Skip to main content
. Author manuscript; available in PMC: 2016 Nov 23.
Published in final edited form as: J Comput Graph Stat. 2016 Aug 5;25(3):806–825. doi: 10.1080/10618600.2015.1043010

Table 1.

Prediction error rates and computational time in seconds for the simulated examples.

MSVM
Method
Ex 1 Linear Ex 2 Poly Ex 3 Linear

Error Time p-value Error Time p-value Error Time p-value

MSVM2 14.67 18 0.000 15.53 54 1.000 14.48 306 0.419
MSVM3 15.21 21 0.000 14.96 48 1.000 14.41 299 0.533
MSVM4 22.47 20 0.000 21.79 64 0.000 14.56 338 0.297
MSVM5 11.34 151 0.000 17.76 452 0.000 - - -
MSVM6 14.98 27 0.000 16.14 77 0.000 14.76 422 0.088
RAMSVM 9.80 13 - 15.71 23 - 14.43 115 -

MSVM
Method
Ex 1 Gauss Ex 2 Gauss Ex 3 Poly

Error Time p-value Error Time p-value Error Time p-value

MSVM2 8.64 13 1.000 11.62 17 0.000 14.64 599 0.109
MSVM3 9.16 11 0.000 12.88 21 0.000 14.91 478 0.010
MSVM4 11.71 15 0.000 15.19 23 0.000 14.88 705 0.013
MSVM5 14.09 277 0.000 15.82 298 0.000 - - -
MSVM6 11.57 15 0.000 13.57 30 0.000 14.29 818 0.581
RAMSVM 8.78 14 - 11.34 21 - 14.34 355 -

Poly: Second order polynomial kernel learning. Gauss: Gaussian kernel learning. The standard errors of the error rates range from 0.6% to 1.7%. The standard errors of the computational time range from 1 to 32 seconds. Note that MSVM5 cannot be computed for Example 3 due to its large n.