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ABSTRACT  Techniques to determine changing system
complexity from data are evaluated. Convergence of a fre-
quently used correlation dimension algorithm to a finite value
does not necessarily imply an underlying deterministic model
or chaos. Analysis of a recently developed family of formulas
and statistics, approximate entropy (ApEn), suggests that
ApEn can classify complex systems, given at least 1000 data
values in diverse settings that include both deterministic chaotic
and stochastic processes. The capability to discern changing
complexity from such a relatively small amount of data holds
promise for applications of ApEn in a variety of contexts.

In an effort to understand complex phenomena, investigators
throughout science are considering chaos as a possible un-
derlying model. Formulas have been developed to charac-
terize chaotic behavior, in particular to encapsulate proper-
ties of strange attractors that represent long-term system
dynamics. Recently it has become apparent that in many
settings nonimathematicians are applying new “formulas” and
algorithms to experimental time-series data prior to careful
statistical examination. One sees numerous papers conclud-
ing the existence of deterministic chaos from data analysis
(e.g., ref. 1) and including “error estimates” on dimension
and entropy calculations (e.g., ref. 2). While mathematical
analysis of known deterministic systems is an interesting and
deep problem, blind application of algorithms is dangerous,
particularly so here. Even for low-dimensional chaotic sys-
tems, a huge number of points are needed to achieve con-
vergence in these dimension and entropy algorithms, though
they are often applied with an insufficient number of points.
Also, most entropy and dimension definitions are discontin-
uous to system noise. Furthermore, one sees interpretations
of dimension calculation values that seem to have no general
basis in fact—e.g., number of free variables and/or differ-
ential equations needed to model a system.

The purpose of this paper is to give a preliminary mathe-
matical development of a family of formulas and statistics,
approximate entropy (ApEn), to quantify the concept of
changing complexity. We ask three basic questions: (/) Can
one certify chaos from a converged dimension (or entropy)
calculation? (ii) If not, what are we trying to quantify, and
what tools are available? (iii) If we are trying to establish that
ameasure of system complexity is changing, can we do so with
far fewer data points needed, and more robustly than with
currently available tools?

I demonstrate that one can have a stochastic process with
correlation dimension 0, so the answer to i is No. It appears
that stochastic processes for which successive terms are
correlated can produce finite dimension values. A “phase
space plot” of consecutive terms in such instances would
then demonstrate correlation and structure. This implies
neither a deterministic model nor chaos. Compare this to
figures 4 a and b of Babloyantz and Destexhe (1).
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If one cannot hope to establish chaos, presumably one is
trying to distinguish complex systems via parameter estima-
tion. The parameters typically. associated with chaos are
measures of dimension, rate of information generated (en-
tropy), and the Lyapunov spectrum. The classification of
dynamical systems via entropy and the Lyapunov spectra
stems from work of Kolmogorov (3), Sinai (4), and Oseledets
(5), though these works rely on ergodic theorems, and the
results are applicable to probabilistic settings. Dimension
formulas are motivated by a construction in the entropy
calculation and generally resemble Hausdorff dimension cal-
culations. The theoretical work above was not intended as a
means to effectively discriminate dynamical systems given
finite, noisy data, or to certify a deterministic setting. For all
these formulas and algorithms, the amount of data typically
required to achieve convergence is impractically large. Wolf
et al. (6) indicate between 107 and 309 points are needed to fill
out a d-dimensional strange attractor, in the chaotic setting.
Also, for many stochastic processes, sensible models for
some physical systems, “complexity” appears to be changing
with a control parameter, yet the aforementioned measures
remain unchanged, often with value either 0 or «.

To answer question iii, I propose the family of system
parameters ApEn(m, r), and related statistics ApEn(m, r, N),
introduced in ref. 7. Changes in these parameters generally
agree with changes in the aforementioned formulas for low-
dimensional, deterministic systems. The essential novelty is
that the ApEn(m, r) parameters can distinguish a wide variety
of systems, and that for small m, especially m = 2, estimation
of ApEn(m, r) by ApEn(m, r, N) can be achieved with
relatively few points. It can potentially distinguish low-
dimensional deterministic systems, periodic and multiply
periodic systems, high-“dimensional” chaotic systems, sto-
chastic, and mixed systems. In the stochastic setting, analytic
techniques to calculate ApEn(m, r), estimate ApEn(m, r, N),
and give rates of convergence of the statistic to the formula
all are reasonable problems for which a machinery can be
developed along established probabilistic lines.

Invariant Measures and Algorithms to Classify Them

A mathematical foundation for a strange attractor of a
dynamical system is provided by considering the underlying
distribution as an invariant measure. This requires the exis-
tence of a limiting ergodic physical measure, which repre-
sents experimental time averages (8). Chaos researchers have
developed algorithms to estimate this measure, and associ-
ated parameters, from data, but explicit analytic calculations
are generally impossible, resulting in numerical calculations
as normative and in several algorithms to compute each
parameter. Representative of the dimension algorithms (9)
are capacity dimension, information dimension, correlation
dimension, and the Lyapunov dimension. The most com-

Abbreviations: ApEn, approximate entropy; K-S, Kolmogorov—
Sinai; E-R, Eckmann—Ruelle.
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monly used entropy algorithms are given by the K-S entropy
(8), K, entropy [defined by Grassberger and Procaccia (10)],
and a marginal redundancy algorithm given by Fraser (11).
Wolf et al. (6) have provided the most commonly used
algorithm for computing the Lyapunov spectra.

Other developments further confound a single intuition for
each of these concepts. Hausdorff dimension, defined for a
geometric object in an n-dimensional Euclidean space, can give
fractional values. Mandelbrot (12) has named these nonintegral
dimension objects “fractals” and has extensively modeled
them. Intuitively, entropy addresses system randomness and
regularity, but precise settings and definitions vary greatly.
Classically, it has been part of the modern quantitative devel-
opment of thermodynamics, statistical mechanics, and infor-
mation theory (13, 14). In ergodic theory, an entropy definition
for a measure-preserving transformation was invented by Kol-
mogorov, originally to resolve the problem of whether two
Bernoulli shifts are isomorphic (3). It is distinct from the
concept of metric entropy, also invented by Kolmogorov (15),
in which a purely metric definition is given. Ellis (16) discusses
level 1, 2 (Kullback-Leibler), and 3 entropies, which assess the
asymptotic behavior of large déviation probabilities.

Invariant measures have been studied apart from chaos
throughout the last 40 years. Grenander (17) developed a
theory of probabilities on algebraic structures, including laws
of large numbers and a central limit theorem for stochastic
Lie groups involving these measures. Furstenberg (18)
proved a strong law of large numbers for the norm of products
of random matrices, in terms of the invariant measures.
Subsequently Oseledets (5) proved the related result that a
normalized limit of a product of random matrices, times its
adjoint, converges to a nonnegative definite symmetric ma-
trix. This latter result, often associated with dynamical
systems, is proved for random matrices in general, and it
allows one to deduce the Lyapunov exponents as the eigen-
values of the limiting matrix. Pincus (19) analytically derived
an explicit geometric condition for the invariant measures
associated with certain classes of random matrices to be
singular and “fractal-like” and a first term in an asymptotic
expansion for the largest Lyapunov exponent in a Bernoulli
random matrix setting (20). Thus noninteger dimensionality
and the classification of system evolution by the Lyapunov
spectra make sense in a stochastic environment.

The above discussion suggests that great care must be
taken in concluding that properties true for one dimension or
entropy formula are true for another, intuitively related,
formula. Second, since invariant measures can arise from
stochastic or deterministic settings, in general it is not valid
to infer the presence of an underlying deterministic system
from the convergence of algorithms designed to encapsulate
properties of invariant measures.

Correlation Dimension, and a Counterexample

A widely used dimension algorithm in data analysis is the
correlation dimension (21). Fix m, a positive integer; and r,
a positive real number. Given a time-series of data u(1), u(2),

. , u(N), from measurements equally spaced in time, form
a sequence of vectors x(1), x(2), . . . , xX(N — m + 1) in R™,
defined by x(i) = [u(i), u(i + 1), . . ., u(i + m — 1)]. Next,
define foreach i, 1<i=N-m+1,

Ci'(n =
(number of j such that d[x(i), x(j))]=r)/(N—-m+1). [1]

We must define d[x(i), x(j)] for vectors x(i) and x(j). We
follow Takens (22) by defining

dx(i), x(j)]= max (uG+k—1)—u(j+k-1)). 2]

k=12,..., m
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From the C[(r), define

) N-m+1
C"r)=(N-m+1)7! 21 CM(r) 131
and define
B = lim limlog C™(r)/log r. 4]

r—»0 N-w

The assertion is that for m sufficiently large, B, is the
correlation dimension. Such a limiting slope has been shown
to exist for the commonly studied chaotic attractors.

This procedure has frequently been applied to experimental
data; investigators seek a “scaling range” of r values for which
log C™(r)/log r is nearly constant for large m, and they infer
that this ratio is the correlation dimension (21). In some
instances, investigators have concluded that this procedure
establishes deterministic chaos.

The latter conclusion is not necessarily correct: a con-
verged, finite correlation dimension value does not guarantee
that the defining process is deterministic. Consider the
following stochastic process. Fix 0 < p < 1. Define X; = a™/
sin(27j/12) for all j, where « is specified below. Deﬁne Y;
as a family of independent identically distributed (i.i.d.)
real random variables, with uniform density on the interval
[—\/_ \/§] Define Z; as afamnly of i.i.d. random variables, Z;
= 1 with probablllty P, Z; = 0 with probability 1 — p. Set

= ( ,'5_‘,1 sin2(27'rj/12)> /12, (5]
£

and define MIX; = (1 — Z) X; + Z;Y;. Intuitively, MIX(p) is
generated by first ascertaining, for each j, whether the jth
sample will be from the deterministic sine wave or from the
random uniform deviate, with likelihood (1 — p) of the former
choice, then calculating either X; or Y;. Increasing p marks a
tendency towards greater system randomness.

We now show that almost surely (a.s.) 8, in Eq. 4 equals
0 for all m for the MIX(p) process, p # 1. Fix m, define k()
= (12m)j — 12m, and define Nj- = 1 if MIXigp+1, - - - »
MIXk(,)+,,,) = (X1, . . . , Xin), N; = 0 otherwise. The N; are
i.i.d. random variables, w1th the expected value of N;, E(N,),

= (1 — p)™. By the Strong Law of Large Numbers, a.s.

lim ENJ/N ENy)=(Q1-p)"

Now Jj=1

Observe that (E,N 1 N; /12mN)2 is a lower bound to C™(r),
since xp)+1 = Xi)+1 lfN N;j = 1. Thus, a.s. forr <1

lim sup log C™(r)/log r = (1/log r) lim log

N-ox N—>x

N 2
( 21 Nj/12mN) =< log((1 - p)2™/(12m)?)/log r.
£

Since (1 — p)*"/(12m)? is independent of r, a.s. B, = lim¢
lima_,  log C™(r)/log r = 0. Since B,, # 0 with probability 0
for each m, by countable additivity, a.s. for all m, B,, = 0.

The MIX(p) process can be motivated by considering an
autonomous unit that produces sinusoidal output, surrounded
by a world of interacting processes that in ensemble produces
output that resembles noise relative to the timing of the unit.
The extent to which the surrounding world interacts with the
unit could be controlled by a gateway between the two, with
a larger gateway admitting greater apparent noise to compete
with the sinusoidal signal.

It is easy to show that, given a sequence Xj, a sequence of
i.i.d. ¥}, defined by a density function and independent of the
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X;, and Z; = X; + Y}, then Z; has an infinite correlation
dimension. It appears that correlation dimension distin-
guishes between correlated and uncorrelated successive it-
erates, with larger estimates of dimension corresponding to
more uncorrelated data. For a more complete interpretation
of correlation dimension results, stochastic processes with
correlated increments should be analyzed.

Error estimates in dimension calculations are commonly
seen. In statistics, one presumes a specified underlying sto-
chastic distribution to estimate misclassification probabilities.
Without knowing the form of a distribution, or if the system is
deterministic or stochastic, one must be suspicious of error
estimates. There often appears to be a desire to establish a
noninteger dimension value, to give a fractal and chaotic
interpretation to the result, but again, prior to a thorough study
of the relationship between the geometric Hausdorff dimen-
sion and the time series formula labeled correlation dimension,
it is speculation to draw conclusions from a noninteger cor-
relation dimension value.

K-S Entropy and ApEn

Shaw (23) recognized that a measure of the rate of informa-
tion generation of a chaotic system is a useful parameter. In
1983, Grassberger and Procaccia (10) developed a formula,
motivated by the K-S entropy, to calculate such a rate from
time series data. Takens (22) varied this formula by intro-
ducing the distance metric given in Eq. 2; and Eckmann and
Ruelle (8) modify the Takens formula to “directly” calculate
the K-S entropy for the physical invariant measure presumed
to underlie the data distribution. These formulas have be-
come the “standard” entropy measures for use with time-
series data. We next indicate the Eckmann-Ruelle (E-R)
entropy formula, with the terminology as above.

N-m+1
Define ®™(r) = (N - m + 1)1 Zl

i=

log C7'(r). [6]

E-R entropy = lim lim lim [®™() — ®™*(n]. (7]

r—»0 ms>o N->o

Note that
D™(r) — d™(r)
= average over i of log[conditional probability that
lu(j + m) — u(i + m)| =< r, given that [u(j + k) — u(i + k)|
=rfork=0,1,...,m—1]. [8]

The E-R entropy and variations have been useful in
classifying low-dimensional chaotic systems. In other con-
texts, its utility appears more limited, as it exhibits the
statistical deficiencies noted in the Introduction. Since E-R
entropy is infinity for a process with superimposed noise of
any magnitude (7), for use with experimental data an approx-
imation of Eq. 7 must be employed with a meaningful range
of “r” (vector comparison distance) established. As we see
below, a converged “entropy” calculation for a fixed value of
r no longer ensures a deterministic system. Also, E-R
entropy does not distinguish some processes that appear to
differ in complexity; e.g., the E-R entropy for the MIX
process is infinity, for all p # 0.

Fix m and r in Eq. 6; define

ApEn(m, r) = lim [®™(r) — ®"1(r)]. 9]

N-x

Given N data points, we implement this formula by defining
the statistic (introduced in ref. 7)

ApEn(m, r, N) = ®™(r) — ®"*1(r). [10]
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Heuristically, E-R entropy and ApEn measure the (loga-
rithmic) likelihood that runs of patterns that are close remain
close on next incremental comparisons. ApEn can be com-
puted for any time series, chaotic or otherwise. The intuition
motivating ApEn is that if joint probability measures (for
these “constructed” m-vectors) that describe each of two
systems are different, then their marginal distributions on a
fixed partition are likely different. We typically need orders
of magnitude fewer points to accurately estimate these mar-
ginals than to perform accurate density estimation on the
fully reconstructed measure that defines the process.

A nonzero value for the E-R entropy ensures that a known
deterministic system is chaotic, whereas ApEn cannot certify
chaos. This observation appears to be the primary insight
provided by E-R entropy and not by ApEn. Also, despite the
algorithm similarities, ApEn(m, r) is not intended as an
approximate value of E-R entropy. In instances with a very
large number of points, a low-dimensional attractor, and a
large enough m, the two parameters may be nearly equal. It
is essential to consider ApEn(m, r) as a family of formulas,
and ApEn(m, r, N) as a family of statistics; system compar-
isons are intended with fixed m and r.

ApEn for m = 2

I demonstrate the utility of ApEn(2, r, 1000) by applying this
statistic to two distinct settings, low-dimensional nonlinear
deterministic systems and the MIX stochastic model.

(i) Three frequently studied systems: a Rossler model with
superimposed noise, the Henon map, and the logistic map.
Numerical evidence (24) suggests that the following system of
equations, Ross(R) is chaotic for R = 1:

dx/dt=—z—y
dy/dt = x + 0.15y

dz/dt = 0.20 + R(zx — 5.0). [11]

Time series were obtained for R = 0.7, 0.8, and 0.9 by
integration via an explicit time-step method with increment
0.005. The y values were recorded at intervals of Az = 0.5.
Noise was superimposed on each y value by the addition of
i.i.d. gaussian random variables, mean 0, standard deviation
0.1. The respective system dynamics are given by noise
superimposed on a twice-periodic, four-times-periodic, and
chaotic limit cycle. The logistic map is given by

xi+1 = Rx;(1 — x;). (12]

Time series were obtained for R = 3.5, 3.6,and 3.8. R = 3.5
produces periodic (period four) dynamics, and R = 3.6 and R
= 3.8 produce chaotic dynamics. A parametrized version of
the Henon map is given by

Xiv1=Ry; +1—1.4x7
yir1 = 0.3Rx;. [13]

Time series for x; were obtained for R = 0.8 and 1.0, both of
which correspond to chaotic dynamics. All series were
generated after a transient period of 500 points. For each
value of R and each system, ApEn(2, r, N) was calculated for
time series of lengths 300, 1000, and 3000, for two values of
r. The sample means and standard deviations were also
calculated for each system. Table 1 shows the results.
Notice that for each system, the two choices of r were
constant, though the different systems had different r values.
One can readily distinguish any Rossler output from Henon
output, or from logistic output, on the basis of the quite
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Table 1. ApEn(2, r, N) calculations for three deterministic models
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Input

ApEn(2, r, N) ApEn(2, r, N)
Model Control noise
type parameter  SD Mean SD r N=300 N=1000 N = 3000 r N=300 N=1000 N = 3000

Rossler 0.7 0.1 -1.278 5.266 0.5 0.207 0.236 0.238 1.0 0.254 0.281 0.276
Rossler 0.8 0.1 -1.128 4963 0.5 0.398 0.445 0.459 1.0 0.429 0.449 0.448
Rossler 0.9 0.1 -1.027 4.762 0.5 0.508 0.608 0.624 1.0 0.511 0.505 0.508
Logistic 3.5 0.0 0.647 0.210 0.025 0.0 0.0 0.0 0.05 0.0 0.0 0.0
Logistic 3.6 0.0 0.646 0.221 0.025 0.229 0.229 0.230 0.05 0.205 0.206 0.204
Logistic 3.8 0.0 0.643 0.246 0.025 0.425 0.429 0.445 0.05 0.424 0.427 0.442
Henon 0.8 0.0 0.352 0.622 0.05 0.337 0.385 0.394 0.1 0.357 0.376 0.385
Henon 1.0 0.0 0.254 0.723 0.05 0.386 0.449 0.459 0.1 0.478 0.483 0.486

different sample means and standard deviations. Generally,
sample means and standard deviations converge to a limiting
value much more quickly (in N) than ApEn does. Greater
utility for ApEn arises when the means and standard devia-
tions of evolving systems show little change with system
evolution. Different r values were chosen for the three systems
to provide the ApEn statistics a good likelihood of distinguish-
ing versions of each system from one another.

For each of the three systems, ApEn(2, r, N) values were
markedly different for different R values. ApEn(2, r, 300)
gave a first-order approximation of ApEn(2, r, 3000) in these
systems, with an average approximate difference of 10% for
the r = 0.1 SD choice and 3.5% for the r = 0.2 SD choice. The
approximation of ApEn(2, r, 1000) to ApEn(2, r, 3000) was
good for both choices of r, with an average difference of less
than 2% for both choices; we thus infer that ApEn(2, r, 1000)
~ ApEn(2; r) for these r values.

These calculations illustrate many of the salient properties
of ApEn as it pertains to evolving classes of dynamical
systems. ApEn(2, r, N) appears to correspond to intuition—
e.g., apparently more complex Ross(R) systems produced
larger ApEn values. ApEn(2, 1.0, 1000) for Ross(0.7) is
greater than 0, and equals 0.262 for the noiseless version of
this twice-periodic system. Thus a positive ApEn value does
not indicate chaos. Contrastingly, ApEn distinguishes the
systems Ross(R), R = 0.7, 0.8, and 0.9 from each other. The
converged E-R entropy for the Ross(0.7) and Ross(0.8)
systems is 0, hence E-R entropy does not distinguish be-
tween these systems. The capability to distinguish multiply
periodic systems from one another appears to be a desirable
attribute of a complexity statistic. Also, the 0.1 intensity
superimposed noise on the Rossler system did not interfere
with the ability of ApEn to establish system distinction.

(ii) The family of MIX processes discussed above. For
each of 100 values of p equally spaced between 0 and 1, a time
series {MIX;, j = 1, . . . , N} was obtained as a realization of
the random processes. For each value of p, ApEn(2, r, N)
was calculated for (r, N) = (0.1, 1000), (0.18, 300), (0.18,
1000), and (0.18, 3000).* Fig. 1 illustrates the results. The
intuition that ApEn(2, r, N) should distinguish the processes
MIX( p;) from MIX( p,) via a larger ApEn value for the larger
of the p; was verified for p < 0.5 for all selected statistics. A
near-monotonicity of ApEn(2, 0.18, N) with p is seen for 0 <
p < 0.7 for N = 1000, and for 0 < p < 0.75 for N = 3000. The
much larger percentage difference between ApEn(2, 0.18,
300) and ApEn(2, 0.18, 1000), and between ApEn(2, 0.18,
1000) and ApEn(2, 0.18, 3000), for p > 0.4 than for corre-
sponding differences for the deterministic models above,
suggests that larger values of N are needed in this model to
closely approximate E(ApEn(2, r) by ApEn(2, r, N).

*The value r = 0.18 was chosen to ensure that ApEn(2, r, N) MIX(0)
= 0 for all N. This occurs when r < ryin = min(|X; — Xil, X; # Xi)
=V2(1 — V3/2), for X; defined in MIX. For r > rgq, there is similar
near-monotonicity in ApEn(2, r, N) with p to that for r < ryin.

The values r = 0.1 and r = 0.18 correspond to 10% and 18%
of the MIX(p)-calculated standard deviation, for all p. Defin-
ing S, = MIX; + MIX, + ... + MIX,, and V, = MIX; —
S./n? + MIX; — S,/n)? + . .. + (MIX,, — S,/n)?, straight-
forward calculations show that E(S,,/n) = 0 and E(V,)) = n, for
n a multiple of 12, for all p. Hence, one cannot distinguish the
MIX( p) processes by their sample means and standard devi-
ations.

The ApEn statistics also have been applied to the analysis
of heart rate data (N = 1000), and they effectively discrim-
inated between healthy and sick groups of neonates (7). For
each of several distinct ApEn(m, r, 1000) statistics, the lowest
subgroup of ApEn values consistently corresponded to sub-
jects in the sick group; these values were markedly lower
than any values from the healthy group (table 2 of ref. 7).

On the basis of calculations that included the above theo-
retical analysis, I drew a preliminary conclusion that, for m
=2 and N = 1000, choices of r ranging from 0.1 to 0.2 SD of
the u(i) data would produce reasonable statistical validity of
ApEn(m, r, N). For smaller r values, one usually achieves
poor conditional probability estimates in Eq. 8, while for
larger r values, too much detailed system information is lost.
To avoid a significant contribution from noise in an ApEn
calculation, one must choose r larger than most of the noise.

ApEn and Analytics

For many stochastic processes, we can analytically evaluate
ApEn(m, r) a.s. We next do so for several models. Assume
a stationary process u(i) with continuous state space. Let
u(x, y) be the joint stationary probability measure on R? for
this process (assuming uniqueness), and 7(x) be the equilib-
rium probability of x. Then a.s.

THEOREM 1. ApEn(1, 1) = — f u(x, y) log

y+r x+r X+r
f f pm(w, z)dw dz/ w(w) dw | dx dy.
=y-r =x-r w=Xx-r

(14]

Proof: By stationarity, it suffices to show that the negative
of the right-hand side of Eq. 14 is equal to E(log(C3(r)/
C1(r)), which equals E(log P(jxjs1 — x2| =< r || |x; — x| = 7).
Since P{lxjs1 — xol <7l — x| =r} =P — x| =r&
|x; = x1] = r}/P{|x; — x1| = r}, Eq. 14 follows at once by jointly
conditioning on x; and x,.

Similarly, we have the following.

THEOREM 2. For an i.i.d. process with density function
w(X), a.s. (for any m = 1)

ApEn(m, 1) = — f ‘n'(y)log( f i n(z)dz)dy. [15]
z=y-r
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Fic. 1. ApEn(2, r, N) vs. control parameter p for MIX model.

The proof is straightforward and omitted; thei.i.d. assump-
tion allows us to deduce that ApEn(m, r) equals the right-
hand side of Eq. 14, which simplifies to the desired result,
since u(x, y) = w(x)w(y). Thus the classical i.i.d. and
“one-dimensional” cases yield straightforward ApEn calcu-
lations; ApEn also provides a machinery to evaluate less-
frequently analyzed systems of nonidentically distributed
and correlated random variables. We next see a result
familiar to information theorists, in different terminology.

THEOREM 3. In the first-order stationary Markov chain
(discrete state space X) case, withr < min(|x — y|, X #y, X
and y state space values), a.s. for any m

ApEn(m, 1) = — X, X m(X)pyy log(py,).  [16]
x€EX yeX

Proof: By stationarity, it suffices to show that the right-
hand side of Eq. 16 equals

—E(log(C™*Y(r)/C(r))). This latter expression =

—E(l0g P(xjsm = Xm+1| =7 || [xjsa-1 — x| = for

k=1 ’ 21 LI} m) = —E(log P(xj+m = Xm+1 " xj+/(—1 = Xk for

k =1 ’ 21 L] m) = —E(log P(xj+m = Xm+1 “ 'x:i+m—l = xm))
=-2 EX P(jem = & Xirm-1 = X)(108[P(}4m

=y & Xjr -1 = X)/P(xj4m-1 = X))). [17]

Intermediate equalities in the above follow from the choice of
r, and by the Markov property, respectively. This establishes
the desired equality.

For example, consider the Markov chain on three points {1,
2, 3}, with transition probabilities py; = 1, pa3 = 1, p33 = 1/3,
p31 = 2/3. The stationary probabilities are computed to be (1)
= m(2) = 2/7, m(3) = 3/7. For r < 1 and any m, application of
Theorem 3 yields that almost surely, —ApEn(m, r) =
m(3)pailog(ps) + w(3)p33 log(pss) = (2/Dlog 2/3 + (1/7)log
1/3. As another example, application of Theorem 2 to the
MIX(1) process of i.i.d. uniform random variables yields that
almost surely, —ApEn(m, r) = log(r/\/§) for all m.

Future Direction

Given N data points, guidelines are needed for choices of m and
r to ensure reasonable estimates of ApEn(m, r) by ApEn(m, r,
N). For prototypal models in which system complexity changes
with a control parameter, evaluations of ApEn(m, r) as a
function of the control parameter would be useful. Statistics are
needed to give rates of convergence of ApEn(m, r, N) to
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ApEn(m, r) and for fixed N, error estimates for ApEn(m, r, N).
Statistics for the stochastic setting would follow from central
limit theorems for correlated random variables; verification of
conditions, and computations are likely to be nontrivial, since
the crucial summands are highly correlated. Monte Carlo tech-
niques can readily be performed to numerically estimate the
convergence rates and error probabilities.

In information theory, classification algorithms that are
based on universal data compression schemes [e.g., see Ziv
(25)] have been seen to be effective for finite state-space
processes with a small alphabet. A similarly designed algo-
rithm for the continuous state space could be considered.
Also, one could intuitively consider ApEn as a measure of
projected information from a finite-dimensional distribution in
certain settings. Statistical analysis of projections of higher-
dimensional data has been performed via projection pursuit
(26), and the kinematic fundamental formulas of integral
geometry allow reconstruction of size distributions of an
object from lower-dimensional volume and area information
(27). Yomdin (28) has used metric entropy to sharpen the
Morse—-Sard theorem, providing estimates for the “size” of the
critical and near-critical values of a differentiable map. These
estimates prove useful in geometric measure theory calcula-
tions of parameters of manifolds in terms of parameters of
low-codimension projections.

I thank Burton Singer both for enlightening discussions and for two
references that provided perspective, the Donsker—Varadhan and
Prosser-Root papers; Penny Smith for the suggestion that the
Ornstein—-Uhlenbeck process may be worthy of examination in the
current context, prompting a study of Markov processes and chains;
and David Salsburg for the reference to projection pursuit.
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