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Abstract

Background—Weight loss may decrease risk of colorectal cancer in obese individuals, yet its 

effect in the colorectum is not well understood. We used integrative network modeling, Passing 

Attributes between Networks for Data Assimilation, to estimate transcriptional regulatory network 

models from mRNA expression levels from rectal mucosa biopsies measured pre- and post-weight 

loss in 10 obese, pre-menopausal women.

Results—We identified significantly greater regulatory targeting of glucose transport pathways 

in the post-weight loss regulatory network, including “regulation of glucose transport” (FDR = 

0.02), “hexose transport” (FDR = 0.06), “glucose transport” (FDR = 0.06) and “monosaccharide 

transport” (FDR = 0.08). These findings were not evident by gene expression analysis alone. 

Network analysis also suggested a regulatory switch from NFKB1 to MAX control of MYC post-

weight loss.

Conclusions—These network-based results expand upon standard gene expression analysis by 

providing evidence for a potential mechanistic alteration caused by weight loss.

Introduction

Obesity occurs in over one third of the American population and is associated with increased 

risk of colorectal cancer [1,2]. However, it is not clear if one must be of normal weight 

throughout life to be protected against colorectal cancer or if weight loss decreases risk in 

obese individuals. It has been hypothesized that since weight loss decreases systemic 

inflammation [3], weight loss may mediate anti-cancer effects in the colorectum. Weight 
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loss interventions have been successful among individuals with high colorectal cancer risk 

[4]. However, there is no defined mechanism of action for this commonly prescribed cancer 

prevention and lifestyle intervention.

Most human studies on the effect of body mass in colorectal cancer have focused on the 

association between disease and weight gain, and even those findings are inconsistent. For 

example, different studies have found an increased risk for colorectal cancer in response to 

weight gain (1) among men but not women [5], (2) only among men that were overweight at 

baseline [6], or (3) among both men and women [7]. Most recently, Song, et al. [8] observed 

a significant 64% increased risk for colorectal cancer among men who gained ≥20kg in 

adulthood versus weight stable men, and a trend for a negative association between adult 

weight loss and colorectal cancer risk among men. Similar, but weaker associations were 

also observed among women. Recent meta-analyses on weight gain and colorectal cancer 

studies demonstrates an increased risk of colon cancer among men, but not women, who 

gain weight in adulthood [9–11].

Similarly, the few studies examining the effects of weight loss are also inconsistent and often 

null. Although there are several reports of an association of intentional weight loss with 

reduced colorectal cancer [12] [13][14], many studies have been unable to find this 

association [15] [16] [17] [18]. These inconsistent results suggest the effects of weight loss 

may be BMI-, time-, dose- and even person-dependent and demonstrates a need to better 

understand the impact of weight loss in the colorectum of obese and overweight individuals. 

Further, these studies do not allow for the disentanglement of effects due to weight loss 

versus effects due to extreme changes in diet.

Obesity is a chronic inflammatory state, resulting in an increase in circulating insulin, 

adipokines, and other hormones and leading to changes in glucose transport and activation 

of the PI3K/mTOR pathway. Subsequently, colorectal epithelial cells damaged by 

inflammation with access to plenty of circulating glucose at their disposal are signaled to 

grow and potentially undergo malignant transformation [19][20]. A prevailing assumption is 

that the opposite mechanism is at work under lower body fat, post-weight loss conditions. 

Indeed, those who lose weight display more normal glucose regulation [21,22]. Circulating 

insulin and hemoglobin A1C levels are also positively associated with colorectal cancer risk 

[23]. While literature reviews describe limited but suggestive evidence that weight loss 

decreases circulating biomarkers of inflammation [24], there is a lack of rigorous 

mechanistic and epidemiological evidence linking intentional weight loss itself to decreased 

colorectal cancer risk.

Modeling gene regulation as a complex network is an important way to characterize and 

explore the regulatory mechanisms mediating cellular processes [25]. Although there are 

many approaches for modeling networks, it has become increasingly obvious that integrative 

approaches combining multiple sources of evidence produce the most informative and 

accurate networks [26]. PANDA (Passing Attributes between Networks for Data 

Assimilation; [27–30]) uses an integrative message-passing approach to reconstruct gene 

regulatory networks. What distinguishes PANDA from other approaches is its focus on 

information flow when estimating regulatory relationships. Specifically, PANDA does not 
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derive edges in the network from direct correlation in expression patterns between a 

transcription factor and a downstream target gene, but rather shared patterns of co-

expression between common targets of a transcription factor.

In this study we used PANDA to integrate publicly available gene expression data from 

rectal mucosal biopsy samples pre- and post-diet induced weight loss in 10 women. With a 

prior regulatory map derived from existing transcription factor binding motif information, 

we built models representing the gene regulatory network of the colorectum both pre- and 

post-weight loss (Pendyala, Neff, Suarez-Farinas, & Holt, 2011; GSE20931). We then 

compared these networks to characterize the effects of weight loss on cellular pathways. 

Specifically, we identified MYC- and glucose transport-related regulatory shift post-weight 

loss. Our results complement standard gene expression analyses by providing additional 

information and allowing us to hypothesize on alterations in transcription factor regulation-

mediated expression changes. These changes can be used to develop hypotheses on the 

biological processes of the colorectum that are most affected in response to weight loss.

Results

Gene regulatory network models at baseline and end-of-study

We used PANDA to build network models of the gene regulatory structure by combining 

transcription factor motif information with gene expression data from paired mucosal 

biopsies collected from 10 pre-menopausal women both before (baseline) and after weight 

loss (end-of-study; Figure 1). Finding obese but otherwise healthy participants who are able 

to adhere to a very low calories diet is challenging and obtaining paired rectal biopsies from 

subjects is rare. While the number of samples in this gene expression dataset is fairly small, 

we have previously used PANDA to model gene regulatory networks in other systems with 

limited samples [22] and found that the algorithm is able to estimate networks whose 

structure provides insight into the underlying biology. It is this structure, and how it changes 

as a result of weight-loss, that we investigate here.

To begin, we downloaded gene expression data from the Gene Expression Omnibus (GEO; 

GSE20931), corrected for batch effect, merged replicate samples and selected the probe with 

the highest index of dispersion to represent each gene. PANDA was then used to integrate 

the pairwise co-expression levels of genes (estimated using the Pearson correlation) in either 

the baseline and end-of-study samples with a prior regulatory network constructed by 

scanning promoter regions (defined as [+750, −250] around the TSS) for transcription factor 

binding sites [32]. Because of the relatively small number of samples, we used a jack-

knifing approach to build fifty networks based on the baseline samples and fifty network 

based on the end-of-study samples [25]. We did this by creating 50 random subsamples of 5 

participants each. Each subsample contained an individual no more than one time but 

individuals were represented in multiple subsamples. For each subsample, we identified the 

pre- and post-weight loss expression data corresponding to the individuals in the subsample 

and applied PANDA to estimate a paired baseline and end-of-study regulatory gene network. 

We did this for all fifty subsamples, resulting in fifty baseline and fifty end-of-study 

networks. Because we selected samples from the same individuals when creating each 

baseline and end-of-study network, these can be thought of as paired sets of networks, which 
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can help us account for between-subject heterogeneity in our analysis. For more information 

on the expression and motif data processing and network modeling, please see Methods.

We compared the fifty baseline and fifty end-of-study networks to identify biological 

processes and pathways that are robustly differentially-targeted between the pre- and post-

weight loss states. To do this, we ran Gene Set Enrichment Analysis (GSEA; Mootha et al., 

2003; Subramanian et al., 2005) using the in-degree of genes (number of transcription 

factors targeting that gene) in our 50 baseline and 50 end-of-study networks as an input [30]. 

Although no gene sets were significantly enriched for increased targeting at baseline 

compared to end-of-study, we observe a slight trend for carbohydrate biosynthetic processes 

(Table 1; S1 Table; S2 Table). On the other hand, four glucose transport pathways were 

among the top significantly enriched pathways at end-of-study (Table 1; S2 Table): 

“regulation of glucose transport” (FDR = 0.02), “hexose transport” (FDR = 0.06), “glucose 

transport” (FDR = 0.06) and “monosaccharide transport” (FDR = 0.08). This, juxtaposed 

with a suggestion of biosynthesis at baseline (monosaccharide and hexose biosynthesis, 

FDR q-value = 0.25 and 0.28, respectively), is evidence that there is a shift away from 

carbohydrate synthesis and an increase in glucose transport regulation in response to weight 

loss. To evaluate whether these shifts in local network structure around glucose transport 

genes would be evident from a standard gene expression-based analysis, gene expression 

values were input into GSEA from our baseline and end-of-study samples. Consistent with 

our network-based results, we did not find any gene sets enriched at baseline (data not 

shown). However, we found many processes related to mitochondrial function and cellular 

respiration significantly enriched at end-of study, as well as chemokine (FDR = 0.002) and 

cytokine activity (FDR = 0.038) (S3 Table). These latter two processes were also identified 

by GSEA analysis of the gene expression data in the previous analysis of this data, which 

used an older Gene Ontology dataset for GSEA analyses [31]. It is interesting to note, 

however, that neither the original analysis of the expression data, nor our re-analysis, 

identified significant differential-expression of the glucose transport genes.

Key transcription factors alter targeting from baseline to end-of-study

We next investigated which transcription factors might be driving the changes in the 

networks between baseline and end-of-study. To begin, we created a single aggregate 

baseline and a single aggregate end-of-study network by averaging the 50 baseline and 50 

end-of-study networks, respectively. Next, we limited these aggregate networks to only 

include “high-confidence” edges, which we identified based on a combined probability score 

that represents both the likelihood that a given edge exists and that is stronger in baseline 

compared to end-of-study, or vice versus (see Methods; Supplementary data). To identify 

large-scale patterns that might define biologically meaningful differences between these two 

“high-confidence” subnetworks, we compared the change in out-degree (number of gene 

targets) of each transcription factor [28]. Figure 2A lists the twenty transcription factors with 

the greatest absolute change in out-degree (targeting) between the baseline and end-of-study 

high-confidence subnetworks and their corresponding “edge-enrichment score” [28]. For 

more information see Methods.
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The three transcription factors with the largest change in gene targeting were MAX, which 

had 3,588 more gene targets in the end-of-study aggregate subnetwork compared to baseline, 

INSM1 which had 3,201 fewer, and NFKB1 which had 2,780 fewer (Figure 2A). MYC (an 

oncogenic factor and regulatory associate of these transcription factors; Fernandez et al., 

2003a; Gu, Cechova, Tassi, & Dalla-Favera, 1993; F. La Rosa, Pierce, & Sonenshein, 1994; 

Lahoz, Xu, Schreiber-Agus, & DePinho, 1994) also had a greatly increased level of gene 

targeting post weight loss. However, the MYC::MAX heterodimer had overall decreased 

targeting (data not shown), suggesting that although both MYC and MAX are both targeting 

more genes post weight loss, this likely is not the result of these two proteins working 

together in a protein complex.

To gain a better understanding of the changes in the local regulatory network around the top 

twenty transcription factors with altered regulatory partners, we visualized high-confidence 

edges from the baseline and end-of-study aggregate subnetworks that extend between any 

pair of these top 20 transcription factors (Figure 2B). It is important to note that these 

subnetworks likely contain some false-positive edges; however, it is also interesting that we 

observe a high-level of regulatory activity around these transcription factors, with 75 high-

confidence edges at baseline to 80 at end-of-study.

We next limited our view to the transcription factors with the largest changes in gene 

targeting in the aggregate subnetwork of high confidence edges (MAX, INSM1 and NFKB1) 

and a shared transcription factor target of key importance in carcinogenesis and cellular 

growth (MYC; Figure 2C) [39]. We observed a shift from reliance on NFKB1 and INSM1 

cross-talk to modulate MYC at baseline to MAX modulating both INSM1 and MYC at end-

of-study. This shift was observed despite the fact that the average log-fold change values in 

expression for MAX, INSM1 and NFKB1 were only 0.010, −0.026, and −0.001, 

respectively. We also saw changes in co-expression levels among the targets of these 

transcription factors, providing additional evidence of their importance in mediating changes 

induced by weight loss, and helping to explain this gene regulatory shift (S1 Figure).

A MYC-related mechanism for the shift towards glucose transport post-weight loss

GSEA analysis of our network models indicated that genes involved in glucose transport are 

differentially-targeted between baseline and end-of-study (Table 1). Thus, we next examined 

the relationship between this finding and the network-rewiring we observed occurring 

around MYC, MAX NFKB1 and INSM1 in our aggregate models. To do this we identified 

the subset of genes annotated to the regulation of glucose transport, hexose transport, 

monosaccharide transport and/or glucose transport gene sets used in the GSEA analysis. We 

then selected high-confidence edges that target at least one of these genes, resulting in a 

subnetwork of 7,949 high-confidence glucose transport-specific edges at baseline and a 

subnetwork of 8,264 high-confidence glucose transport-specific edges at end-of-study.

As in the aggregate network of high-confidence edges, we determined the number of genes 

targeted by each transcription factor in these glucose transport-specific subnetworks. We 

observe that three of our previously-identified transcription factors (NFKB1, MAX and 

INSM1) have some of the largest changes in targeting between baseline and end-of-study 

(Table 2). This confirms the notion that the shift from INSM1 and NFKB1 to MAX control 
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(Figure 2C) is a potential mediator of the shift in glucose transport regulation post-weight 

loss.

Our network analysis was able to discern changes in targeting around glucose transport 

genes that were not identified in a differential-expression analysis. We therefore were also 

curious about the relationship between the re-wiring we observed around these glucose 

pathway genes and their differential-expression between baseline and end-of-study. To 

investigate this further, we directly compared the log-fold change in expression from 

baseline to end-of-study with the “edge enrichment score” (EES) for in- and out-degree for 

each gene and transcription factor in the glucose transport-specific subnetwork (Figure 3; 

note that genes that are not also transcription factors will have a nominal out-degree EES of 

zero). Expression (log-fold change), EES in-degree and EES out-degree all provide different 

information about genes in the glucose regulatory pathway, emphasizing the importance of 

investigating the information highlighted in each of the three data analyses.

Discussion

Network-based gene expression analysis of rectal mucosa biopsy samples from 10 obese, 

pre-menopausal women before and after supervised, diet-induced weight loss suggests that 

weight loss leads to changes in glucose/carbohydrate transport via a shift from INSM1 and 

NFKB1, to MAX gene regulatory control. These results complement earlier observations of 

a decrease in NFKB1-related inflammation, and a decrease in fasting glucose (meanbaseline = 

95 mg/dL, meanend-of-study = 85 mg/dL), and triglycerides (meanbaseline = 122 mg/dL, 

meanend-of-study = 93 mg/dL) in these women [31]. Additionally, our findings also describe a 

MAX-based mechanism for the observed increase in glucose mobilization and/or use along 

with less biosynthesis.

Obesity-associated colorectal cancer has been hypothesized to be mediated by exposure of 

the colorectum to chronic inflammatory insults in the presence of abundant glucose [21–

24,40] but the mechanisms of weight loss on the colorectum that mediate colorectal cancer 

risk are not well understood. A standard GSEA analysis of gene expression levels in these 

participants, along with measuring biomarkers of inflammation, previously provided 

evidence that weight loss induces a decrease in inflammatory related genes (JUN and FOS), 

inflammatory pathways (cytokine activity, chemokine receptor binding, chemokine activity, 

etc.) and led to the hypothesis that these changes were modulated by TNF-α, IL-6, IL-1, and 

IL-8 [31].

The PANDA-based network approach we describe herein not only identified many of these 

same changes in inflammatory pathways, but also highlighted an important shift in the 

targeting of glucose regulatory pathways. Additionally, this network-based analysis allowed 

us to identify a possible mechanism by which weight loss decreases inflammation and alters 

glucose transport in rectal mucosa. Although little change in mRNA expression levels of 

NFKB1, INSM1 and MAX was observed, our integrative network models depict a striking 

decrease in the number of genes targeted by NFKB1 and INSM1 post-weight loss, while 

MAX increased the number of genes it targeted. To our knowledge this is the first 

description of a shift in gene regulatory control post-weight loss to MAX.
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INSM1, NFKB1 and MAX are all involved in glucose metabolism and/or inflammation. 

Perhaps the best studied of the three is NFKB1, which is activated by pro-inflammatory 

pathways observed in obese persons, confers a selective growth advantage [41] and 

promotes epithelial to mesynchymal transition of colorectal cells [42]. It is also thought to 

contribute to the risk of colorectal cancer [43]. While targets of INSM1 in the rectum are 

unknown, INSM1 has been shown to target the AKT/PI3K pathway in the pancreas [44] 

which itself regulates glucose transport via mTOR [45]. MAX’s involvement in glucose 

regulation is likely mediated through its MYC-related mechanisms described below [37,38].

The oncogenic, growth promoting transcription factor MYC is mediated by all three genes 

of interest. Specifically, NFKB1 promotes MYC expression [36], while INSM1 is a target of 

MYC [35], and MAX heterodimerizes with MYC to form MYC::MAX [37,38]. However, as 

we observed a large increase in MAX targeting genes from baseline to end-of-study, we 

simultaneously observed a large decrease in MAX::MYC targeting. Thus instead of 

dimerizing with MYC after weight loss, MAX likely forms a MAX::MAX homodimer 

which has been shown in vitro to repress MYC-induced cell growth and malignant 

transformation [37,38].

In addition to being a prolific regulator of cell growth and oncogenesis, MYC also regulates 

a majority of the genes that regulate glycolysis [46]. However, in part due to the key role 

MYC plays in normal cell functions, designing drugs to target MYC has been incredibly 

challenging [39].We suggest that it may be reasonable to combine already available NFKB 

inhibiting drugs [47], and/or to develop agents that inhibit INSM1 or promote MAX in order 

to induce the anti-inflammatory and glucose regulatory changes that weight loss induces for 

cancer prevention or, potentially, weight loss induction itself.

Integrative network modeling has previously been used to describe the tissue-specific effects 

of weight loss in adipose tissue [48]. Our application of PANDA similarly demonstrates how 

network approaches help to build upon previous gene expression-based findings [31]. 

However, we recognize that our results are limited by the inability to assign cause to weight 

loss versus extreme dietary change since they occurred concurrently in these participants, a 

lack of protein measurements, biases in the available transcription factor motif datasets, and 

the potential for false positives due to the small number of gene expression samples used to 

construct the networks. One reason we chose to model networks using this particular dataset 

was that is contained paired samples from the same individual, minimizing the effects of the 

underlying heterogeneity across individuals in our analysis and allowing us to focus on 

changes that are most likely a result of weight loss. By subsampling, we also minimized the 

effect of changes in gene expression that are specific to only one individual (outliers). In 

addition, to mitigate the influence of false-positive edges in our networks, we chose to focus 

on large-scale changes, such as alterations in transcription factor degree, or in the targeting 

patterns around a set of pathway genes. Despite taking these precautions, we recognize that 

future studies will be needed to confirm our proposed NFKB1/INSM1 to MAX regulatory 

shift mechanism in model systems by measuring protein levels.

In summary, using network modeling, we identified a significant change in targeting of 

glucose transport genes in the rectal mucosa of overweight women who underwent 
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intentional weight. These changes were explained by a putative mechanism whereby 

NFKB1 and INSM1 decrease their gene targeting activity and MAX takes over to alter MYC 

and other glucose and inflammatory gene expression levels. Although these findings are 

highly promising, we recognize that this mechanism needs to be confirmed in model systems 

before moving towards targeting of these transcription factors as potential inducers of weight 

loss and/or cancer preventative therapies.

Materials and Methods

Participants and data source

In a previous study [31] ten obese, pre-menopausal women (mean age = 43; Figure 1) were 

enrolled in a weight loss trial. Briefly, exclusion criteria for participation included not being 

weight stable (≥ 6 months), history of cancer, current weight loss treatment, history of 

intestinal surgery, history “suggestive of malabsorption”, other major medical concerns, use 

of anti-inflammatory medications or medications with contraindications for severe weight 

loss/low calorie diet. Participants were put on a closely supervised, low calorie diet (<800 

kcals/day) until they lost >8% of body weight. Mean body weight loss was 10.1% and mean 

time on study was 46.5 days. Gene expression was measured on mucosal biopsies taken at 

baseline and end-of-study. These gene expression data were then deposited in the Gene 

Expression Omnibus (GEO; GSE20931) as anonymous data after all identifiers were 

removed. Additional participant characteristics and weight-related biomarker changes 

related to this dataset can be found in (Pendyala et. al., 2011). This weight loss study was 

originally approved by the Institutional Review Board of The Rockefeller University (New 

York, NY), where written informed consent was obtained prior to study participation.

Expression data processing

We downloaded *.soft files containing normalized mRNA expression levels from the 

mucosal biopsies (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20931). This 

data included a total of 24 anonymous gene expression samples, with 10 baseline and 10 

end-of-study samples (one baseline and one end-of-study for each participant), plus 

replicates for four of the baseline samples. A *.geo and *.annot file containing the keys to 

convert Illumina probe IDs to gene symbols for each gene were also downloaded from GEO 

and used to annotate the gene expression files.

We corrected for batch effects using COMBAT (R package, Johnson, Li, & Rabinovic, 2007) 

in R (RStudio version 0.98.994, RStudio Inc., Boston, MA; Figure 1). For genes with 

multiple probes, the probe with the highest index of dispersion, defined as the variance 

divided by the mean, was chosen to represent the expression levels for that gene. Finally, 

replicate gene expression values (for the four participants with duplicate gene expression 

samples at baseline) were averaged. This resulted in 10 baseline expression samples and 10 

end-of-study expression samples that were used for subsequent analyses.

Analysis using gene expression data

We downloaded human Gene Ontology annotation information from www.geneontology.org 

and built a *.gmt file containing sets of genes annotated to 15033 different Gene Ontology 
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(GO) categories. To evaluate the differential-expression of these gene sets between baseline 

and end-of-study, we ran Gene Set Enrichment Analysis (GSEA; Broad Institute, 

Cambridge, MA; http://www.broadinstitute.org/gsea/index.jsp; Mootha et al., 2003; 

Subramanian et al., 2005), comparing the expression levels in the 10 baseline and 10 end-of-

study expression samples.

Network model development

Networks were derived using Passing Attributes between Networks for Data Assimilation 

(PANDA; Glass, Huttenhower, Quackenbush, & Yuan, 2013; Figure 1). PANDA combines 

co-expression of genes based on Pearson correlations and a prior regulatory network. To 

minimize the effect of outliers in our networks built on a smaller sample size (n = 10), five 

participants were chosen at random (without replacement) to form subsamples. 50 

subsamples were formed such that no participants were in the same subsample twice but 

participants could be in multiple different subsamples. Gene expression from these 

subsamples of participants was used to reconstruct 50 baseline gene regulatory networks and 

50 end-of-study gene regulatory networks. Namely, gene expression data for each group of 

five participants was integrated with a prior network structure using PANDA with the alpha 

parameter set at 0.25 (indicating a high degree of message passing).

The prior regulatory network was estimated by scanning the human genome for 130 position 

weight matrixes (PWM) from the JASPAR core vertebrate transcription factor database [32]. 

To determine locations for each motif, each sequence S was given a score equal to log [P(S|

M)/P(S|B)], where P(S|M) is the probability of observing sequence S given motif M and P(S|

B) is the probability of observing sequence S given the genome background B. The 

background distribution of motif scores was determined by randomly sampling the genome 

106 times. Motif sites that fell within the promoter region ([−750,+250] base-pairs around 

the transcriptional start site) of one of the genes measured in the expression data with a 

significance less than 10−5 were used to define edges between a transcription factor and gene 

in the regulatory network prior.

In total 50 baseline and 50 end-of-study (100 total) directed, fully connected networks were 

derived. The nodes in these networks are genes (either transcription factors, gene targets or 

both) and the edges each have an associated Z-score weight indicating the probability that 

the edge exists. 17511 genes were included in the expression data and were targeted by at 

least one TF motif in our regulatory prior, resulting in weight values for 2,276,429 edges in 

each network. Note that not all transcription factors from the regulatory motif prior were 

measured on the expression chip.

Network analysis

Gene set targeting analysis—We evaluated differential-targeting of gene sets 

(pathways) as in [30]. Namely, for each of the 100 reconstructed networks, we calculated the 

weighted in-degree of each target gene by summing the Z-score weights for all edges to that 

gene. Then, to identify gene sets that are differentially-targeted between baseline and end-of-

study, we ran GSEA comparing the weighted in-degree values across the 50 baseline and 50 

end-of-study networks.
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Defining Subnetworks and Evaluating TF/Gene Edge Enrichment—We also 

generated a single, aggregate baseline and single, aggregate end-of-study network by 

averaging edge weights across the 50 baseline networks and 50 end-of-study networks, 

respectively (Supplementary data). We evaluated these aggregate networks as in [28] and 

defined an edge confidence score (EC) for each network:

where  is the z-score weight of the edge between node i and j in the baseline network, 

is the z-score edge-weight in the end-of-study network and CDF−1 is the inverse cumulative 

distribution function of a normal distribution. We then identified “high-confidence edges” as 

those with EC>.25 (~24% of all edges met this criterion). High-confidence edges at baseline 

(ECb>0.25) can be interpreted as edges that are both likely to exist in the baseline network 

and that have increased evidence in the baseline as opposed to the end-of-study network; the 

inverse is true of high-confidence edges at end-of-study. These edges define distinct 

subnetworks for baseline and end-of-study. When the aggregate networks were restricted 

only to edges of high-confidence, the baseline network had 548,736 edges, while the end-of-

study network had 540,701 edges.

We quantified differences in gene targeting between these high-confidence-edge 

subnetworks by calculating the change in degree (either in-degree or out-degree) for each 

gene (i) and using an Edge Enrichment Score (EES [23]):

Where  and  are the degree of high-confidence edges for gene i in the end-of-study and 

baseline subnetworks, respectively, and Ne and Nb are the total number of edges that make 

up the end-of-study and baseline subnetworks. Note that the EES will be positive for edge-

enrichment around a particular gene in the end-of-study subnetwork, and negative for edge-

enrichment around a gene in the baseline subnetwork.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Despite previous evidence of their importance, genes in glucose 

transport pathways were not significantly differentially-expressed upon 

diet-induced weight-loss. However network analysis showed increased 

regulatory activity around these pathways post-weight loss.

• Network analysis also identified a potential putative mechanism of 

action for weight loss in the colorectum. Specifically, our models 

indicated a regulatory shift around glucose pathways genes that 

includes a switch from NFKB1 to MAX control of MYC.

• Overall, our results demonstrate the importance of using network-based 

approaches to complement the findings of standard gene expression 

analysis.
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Figure 1. Schematic overview of the analyses performed
In a previous study (Pendyala, Neff, Suarez-Farinas, & Holt, 2011) 10 obese, pre-

menopausal women provided baseline rectal mucosal biopsies, followed a very low calorie 

diet (<800 kcals/day) to achieve >8% body weight loss and then provided an end-of-study 

rectal mucosal biopsy sample. Gene expression data from these biopsy samples was 

downloaded from the Gene Expression Omnibus database (GEO; GSE20931). Processing of 

this data included (1) collapsing probes representing the same gene by selecting the probe 

with the highest Index of Dispersion across its expression values to represent that given 

gene’s expression levels, (2) removing batch effects between the two expression chips by 

running COMBAT (Johnson and Rabinovic, 2007), and (3) averaging four duplicate baseline 

gene expression measurements to obtain two expression samples for each participant, one at 

baseline and one at end of study. Due to the small sample size, we randomly chose five 

participants from the ten total participants (without replacement). We did this multiple times 

to create fifty subsamples of individuals. We then applied Passing Attributes between 

Networks for Data Assimilation (PANDA; Glass, et al. 2013) to the gene expression data 

from individuals within each subsample in order to estimate fifty paired baseline and end-of-

study gene regulatory networks. Both the processed gene expression data and these 100 

networks were input into GSEA to identify gene sets with either increased expression or 

targeting at end-of-study versus baseline. Finally, the baseline and end-of-study networks’ 

edge values were averaged to create one averaged, aggregate baseline network and one 

averaged, aggregate end-of-study network, respectfully. “High-confidence” edges were 

identified within these aggregate networks and used for network-based analysis including 

change in targeting (change out-degree) for transcription factors.
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Figure 2. Changes in transcription factor targeting between high-confidence baseline and end-of-
study subnetworks
(A) The 20 transcription factors with the largest change in absolute (abs.) out-degree 

between aggregate subnetworks of high confidence edges from baseline to end-of-study. (B) 
Visualization of the high-confidence edges that extend between any pair of these 

transcription factors. Note that not every transcription factor motif had a corresponding gene 

name (e.g. PPARG::RXRA) and thus some nodes in this network only have out-going edges 

(i.e. not all transcription factors are also gene targets). Three transcription factors (NFKB1, 

MAX and INSM1) with the largest change in targeting (e.g. out-degree) and Myc (a key 

oncogenic factor and regulatory associate of these transcription factors) are highlighted in 

yellow. (C) The high confidence edges between these four highlighted transcription factors 

describe a shift in regulatory control from NFKB1 to MAX after weight loss. Of interest, 

these genes are mediators in glucose transport regulatory pathways.
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Figure 3. Comparison of changes in expression and targeting for genes in glucose transport 
regulatory pathways
The three columns of the heatmap show the (1) log2-fold change gene expression levels 

between baseline and end-of-study (“Expression”), (2) the Edge Enrichment Scores (EES) 

calculated based on change in gene in-degree between the aggregate subnetworks when 

restricted to genes involved in glucose transport (see Table 2), and (3) the EES calculated 

based on change in gene out-degree between the aggregate subnetworks when restricted to 

genes involved in glucose transport (see Table 2). Clear differences between the expression 

data and the EES are likely a result of PANDA’s focus on integrating gene co-expression 
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information with a regulatory motif prior (see S1 Figure). A value of zero indicates no 

change in expression, EES in-degree or EES out-degree for a given gene from baseline to 

end-of-study. *There are many fewer changes observed for EES out-degree as compared to 

in-degree because many genes are targets and thus have in-degrees, but many fewer genes 

also serve as transcription factors. Thus there are many genes with zero out-degree at both 

baseline and end-of-study.
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Table 1

Top 10 most significant gene sets (pathways) with <75 members in baseline and end-of-study based on a 

differential-targeting analysis using GSEA. Abbreviations: Enrichment score (ES), Normalize ES (NES), False 

Discovery Rate (FDR), biological process (BP), cellular component (CC), and molecular function (MF).

Enriched at Gene sets (pathways) ES NES FDR
Q-val

Baseline Oxidoreductase activity, acting on NADH or NADPH,
quinone or similar compound as acceptor (MF)

0.484 1.716 0.209

Establishment of protein localization to peroxisome (BP) 0.618 1.717 0.211

Peroxisome organization (BP) 0.563 1.767 0.212

Protein targeting to peroxisome (BP) 0.618 1.722 0.215

Nucleobase, nucleoside, nucleotide and nucleic acid
transmembrane transporter activity (MF)

0.613 1.72 0.215

Regulation of lipid transport (BP) 0.495 1.749 0.215

Microvillus membrane (CC) 0.61 1.711 0.216

Response to fatty acid (BP) 0.575 1.745 0.217

L-amino acid transport (BP) 0.613 1.731 0.218

Tetrapyrrole metabolic process (BP) 0.515 1.757 0.218

End-of-study Receptor tyrosine kinase binding (MF) −0.635 −2.176 0.016

Translational initiation (BP) −0.565 −2.131 0.018

Regulation of glucose transport (BP) −0.505 −2.179 0.022

Hexose transport (BP) −0.445 −1.910 0.058

Glucose transport (BP) −0.445 −1.886 0.062

Monosaccharide transport (BP) −0.437 −1.854 0.079

Nuclear pore (CC) −0.430 −1.831 0.086

Transcription termination, DNA-dependent (BP) −0.418 −1.826 0.086

Somatic stem cell division (BP) −0.620 −1.838 0.088

Nuclear-transcribed mrna catabolic process, nonsense-
mediated decay (BP)

−0.510 −1.795 0.101

Genomics. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vargas et al. Page 20

Table 2

Top 10 transcription factors with the largest change in out-degree of high confidence edges from baseline to 

end-of-study in the aggregate network restricted to only genes involved in glucose transport pathways. 

Glucose transport pathway genes includes genes annotated to at least one of four Gene Ontology categories: 

“glucose transport”, “hexose transport”, “monosaccharide transport” and “regulation of glucose transport”. 

Abbreviations: Edge Enrichment Score (EES)

Transcription
factor

Baseline
out-degree

End-of-study
out-degree

Change in
out-degree

Absolute change
in out-degree

Log2(EES) of
out-degree

NFKB1 108 42 −66 66 −1.419

MAX 33 90 57 57 1.391

MZF1_5−13 130 80 −50 50 −0.757

INSM1 67 19 −48 48 −1.874

MIZF 67 107 40 40 0.619

NFIL3 29 69 40 40 1.194

E2F1 40 79 39 39 0.926

FOXD3 23 61 38 38 1.351

SOX17 36 74 38 38 0.983

PAX5 127 90 −37 −37 −0.553

Genomics. Author manuscript; available in PMC 2017 October 01.


	Abstract
	Introduction
	Results
	Gene regulatory network models at baseline and end-of-study
	Key transcription factors alter targeting from baseline to end-of-study
	A MYC-related mechanism for the shift towards glucose transport post-weight loss

	Discussion
	Materials and Methods
	Participants and data source
	Expression data processing
	Analysis using gene expression data
	Network model development
	Network analysis
	Gene set targeting analysis
	Defining Subnetworks and Evaluating TF/Gene Edge Enrichment


	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

