Table 1.
Prediction error rates and computational time in seconds for the simulated examples.
MSVM Method |
Ex 1 Linear | Ex 2 Poly | Ex 3 Linear | ||||||
| |||||||||
Error | Time | p-value | Error | Time | p-value | Error | Time | p-value | |
| |||||||||
MSVM2 | 14.67 | 18 | 0.000 | 15.53 | 54 | 1.000 | 14.48 | 306 | 0.419 |
MSVM3 | 15.21 | 21 | 0.000 | 14.96 | 48 | 1.000 | 14.41 | 299 | 0.533 |
MSVM4 | 22.47 | 20 | 0.000 | 21.79 | 64 | 0.000 | 14.56 | 338 | 0.297 |
MSVM5 | 11.34 | 151 | 0.000 | 17.76 | 452 | 0.000 | - | - | - |
MSVM6 | 14.98 | 27 | 0.000 | 16.14 | 77 | 0.000 | 14.76 | 422 | 0.088 |
RAMSVM | 9.80 | 13 | - | 15.71 | 23 | - | 14.43 | 115 | - |
| |||||||||
MSVM Method |
Ex 1 Gauss | Ex 2 Gauss | Ex 3 Poly | ||||||
| |||||||||
Error | Time | p-value | Error | Time | p-value | Error | Time | p-value | |
| |||||||||
MSVM2 | 8.64 | 13 | 1.000 | 11.62 | 17 | 0.000 | 14.64 | 599 | 0.109 |
MSVM3 | 9.16 | 11 | 0.000 | 12.88 | 21 | 0.000 | 14.91 | 478 | 0.010 |
MSVM4 | 11.71 | 15 | 0.000 | 15.19 | 23 | 0.000 | 14.88 | 705 | 0.013 |
MSVM5 | 14.09 | 277 | 0.000 | 15.82 | 298 | 0.000 | - | - | - |
MSVM6 | 11.57 | 15 | 0.000 | 13.57 | 30 | 0.000 | 14.29 | 818 | 0.581 |
RAMSVM | 8.78 | 14 | - | 11.34 | 21 | - | 14.34 | 355 | - |
Poly: Second order polynomial kernel learning. Gauss: Gaussian kernel learning. The standard errors of the error rates range from 0.6% to 1.7%. The standard errors of the computational time range from 1 to 32 seconds. Note that MSVM5 cannot be computed for Example 3 due to its large n.