are also well established. In particular, 

a classifier being Fisher consistent means that it can achieve the optimal prediction 

performance asymptotically, if the underlying functional space is rich enough. More details 

about Fisher consistency will be provided in Section 3. Cristianini and Shawe-Taylor (2000) 

and Hastie et al. (2009), among others, provide comprehensive reviews for existing 

classification methods.

In practice, it is prevalent to have more than two classes in the data. Despite the success on 

binary classification, it remains challenging to adapt SVMs to multicategory classification 

problems. To handle a multicategory problem with k classes using SVMs, there are two 

common approaches in the literature. The first approach is to train a sequence of binary 

SVMs and combine the results for multicategory classification. Examples include one-

versus-one and one-versus-rest methods (Hastie and Tibshirani, 1998; Allwein et al., 2001). 

Although this approach is simple in concept and implementation, it has certain drawbacks. 

For example, the one-versus-one method can have a tie-in-vote problem, and the one-versus-

rest method can suffer from inconsistency when there is no dominating class (Lee et al., 
2004; Liu, 2007). The second approach is to consider all k classes in one optimization 

problem simultaneously. The common method is to use k classification functions to 

represent the k classes in the corresponding optimization, with a prediction rule based on 

which classification function is the maximum. Many existing simultaneous Multicategory 

SVM (MSVM) classifiers have been proposed in this framework. See, for example, Vapnik 

(1998), Weston and Watkins (1999), Crammer and Singer (2001), Lee et al. (2004), Liu and 

Shen (2006), Liu and Yuan (2011), and Guermeur and Monfrini (2011). In this paper, we 

focus our discussion on simultaneous MSVM methods. Among these MSVMs, Vapnik 

(1998), Weston and Watkins (1999), Crammer and Singer (2001) are not always Fisher 

consistent, whereas the MSVM proposed by Lee et al. (2004) is. Recently, Liu and Yuan 

(2011) proposed a new family of Fisher consistent MSVMs, namely, the Reinforced 

MSVMs (RMSVMs), which includes the method in Lee et al. (2004) as a special case. In 

particular, RMSVM uses a convex combination of the loss in Lee et al. (2004) and the naive 

SVM hinge loss to form a new group of Fisher consistent hinge loss functions for 

multicategory problems. To avoid confusion, we would like to point out that the reinforced 

MSVM in this paper refers to the MSVM using a convex combination of loss functions as in 

Liu and Yuan (2011), and is different from the reinforcement learning in the machine 

learning literature (Kaelbling et al., 1996; Barto, 1998).

For binary SVMs, one uses a single function for classification. Analogously, for a k-class 

multicategory problem, it should suffice to use k − 1 classification functions. Therefore, 

using k classification functions in the regular MSVMs can be redundant. To circumvent this 

difficulty, the existing MSVMs use different optimization formulations, which can be 

grouped into two main categories. Classifiers in the first group impose an explicit sum-to-

zero constraint on the k classification functions, in order to reduce the function space and to 
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ensure some theoretical properties such as Fisher consistency. Examples in this group 

include the MSVMs in Lee et al. (2004), Liu and Yuan (2011), and Guermeur and Monfrini 

(2011). For the second group, the corresponding optimization problem is based on pairwise 

differences among the k classification functions. One can verify that without an explicit 

sum-to-zero constraint, the obtained classification functions sum to zero automatically with 

an appropriate regularization term (Guermeur, 2012; Zhang and Liu, 2013). This can be 

regarded as an alternative way to reduce k functions to k − 1 by an implicit sum-to-zero 

property. The MSVM methods in Vapnik (1998), Weston and Watkins (1999), Crammer and 

Singer (2001), and Liu and Shen (2006) are examples in this group. Despite differences in 

the optimization formulation, the corresponding dual problems of all the aforementioned 

MSVMs involve linear equality constraints, and are typically solved via existing Quadratic 

Programming (QP) solvers. See more discussion in Section 4.4.

To facilitate comparison and implementation, Guermeur (2012) proposed a unified family of 

MSVMs, which includes the methods in Vapnik (1998), Weston and Watkins (1999), 

Crammer and Singer (2001), Lee et al. (2004), and Guermeur and Monfrini (2011) as special 

cases. Guermeur (2012) then studied the corresponding optimization problems of these 

MSVMs under this unified framework, and proposed to solve the dual problems using QP 

solvers. A corresponding powerful package “MSVMpack” was provided by aLauer and 

Guermeur (2011). For Liu and Yuan (2011), the authors also proposed to solve the dual 

problem by QP solvers. See Section 4.4 for more details.

Recently, Zhang and Liu (2014) proposed the multicategory angle-based large-margin 

classification framework, which uses only k − 1 classification functions, and implicitly 

transfers the sum-to-zero constraint onto the newly defined functional margins. As a result, 

the computational speed of the angle-based classifiers can be faster than the regular methods 

with the explicit or implicit sum-to-zero constraint. In particular, the angle-based classifiers 

consider a centered simplex with k vertices in a k − 1 dimensional space. Each vertex 

represents one class. The classification function naturally defines k angles with respect to the 

k vertex vectors, and the corresponding prediction rule is based on which angle is the 

smallest. Details of the least-angle prediction rule can be found in Section 2. Zhang and Liu 

(2014) introduced a new set of functional margins in the angle-based framework, and 

showed that the new functional margins sum to zero without an explicit constraint. 

Consequently, the angle-based classifiers can be more efficient than the regular 

multicategory classification methods.

Although the angle-based classification does not require the sum-to-zero constraint, the 

direct generalization of SVM in the angle-based classification structure is not Fisher 

consistent (Zhang and Liu, 2014). Therefore, the naive angle-based MSVM can be 

asymptotically suboptimal, and it is desirable to develop an MSVM classifier in the angle-

based framework that enjoys Fisher consistency. To this end, we propose the Reinforced 

Angle-based Multicategory Support Vector Machine (RAMSVM). The loss function we 

employ for RAMSVM is a convex combination of two MSVM losses, and in Section 5 we 

show that such combination can lead to a stable classifier whose performance is often close 

to the optimum. In particular, we show through numerical examples that our proposed 

RAMSVM tends to have stable and competitive performance for many different cases. Our 
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contribution in this paper is two fold. First, we modify existing MSVM losses in the angle-

based classification framework, and introduce our RAMSVM loss family as a convex 

combination. We show that with a proper choice of the convex combination parameter, the 

new RAMSVM classifier enjoys Fisher consistency. Second, we show that the 

corresponding optimization can be reduced to minimizing a quadratic objective function 

with box constraints only. This can then be solved using the very efficient coordinate descent 

method (Fan et al., 2008; Friedman et al., 2010). We show in Section 5 that our new 

RAMSVM can enjoy a very fast computational speed. Moreover, RAMSVM is also highly 

competitive in terms of classification accuracy.

The rest of this article is organized as follows. In Section 2, we briefly review some existing 

MSVM methods, and introduce our RAMSVM classifier. In Section 3, we study Fisher 

consistency of the RAMSVM family. In Section 4, we develop the coordinate descent 

algorithm for solving the RAMSVM optimization problem. We also compare the dual 

problem of RAMSVM with those of the existing MSVM approaches. Numerical studies 

with simulated and real data sets are presented in Section 5. Some discussions are provided 

in Section 6. All proofs are collected in the appendix.

2 Methodology

For a multicategory classification problem with k classes, let (x1, y1), … , (xn, yn) be the 

observed training data points. Here xi denotes a p-dimensional predictor vector, and yi ∈ {1, 

…, k} is the corresponding label. The regular simultaneous multicategory large-margin 

classifiers use a k-dimensional classification function , and the 

prediction rule is . The corresponding optimization can 

typically be written as

(1)

where F denotes the function class, J (·) is the penalty term that controls the complexity of F 
to prevent overfitting, and λ is a tuning parameter that balances the loss and penalty terms. 

Here V (f (x), y) measures the loss of using f (x) as the classification function for (x, y). 

Different loss functions correspond to different classifiers. In the simultaneous MSVM 

literature, the following loss functions are commonly used as extensions from binary SVMs 

to MSVMs:

MSVM1 (Naive hinge loss) V (f (x), y) = [1 − fy (x)]+;

MSVM2 (Vapnik, 1998; Weston and Watkins, 1999) ;

MSVM3 (Crammer and Singer, 2001; Liu and Shen, 2006) 

;
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MSVM4 (Lee et al., 2004) ;

MSVM5 (Liu and Yuan, 2011) ,

where [u]+ = max(u, 0) and γ ∈ [0, 1] in MSVM5 is the convex combination parameter. As 

discussed in Section 1, MSVMs 1, 4 and 5 employ an explicit sum-to-zero constraint 

. Besides MSVMs 2-5, the MSVM method in Guermeur and Monfrini (2011) 

(MSVM6) cannot be formulated in the framework of (1). In particular, the primal 

optimization problem of MSVM6 can be written as

(2)

Here M is a matrix of rank (k − 1)n, ξ is a vector of length (k − 1)n with its (in + j)th element 

ξij, the slack variable corresponding to the ith subject and jth class with j /= yi, and 

 is the squared norm of PH(f) in a reproducing kernel Hilbert space H. Notice that 

each element of f involves an intercept, and PH(f ) represents the projection of f onto the 

kernel space H. See Guermeur and Monfrini (2011) for details. Notice that Guermeur (2012) 

proposed a generic model of MSVMs, which cover MSVMs 2-4 and 6 as special cases. We 

discuss the corresponding dual problems of MSVMs 2-6 in Secion 4.4 and the appendix.

Although binary SVM is known to be Fisher consistent, MSVMs 1-3 are not. To overcome 

this challenge, Lee et al. (2004) proposed MSVM4, which can be shown to be Fisher 

consistent. Furthermore, Liu and Yuan (2011) proposed the Reinforced MSVM (RMSVM, 

MSVM5) method, which uses a convex combination of the naive hinge loss and the loss in 

Lee et al. (2004) as a new class of loss functions. Note that with γ = 0, RMSVM includes 

the MSVM of Lee et al. (2004) as a special case. Liu and Yuan (2011) showed that RMSVM 

is Fisher consistent when γ ∈ [0, 0.5].

As mentioned in Section 1, it can be inefficient to train a multicategory classifier with k 
classification functions, which are reduced to k − 1 by explicit or implicit sum-to-zero 

constraints. To overcome this difficulty, Zhang and Liu (2014) proposed the multicategory 

angle-based large-margin classification technique. The details of the angle-based 

classification are as follows. Consider a centered simplex with k vertices in a (k − 1)-

dimensional space. Let W be a collection of vectors {Wj ; j = 1, … , k}, where
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Here ej ∈ ℝk−1 is a vector of 0’s except its jth element is 1, and 1 ∈ ℝk−1 is a vector of 1. It 

can be verified that each vector Wj has Euclidean norm 1, and the angles between any pair 

(Wi, Wj ) are equal. Consequently, the vectors in W form a k-vertex simplex. For an 

observation x, we map it into ℝk−1 by the classification function vector 

. Note that f (x) defines k angles with respect to Wj (j 
= 1, …, k), namely, ∠(f (x), Wj) (j = 1, …, k). The label prediction for x is then based on 

which angle is the smallest. In other words, . One can 

verify that the least angle prediction rule is equivalent to 

, where  denotes the dot product. With this 

prediction rule, Zhang and Liu (2014) proposed the following optimization for the angle-

based classification

(3)

where £(·) is any binary large-margin classification loss function. Here the dot products 〈f 
(x), Wj) (j = 1, … , k〉 can be regarded as new functional margins of (x, y). Note that Lange 

and Wu (2008), Wu and Lange (2010) and Wu and Wu (2012) also used the simplex 

structure for multicategory classification with a different classification rule and the E-

insensitive loss, and Hill and Doucet (2007) and Saberian and Vasconcelos (2011) studied 

MSVM and multicategory boosting in the simplex based structure as well.

The angle-based classification framework uses k − 1 classification functions directly, and it 

can be computed more efficiently. However, when using the regular hinge loss £(u) = [1 − 

u]+ in (3), the corresponding angle-based SVM is not Fisher consistent. Therefore, it is 

desirable to have a generalization of the binary SVM classifier in the angle-based 

classification framework which enjoys Fisher consistency. Motivated by the convex 

combination idea in Liu and Yuan (2011), we propose the following Reinforced Angle-based 

Multicategory SVM (RAMSVM) classifier with the following optimization

(4)

where γ ∈ [0, 1] is the convex combination parameter. Note that the first part in the loss 

term of (4) can be regarded as a modified MSVM loss of Lee et al. (2004) in the angle-based 

classification framework. For many other existing MSVMs, we can generalize them into the 
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angle-based classification framework accordingly. For example, the naive angle-based 

MSVM method studied in Zhang and Liu (2014) can be regarded as an extension of 

MSVM1 in the angle-based classification framework.

The motivation of using such a combination of loss functions in (4) is based on the 

prediction rule of the angle-based classification. Since the least angle prediction rule 

 is equivalent to 

, we need to have (f (x), Wy ) to be the maximum 

among all the k dot products (f (x), Wj) (j = 1, … , k). To that end, the second part in the loss 

term of (4) encourages (f (x), Wy) to be large. On the other hand, observe that 

 for all x, which means that the angle-based classification framework 

transfers the explicit sum-to-zero constraint onto the dot products. Hence, as the first part in 

the loss term of (4) encourages  to be small, it implicitly encourages 

 to be large. As we will see in Section 5, encouraging  to be large 

explicitly and implicitly has their advantages respectively, and combining the two loss terms 

yields a classifier that is consistent, stable and highly competitive in accuracy.

Since most existing MSVMs can be cast into QP problems with linear constraints, they are 

typically implemented using existing QP solvers. For RAMSVM, we show in Section 4 that 

its dual problem is a QP with box constraints only, hence can be solved using the very 

efficient coordinate descent method. Compared to existing MSVM implementations using 

QP solvers, our RAMSVM can often enjoy a faster computational speed. We demonstrate 

the computational advantage of RAMSVM using numerical examples in Section 5.

In the next section, we introduce the details of Fisher consistency, and show that RAMSVM 

is Fisher consistent when γ ∈ [0, 1/2].

3 Fisher Consistency

For a classification method, Fisher consistency implies that the classifier can achieve the 

best classification performance asymptotically, when the underlying functional space is rich 

enough. In other words, under some conditions, the classifier can yield the Bayes 

classification rule with infinitely many training data points. In the literature, Lin (2004) 

explored the Fisher consistency of binary margin based classifiers, and a systematic study on 

Fisher consistency of regular multicategory large margin classification methods using k 
functions was provided by Zhang et al. (2014).

To introduce Fisher consistency, we need some extra notation. Let Pj (x) = Pr(Y = j|X = x) (j 
= 1, …, k) be the class conditional probabilities. For a given x, one can verify that 

 attains the smallest expected classification error rate

(5)
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which can be regarded as a 0 − 1 loss function . Here one often refers to 

 as the Bayes classifier. However, in practice, because the 

indicator function I(·) is discontinuous, the empirical minimizer of (5) is hard to find. To 

overcome this difficulty, in the large-margin classification literature, one can employ 

different surrogate loss functions, which correspond to different classification methods. 

Fisher consistency requires that prediction based on the conditional minimizer of a surrogate 

loss function is identical to . In particular, for angle-based 

classifiers, Fisher consistency requires that 

, and when 

 is unique, so is . Here f ∗(x) 

is the minimizer of the conditional loss E[V (f (X), Y)|X = x]. In other words, Fisher 

consistency ensures that, if one uses f ∗ as the classification function, then the predicted 

class has the largest class conditional probability, hence the corresponding error rate is 

minimized. For the RAMSVM classifier (4), we study its Fisher consistency in the following 

theorem.

Theorem 1

For multicategory classification problems with k > 2, the RAMSVM loss function (4) is 

Fisher consistent when γ ∈ [0, 0.5], and is not Fisher consistent when γ ∈ (0.5, 1].

From Theorem 1, we can conclude that the proposed RAMSVM provides a large family of 

consistent MSVM classifiers with γ ∈ [0, 1/2]. For γ > 1/2, the Fisher consistency cannot 

be guaranteed. In Section 5, we study the effect of different γ on the classification accuracy. 

Interestingly, we observed that the Fisher consistent RAMSVM with γ = 1/2 can provide a 

stable classifier with competitive classification accuracy. In particular, the numerical results 

show that RAMSVM with γ = 0 or γ = 1 can be suboptimal in certain cases, whereas γ = 

1/2 gives a stable classifier whose performance is close to optimal in many situations. This 

demonstrates the advantage of the convex combination of MSVM loss functions in the 

angle-based classification structure.

In the MSVM literature, despite the fact that MSVMs 1-3 have shown to deliver reasonable 

performance for many problems with small or moderate sample sizes, they are not always 

Fisher consistent. An inconsistent classifier can yield suboptimal prediction results for 

certain problems. In contrast, the proposed RAMSVM is stable and competitive for finite 

sample applications, efficient for computation, and Fisher consistent.

In the next section, we develop an efficient algorithm to solve (4). In particular, we show that 

RAMSVM can be solved using the coordinate descent method, and within each step of the 

coordinate-wise optimization procedure, the update value can be calculated explicitly. This 

greatly boosts the computational speed.

4 Algorithm

In this section, we show how to solve the optimization problem (4). We demonstrate that 

with the intercepts penalized in linear learning (Fan et al., 2008) or kernel learning, 
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RAMSVM can be solved using the coordinate descent method (Friedman et al., 2010) and 

consequently enjoys a fast computational speed. First, we focus on linear learning with the 

commonly used L2 penalty. Then we develop the algorithm for kernel learning and weighted 

learning problems. Lastly, we discuss the difference of the dual problems among RAMSVM 

and the existing MSVM methods.

4.1 Linear Learning

For linear learning, we assume fq (x) = xTβq (q = 1, … , k−1), where βq (q = 1, …, k−1) are 

the parameters of interest. The penalty term J (f ) in (4) can be written as . 

Note that we include the intercepts in x to simplify notation. As a result, the obtained 

function margins would be slightly different from those margins obtained without 

regularization on the intercepts. In particular, consider the original space X and the 

augmented space . The original binary SVMs aim to maximize 

the smallest margins within X. On the other hand, if the intercept is penalized, one can 

verify that it is equivalent to maximizing the smallest margins within the augmented space 

X′. However, the difference between these two types of margins is often negligible in binary 

problems (Fan et al., 2008). For MSVMs, the two types of function margins (i.e., with or 

without penalty on the intercepts) also differ slightly. Our numerical experience suggests that 

including the intercepts in the penalty term can still yield good classification performance.

We solve (4) in its dual form. Using new slack variables ξi,j (i = 1, … , n, j = 1, … , k), (4) 

with linear learning can be written as

Define the corresponding Lagrangian function L as

where αi,j and τi,j (i = 1, … , n, j = 1, … , k) are the Lagrangian multipliers. One can verify 

that L can be rewritten as
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where Ai,j = [γI(j = yi) + (1 − γ)I(j /= yi)].

After taking partial derivative of L with respect to βq (q = 1, … , k − 1) and ξi,j (i = 1, … , n, 

j = 1, … , k), we have

where Wj,q represents the qth element of Wj . Hence

(6)

Plug (6) in L, and one can obtain that, after simplification,

(7)

where βq is given in (6). Because maximizing L with respect to αi,j is equivalent to 

minimizing the negative of L, the dual form of (4) can be expressed as

(8)
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In (7), one can verify that L is strictly concave with respect to βq . Note that βq ’s are linear 

functions of αi,j ’s, hence L is a quadratic term of {αi,j (i = 1, … , n, j = 1, … , k)}, and −L 
in (8) is strictly convex with respect to each αi,j . Moreover, the constraints in (8) are box 

constraints. Therefore, the dual optimization (8) and can be solved by the well known 

coordinate descent method. Furthermore, because the object function is quadratic, within 

each step of coordinate-wise optimization the next update value can be calculated explicitly. 

This greatly boosts the computational speed. Compared to the regular MSVMs that involve 

linear equality constraints in the QP step (Lee et al., 2004; Liu and Yuan, 2011; Lauer and 

Guermeur, 2011), our proposed RAMSVM has box constraints only, hence can enjoy a 

faster computational speed. In Section 5, we show that RAMSVM often outperforms the 

MSVMs 2-6 in terms of computational speed. We point out that for RAMSVM using linear 

learning, the number of dual variables is O(nk). Hence, the implementation can be very fast 

for problems with high dimensional predictors and low sample sizes.

In the optimization literature, many authors have considered the general problem of 

quadratic programming with box constraints only (see, for example, Floudas and Gounaris, 

2009, for a review). Moreover, there exist many packages that are aimed for such 

optimization problems (for example, Bochkanov and Bystritsky, 2013). For our RAMSVM, 

we provide an R package “ramsvm”, which is developed with focus on RAMSVM 

optimization. In Section 5, we show that our package can enjoy a fast computational speed.

4.2 Kernel Learning

Next, we briefly discuss the case with kernel learning. We show that with the regular 

squared norm regularization and the intercepts penalized, the optimization can also be 

solved using the coordinate descent method. To begin with, denote by K the corresponding 

kernel function, and by  the gram matrix. Define Ai,j as in 

the linear case. If the penalty we choose is the squared norm penalty in the corresponding 

kernel space (see, for example, Shawe-Taylor and Cristianini, 2004, for details), then by the 

Representer Theorem (Kimeldorf and Wahba, 1971), we have 

 and . Here  is the 

kernel product coefficient vector, for q = 1, … , k − 1.

We introduce the slack variables ξi,j as in the linear case. If we impose penalization on the 

intercepts θq,0 for q = 1, … , k − 1 as well, (4) is equivalent to

(9)
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Next, we introduce the Lagrangian multipliers τi,j and αi,j , take partial derivative with 

respect to θq , θq,0 and ξi,j and set to zero, as in the linear case. Without loss of generality, 

assume that the gram matrix K is invertible. We have that

(10)

(11)

where Ki is the ith column of K. After plugging (10) and (11) in (9), (4) can be shown to be 

equivalent to

(12)

Note that K−1Kj is the jth column of the identity matrix, and KTK−1Kj = K(xi, xj ). Therefore, 

we do not need to calculate the inverse matrix K−1 in the optimization. One can verify that 

(12) can be solved in an analogous manner as (8).

4.3 Weighted Learning

So far we have focused on the optimization problem with equal weights of loss on different 

classes. In practice, it is prevalent to have one class whose size is significantly larger than 

that of another class. For example, in cancer research, the number of patients with a rare 

cancer can be very limited, while the number of healthy samples is large. In this case, 

standard classification without adjusting for the unbalanced sample sizes can lead to a 

suboptimal result. To overcome this difficulty, it has been proposed to use different weights 

of loss for different classes (Qiao and Liu, 2009). This weighted learning technique can also 

be applied to practical problems with possible biased sampling. See Zhang et al. (2013) for 

more discussions. Therefore, it is desirable to study the extension from standard 

classification to weighted learning. Next, we use linear learning as an example and 
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demonstrate how to solve the corresponding optimization problems with given weights on 

different observations.

Let the weight of loss for the ith observation be wi, and assume that wi > 0 (i = 1, … , n). In 

weighted learning, the optimization (4) becomes

which, after some calculation, can be rewritten as

(13)

where . Note that the difference between (8) and 

(13) is in the definition of Ai,j and . Because , the optimization (13) can be 

solved in a similar manner as (8).

4.4 Comparison with Dual Problems in MSVMs 2-6

In this section, we provide a brief comparison between the dual problems of MSVMs 2-6 

and our RAMSVM method. We first discuss the similarities among the dual problems of 

these classifiers, then illustrate the key difference between RAMSVM and other existing 

MSVMs. As a result, RAMSVM can be solved using the coordinate descent algorithm, 

while existing MSVMs typically rely on QP solvers. Numerical analysis in Section 5 

suggests that the coordinate descent algorithm can be faster than QP solvers for solving the 

dual problems of MSVMs.

In the literature, Guermeur (2012) proposed a general form of primal optimization for 

MSVM methods, and MSVMs 2-4 and 6 are included as special cases in this framework. 

See Problem 1 and Table 1 in Guermeur (2012) for details. Guermeur (2012) then derived 

the corresponding dual problems for soft and hard margin MSVMs. For MSVM6, Liu and 

Yuan (2011) derived its dual problem in their (3.8). For better illustration, we include the 

dual problems of Guermeur (2012) and Liu and Yuan (2011) in (A.1), (A.2), and (A.3) in the 

appendix. The objective functions of these dual problems are all quadratic functions with 

respect to the dual variables. This is similar to the RAMSVM case, such as (8) and (12). 

Notice that the number of dual variables αi,j in Guermeur (2012) is nk with αi,yi = 0. Hence 

the number of effective dual variables is n(k − 1). For our RAMSVM method, the number of 
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effective dual variable is generally nk, which is slightly larger than n(k − 1). This is because 

in RAMSVM we use the convex combination of loss functions as in (4), hence we introduce 

k more slack variables. Nevertheless, as we will see in Section 5, the combined loss function 

can provide stable classification performance under various settings, which is highly 

desirable. Notice that for γ = 0, our RAMSVM method also uses n(k − 1) effective dual 

variables, because αi,yi = 0 by the box constraints. For RAMSVM, our numerical experience 

suggests that the difference between n(k − 1) or nk dual variables is small in terms of 

computational speed.

The key difference between MSVMs 2-6 and RAMSVM is that the former methods have 

equality constraints in the corresponding dual problems. See (A.1), (A.2), and (A.3) in the 

appendix. Hence, the coordinate descent algorithm cannot be directly implemented. Instead, 

existing QP solvers are typically employed to solve the corresponding optimization. 

Compared to these dual formations, our RAMSVM is free of equality constraints, and can 

be solved using the coordinate descent algorithm. More importantly, because the objective 

function is quadratic, each update value in the coordinate-wise minimization can be 

calculated explicitly, without any further loops such as those in Newton-Raphson methods 

(Friedman et al., 2010). This helps to alleviate the computational burden, and boosts the 

speed greatly. In the next section, we demonstrate that solving RAMSVM with coordinate 

descent algorithm is efficient to compute.

5 Numerical Results

In this section, we examine the numerical performance of RAMSVM. As we will see, the 

algorithms developed in Section 4 can provide an efficient way to solve the corresponding 

optimization problem. In particular, in Section 5.1, we compare the performance of 

RAMSVM with MSVMs 2-6 via three simulated examples, and in Section 5.2, we study six 

real world data sets. For MSVMs 2-4 and 6, we use the MSVMpack package developed by 

Lauer and Guermeur (2011). For RAMSVM, we apply the same stopping criterion as in the 

MSVMpack package, which is to stop the iteration when the ratio of the dual objective 

function is larger than 98% of the primal value. For RMSVM, the R code is publicly 

available, and we follow the suggestion in Liu and Yuan (2011) to use γ = 0.5. For 

RAMSVM, we demonstrate the effect of γ on the classification accuracy using simulated 

examples. We show that RAMSVM can often enjoy a faster computational speed, and the 

Fisher consistent RAMSVM with γ = 0.5 yields a stable and competitive classifier.

All numerical analyses are done with R (R Core Team, 2015) on a computer with an Intel(R) 

Core(TM) i7-4770 processor at 3.4GHz and 16GB of memory. The core code of the 

coordinate descent algorithm for RAMSVM is written in C. An R package “ramsvm”, which 

contains the code to perform RAMSVM classification, is provided in the Supplementary 

Materials. Notice that both MSVMpack and our ramsvm implement parallel computing to 

train the classifiers. In particular, the algorithm splits the data into small chunks, and the 

dual variables for each chunk are updated using parallel threads. Hence, for problems with 

large data sets, parallel computing can significantly reduce the computational time. 

However, as Lauer and Guermeur (2011) mentioned, sometimes the algorithm for one chunk 

of data needs output from previous steps. If the computation in the previous steps is not 
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finished before the next update step, the corresponding thread would be idle for a while, and 

this can reduce the corresponding efficiency. How to determine the chunk size can be an 

issue, and is discussed in the ramsvm reference manual. Moreover, for our ramsvm package, 

we observe that for small data sets (hundreds of observations), using parallel computing in R 

can indeed be slower. This is because creating threads in R can take some time, and is not 

efficient for small problems. Hence, in our ramsvm package, we provide the option to use 

parallel computing or not. For numerical results in the following sections, we report the 

smaller computational time of RAMSVM and MSVMpack with or without parallel 

computing.

5.1 Simulated Examples

We consider three simulated examples in this section. The first example is constructed such 

that linear learning suffices, and we apply linear learning as well as the Gaussian kernel 

learning. For the second example, we design the marginal distribution of X such that linear 

classification boundaries cannot separate the classes well. Therefore, we use the second 

order polynomial kernel and the Gaussian kernel for this example. For Gaussian kernel 

learning, the kernel parameter σ is chosen to be the median of all the pairwise distances 

between one category and others. The third example is a simulated data set from the UCI 

machine learning website (Bache and Lichman, 2015). We apply linear and second order 

polynomial kernel learning for this example.

We let the convex combination parameter γ vary in {0, 0.1, 0.2, … , 0.9, 1} and study the 

effect of γ on the classification accuracy for RAMSVM. To select the best tuning parameter 

λ, we use a grid search. In particular, we train the classifiers on a training data set. The 

classifier that has the smallest prediction error rate on an independent tuning data set is then 

selected, and we record the prediction error rate on a separate testing data set. The size of the 

testing data is 106 for the first and second examples. We repeat this procedure 50 times and 

report the average prediction error rate on the testing data set. To compare the computational 

speed among different methods, in each replication we record the total time of training the 

classifiers for 50 different tuning parameters, selecting the best parameter λ and predicting 

on the testing data set. We report the average time used for one replication as a measurement 

of computational speed. For RAMSVM, we only report the time for γ = 1/2, since the 

differences in terms of computational time for various γ values are small.

Example 1—This is an eight class example with equal probabilities Pr(Y = j) (j = 1, … , 

8). The marginal distribution of X for each class is normal, and the mean vectors for 

different classes form a simplex in ℝ7. We choose the covariance matrices of the normal 

distributions so that the corresponding Bayes classification error is 5%. We use 150 

observations for training and another 150 for tuning.

Example 2—We generate four classes with Pr(Y = j) = 1/4 (j = 1, … , 4) on ℝ2. For each 

class, the predictor vector X | Y = j follows a mixed normal distribution. In particular, for 

class j, X follows 0.5N ((cos(jπ/4), sin(jπ/4))T, Σ) + 0.5N ((cos(jπ/4 + π), sin(jπ/4 + π))T, 

Σ). Here Σ is chosen such that the Bayes error is 5%. Both the training and tuning data are of 

size 150.

Zhang et al. Page 15

J Comput Graph Stat. Author manuscript; available in PMC 2016 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Example 3—This is the three-class Waveform Database Generator (Version 1) data set 

from the UCI machine learning website. The number of observations for the three classes 

are 1657, 1647 and 1696, respectively. There are 21 predictors. For each replicate, we divide 

the data into six parts of roughly the same size. Four parts are used as the training data, one 

as the tuning, and the rest as the testing data set.

The effect of γ on classification error rates for RAMSVM is illustrated in Figure 1. For 

linear learning, the classification error rate decreases as γ increases from 0 to 1/2. When γ 
ranges in [1/2, 1], the change in classification accuracy is small. However, for kernel 

learning, the pattern is reversed according to Figure 1. In particular, the classification error 

rates increase as γ increases from 1/2 to 1, and when γ is in [0, 1/2], the classification 

accuracy does not change much. The results suggest that although RAMSVM with γ > 1/2 

is not Fisher consistent, in linear learning where the functional class F is relatively simple, 

encouraging  to be large explicitly (the second part of loss in (4)) may work better 

than doing so implicitly (the first part of loss). However, for kernel learning problems where 

F is more flexible, Fisher consistency can become more relevant and the classification 

accuracy of RAMSVM with γ > 1/2 may suffer from being inconsistent. From Figure 1, one 

can conclude that the classification accuracy of RAMSVM with γ = 1/2 is close to the 

optimum for all situations, hence choosing γ = 1/2 provides a Fisher consistent and stable 

classifier. We recommend using γ = 1/2 for all classification problems.

We report the comparison among RAMSVM and MSVMs 2-6 in Table 1. In particular, we 

calculate the p-values for testing the null (alternative) hypotheses that the classification error 

of RAMSVM is larger than or equal to (smaller than) that of the other methods, using the 

two sample proportion test. Based on the p-values, our RAMSVM with γ = 1/2 can work 

better than all the considered existing MSVMs in Example 1 using linear learning, and in 

Example 2 using Gaussian learning. For other cases, one can see that RAMSVM is still very 

competitive. In terms of computational speed, compared to MSVMpack, RAMSVM has 

computational advantages on linear and polynomial learning, which is also demonstrated in 

Section 5.2. For Gaussian kernel learning, the speed of RAMSVM is comparable with 

respect to MSVMpack.

5.2 Real Data Analysis

In this section, we test the performance of RAMSVM using six real data sets, among which 

five data sets can be found on the UCI machine learning repository website. The 

Glioblastoma data can be found in Verhaak et al. (2010). A summary of these data sets is 

provided in Table 2. The predictors of these real data sets are standardized. For the Vertebral, 

Optical, and Glioblastoma data sets, we perform a 5-fold cross validation to select the best 

tuning parameters. We report the average prediction error rates among 50 replicates. As a 

measurement of computational speed, we report the average time for solving the 

optimization problems with the entire training data sets throughout the 50 replicates. The 

Gaussian kernel parameters are chosen analogously as in Section 5.1.

For the Gas, Isolet, and Pendigits data sets, because their sizes are relatively large, we 

choose a small proportion of observations to select the tuning parameters. Then we report 
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the computational time of optimization with the entire training data set as a measurement of 

computational speed. Moreover, we report the prediction error rates. Notice that we only 

perform one replicate for the Gas, Isolet, and Pendigits data sets to assess the corresponding 

classification accuracy and computational speed, due to the large sample sizes of these 

problems.

The real data results are reported in Table 3. One can verify that RAMSVM can enjoy a very 

efficient computational speed, especially with linear learning. This is consistent with the 

findings in the simulation study. For Gaussian kernel learning, the computational speed of 

RAMSVM and MSVMpack is comparable. In terms of classification accuracy, RAMSVM 

with γ = 1/2 is a stable classifier, and the corresponding prediction error rates are close to 

the optimum. Overall, RAMSVM is a very competitive classifier. Notice that the code for 

MSVM5 does not converge for Gas, Isolet, and Pendigits data sets after 48 hours.

6 Discussion

In this paper, we propose the RAMSVM as a new angle-based MSVM method. We show 

that the RAMSVM has two advantages. First, it is free of the sum-to-zero constraint, hence 

the corresponding optimization procedure can be more efficient. In particular, we develop a 

new algorithm to train the classifier using coordinate descent method, which does not rely on 

existing QP solvers. Second, the RAMSVM overcomes the difficulty of inconsistency, 

compared to the existing angle-based MSVM method. Numerical comparisons between the 

RAMSVM and some existing MSVMs demonstrate the usefulness of our method. Although 

one can treat γ as an additional tuning parameter, it requires more computational time. We 

recommend using the RAMSVM with γ = 1/2, which yields a Fisher consistent classifier 

whose performance is stable and often close to the optimum.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The left panel displays the effect of different γ values on the classification performance of 

RAMSVM for simulated Example 1. The standard errors of the classification error rates in 

Example 1 range from 0.001 to 0.012. The middle panel reports the pattern for Example 2, 

and the corresponding standard errors range from 0.001 to 0.010. The right panel shows the 

effect of different γ values on classification error rates for Example 3. The corresponding 

standard errors range from 0.003 to 0.023.
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Table 1

Prediction error rates and computational time in seconds for the simulated examples.

MSVM
Method

Ex 1 Linear Ex 2 Poly Ex 3 Linear

Error Time p-value Error Time p-value Error Time p-value

MSVM2 14.67 18 0.000 15.53 54 1.000 14.48 306 0.419

MSVM3 15.21 21 0.000 14.96 48 1.000 14.41 299 0.533

MSVM4 22.47 20 0.000 21.79 64 0.000 14.56 338 0.297

MSVM5 11.34 151 0.000 17.76 452 0.000 - - -

MSVM6 14.98 27 0.000 16.14 77 0.000 14.76 422 0.088

RAMSVM 9.80 13 - 15.71 23 - 14.43 115 -

MSVM
Method

Ex 1 Gauss Ex 2 Gauss Ex 3 Poly

Error Time p-value Error Time p-value Error Time p-value

MSVM2 8.64 13 1.000 11.62 17 0.000 14.64 599 0.109

MSVM3 9.16 11 0.000 12.88 21 0.000 14.91 478 0.010

MSVM4 11.71 15 0.000 15.19 23 0.000 14.88 705 0.013

MSVM5 14.09 277 0.000 15.82 298 0.000 - - -

MSVM6 11.57 15 0.000 13.57 30 0.000 14.29 818 0.581

RAMSVM 8.78 14 - 11.34 21 - 14.34 355 -

Poly: Second order polynomial kernel learning. Gauss: Gaussian kernel learning. The standard errors of the error rates range from 0.6% to 1.7%. 
The standard errors of the computational time range from 1 to 32 seconds. Note that MSVM5 cannot be computed for Example 3 due to its large n.
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Table 2

Summary of the real data sets used in Section 5.2.

Data # classes # predictors # training obs # testing obs

Gas 6 129 11592 2318

Glioblastoma 4 16548 296 60

Isolet 26 617 6238 1559

Optical 10 64 3823 1797

Pendigits 10 16 7494 3498

Vertebral 3 6 258 52

J Comput Graph Stat. Author manuscript; available in PMC 2016 November 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 23

Table 3

Prediction error rates and computational time for the real examples.

Data & Kernel Method Error Time

Gas
Linear

MSVM2 1.57 01:33:24

MSVM3 1.72 32:19:17

MSVM4 1.92 48:00:00*

MSVM5 - -

MSVM6 1.78 48:00:00*

RAMSVM 1.51 00:47:42

Glioblastoma
Linear

MSVM2 24.21 00:00:02

MSVM3 23.17 00:00:02

MSVM4 24.28 00:00:02

MSVM5 23.80 00:00:21

MSVM6 23.92 00:00:02

RAMSVM 22.95 00:00:02

Isolet
Linear

MSVM2 9.07 44:26:09

MSVM3 8.93 29:16:35

MSVM4 9.41 48:00:00*

MSVM5 - -

MSVM6 9.39 48:00:00*

RAMSVM 8.92 07:26:04

Optical
Gaussian

MSVM2 2.63 00:00:15

MSVM3 2.58 00:00:18

MSVM4 2.74 00:00:31

MSVM5 - -

MSVM6 2.68 00:01:44

RAMSVM 2.56 00:00:16

Pendigits
Gaussian

MSVM2 5.13 00:03:19

MSVM3 6.60 00:00:29

MSVM4 4.93 00:01:20

MSVM5 - -

MSVM6 5.11 00:05:17

RAMSVM 5.06 00:00:52

Vertebral
Gaussian

MSVM2 18.26 00:00:01

MSVM3 18.41 00:00:01

MSVM4 18.63 00:00:01

MSVM5 18.20 00:00:12

MSVM6 18.39 00:00:01

RAMSVM 17.92 00:00:01
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For Vertebral, Optical, and Glioblastoma, the standard errors of the error rates range from 0.05% to 0.24%, and the standard errors of the 
computational time range from 0.001 to 2 seconds. Note that MSVM5 cannot be computed for Gas, Isolet, and Pendigits, due to the large n.

*
Here means the MSVMpack algorithm did not converge according to the stopping rule within 48 hours, and the iteration was manually stopped. 

The models at 48 hours were used to assess the performance. See Lauer and Guermeur (2011) for more details.
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