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Abstract

Rationale: Exacerbations are key events in chronic obstructive
pulmonary disease (COPD), affecting lung function decline and
quality of life. The effect of exposure to different air pollutants on
COPD exacerbations is not clear.

Objectives: To carry out a systematic review, examining
associations between air pollutants and hospital admissions for
COPD exacerbations.

Methods:MEDLINE, Embase, BIOSIS, Science Citation Index,
and the Air Pollution Epidemiology Database were searched for
publications published between 1980 and September 2015. Inclusion
criteria were focused on studies presenting solely a COPD outcome
defined by hospital admissions and ameasure of gaseous air pollutants
and particle fractions. The association between each pollutant and
COPD admissions was investigated in metaanalyses using random
effects models. Analyses were stratified by geographical clusters for
investigation of the consistency of the evidence worldwide.

Measurements and Main Results: Forty-six studies were
included, and results for all the pollutants under investigation showed

marginal positive associations; however, the number of included
studies was small, the studies had high heterogeneity, and there was
evidence of small-study bias. Geographical clustering of the effects of
pollution on COPD hospital admissions was evident and reduced
heterogeneity significantly.

Conclusions: The most consistent association was between a
1-mg/m3 increase in carbon monoxide level and COPD-related
admissions (odds ratio, 1.02; 95% confidence interval, 1.01–1.03).
The heterogeneity was moderate, and there was a consistent
positive association in both Europe and North America, although
levels were clearly below World Health Organization guideline
values. There is mixed evidence on the effects of environmental
pollution on COPD exacerbations. Limitations of previous studies
included the low spatiotemporal resolution of pollutants,
inadequate control for confounding factors, and the use of
aggregated health data that ignored personal characteristics. The
need for more targeted exposure estimates in a large number of
geographical locations is evident.
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Intense energy consumption, together with
industrial and transportation emissions, has
led to population exposure to a diverse
variety of unhealthy concentrations of air
pollution, leading to increasedmorbidity and
mortality primarily due to cardiovascular
and respiratory causes (1). Vulnerable
groups include patients with chronic
obstructive pulmonary disease (COPD),
which is currently the fourth leading cause
of death worldwide (2). Total deaths due to
COPD are predicted to increase by more
than 30% in the next 10 years, and
economic costs for the management of
COPD are estimated at $36 billion annually
in the United States (3). Although smoking
is the most important cause of COPD, a
substantial proportion of cases cannot be
explained by this lifestyle factor alone (4).

Exacerbations of COPD are a common
cause of adult emergency hospital admissions
and are associated with increased mortality
and decreased quality of life. Patients may
experience at least one exacerbation per
year (5), and, as the disease worsens,
exacerbations become more frequent and
more severe (6). The effect of environmental
exposure on COPD exacerbations is not
clear. A number of variables may trigger
COPD exacerbations (7), and understanding
and addressing the effects of air quality may
be key in managing COPD exacerbations.
From a policy perspective, detecting air
pollution–induced health effects early can
lead to more effective control of exposures
and more appropriate interventions.

In this systematic review, we evaluated
the strength and consistency of current
literature documenting the effect of different
air pollutants on hospital admissions for
COPD exacerbations. Previous metaanalytic
studies on the effects of air pollution on
COPD-related hospital admissions and
mortality were focused on the effects of
particles (8–11) or the effects of gases such
as ozone and nitrogen dioxide (12, 13). This
review is unique in that we simultaneously
assessed the effects of key atmospheric
pollutants, including gases and particulate
matter, on hospital admissions of patients
with an established diagnosis of COPD in
a large number of studies globally.

Methods

Search Strategy
We endeavored to assess the effects of air
pollutants on COPD hospital admissions by

reviewing the literature from time-series and
case-crossover studies. Two conceptual
terms were developed for the search strategy
relating to COPD: “environmental factors”
and “health outcomes.” Search terms were
developed using combinations of controlled
vocabulary and free-text terms. Only papers
with title, keywords, or abstracts including
records from the search categories were
included. Search terms from these
categories were combined using the AND
Boolean logic operator. “Environmental
factors” refers to air pollution, including
gases and particles suspected of affecting
human health, such as carbon monoxide
(CO), nitrogen dioxide (NO2), sulfur
dioxide (SO2), ozone (O3), and particulates
with diameters less than 10 mm and
less than 2.5 mm (PM10 and PM2.5,
respectively). The primary health outcome
of interest in this review was COPD
exacerbation qualified by hospital
admissions.

The MEDLINE, MEDLINE
In-Process and Other Non-Indexed
Citations, Embase, BIOSIS, and Science
Citation Index were searched for
publications published between 1980
and September 2015 using Preferred
Reporting Items for Systematic Reviews
and Meta-Analyses and Meta-analysis of
Observational Studies in Epidemiology
guidelines (14). We accessed the gray
literature to address potential publication

bias and searched additional sources,
including reports by the World Health
Organization (WHO) and the
Committee on the Medical Effects of
Air Pollution, as well as the Air
Pollution Epidemiology Database hosted
by St. George’s University. The search
strategy is described in the online
supplement.

Inclusion and Exclusion Criteria
While using the search strategy described
above, we applied inclusion and exclusion
criteria (Table 1) to titles, keywords, and
abstracts before obtaining full reports on
the studies that appeared to meet the
criteria.

Classification and Quality Assurance
Two authors independently reviewed titles
and abstracts for relevance and assessed
whether they were related to the scope of
this study. Relevant papers were included
for full-text review and tested against the
inclusion and exclusion criteria. The
methodological quality of the studies was
assessed on the basis of population size,
study duration and design, air pollutant
exposure measurement, diagnosis of COPD,
potential confounding factors, controls
used, statistical methods, and length of
follow-up. A descriptive summary of the
studies is provided in Table E1 in the online
supplement.

Table 1. Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

Reports a specific outcome of COPD
exacerbation defined by hospital or
emergency department admissions

Studies by the same author that repeat
results (The most recent were selected.)

Recorded by clinician or in hospital records
using the codes for the International
Classification of Diseases, ninth and tenth
revisions (ICD-9 codes 490–496, excluding
code 493 for asthma; and ICD-10 codes
J44.1–J44.9)

Studies that included asthma (ICD-9 code
493) were excluded because of clinical and
pathological differences between COPD
and asthma (19)

Reports a measure of air quality from a fixed
monitoring station, indoor environment, or
personal exposure (indoor to be analyzed
separately from outdoor)

Incorrect outcome: included other respiratory
diseases combined with COPD in the
statistical analysis

Reports the findings of a primary research
study or secondary analysis

Uncertain diagnosis of COPD

Published in English Did not report or provide calculable odds
ratio, relative risk, or percent change and
95% confidence intervals

Reported results derived from single-
pollutant models

Poor quality: lacked adjustment for potential
confounders, missing data, inadequate
statistical analysis

Definition of abbreviation: COPD = chronic obstructive pulmonary disease.
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Risk-of-Bias Assessment
A risk-of-bias assessment based upon the
Newcastle-Ottawa scale was devised (15),
and assessment domains included
the representativeness of exposure,
ascertainment of exposure, comparability
(i.e., controlling for confounders), and
reporting of missing data (Figure 8). Small-
study bias was assessed using the “trim-
and-fill” method (16) (Figure E1). The
percentage of variation between studies
due to heterogeneity was assessed with
Galbraith (radial) plots (Figure E2) and
quantified with Cochran’s Q measure in
random effects models. The I2 statistic was
calculated as the weighted sum of squared
differences between individual study effects
and the pooled effects across studies as
follows: I2 = 100%3 (Q2 df)/Q.

Data Extraction and Synthesis
of Evidence
Relevant full-text studies were coded to
address the topic focus of the review: study
type (e.g., primary research, metaanalysis),
focus of the study (e.g., health outcomes),
country in which the research was conducted,
duration of the study, and methodology
employed (e.g., epidemiological study).
Estimates of effects extracted from included
studies were presented as odds ratios (OR),
relative risks, or percentage changes in COPD
hospital admissions (see online supplement
for details).

Results

Methodological Classification
of Studies
Figure 1 describes the literature search and
screening process. Among the 46 studies
included in the metaanalysis, 15 were
performed in North America and 19 in
Europe. Eight studies were conducted in
Asia, while limited information from South
America and Australia was available.
Therefore, three geographical clusters were
defined on the basis of available evidence in
the literature.

Two methodological approaches were
identified: time-series and case-crossover
studies. The most common approach was
ecological time-series investigations, where
aggregated health outcomes of the total
population were associated with daily
variations in air pollutants after controlling
for confounding factors, such as temperature

or influenza epidemics. That approach has
the potential for including a large number of
days over several years for a large population,
with advantages of improving the precision of
estimate of effect of exposure–response
relationships. The researchers in the vast
majority of these studies analyzed exposure–
response relationships at a single-city level,
and we found only six time-series multicity
investigations (17–22).

Case-crossover studies measured
COPD exacerbations in cohorts of patients
with COPD. Conceptually, a case-
crossover design is different from a
time-series study, as the unit of assessment
is at the individual level, where each
patient acts as his or her own control,
accounting for variation at the individual
level. A total of 11 studies with a case-
crossover design were included in the
metaanalysis. The study population in
those studies was relatively small
compared with the time-series
investigations, which would result in a
smaller precision of the estimate. Only one
case-crossover study (23) was organized as
a multicity study, in 36 cities.

Air pollution exposure in all time-series
and case-crossover studies was measured at
the nearest fixed air quality monitoring
station. The number of fixed monitoring

stations employed in each study was not
always reported, but it ranged from a single
monitoring station to 31 (24). The time
resolution of the measurements was most
often the 24-hour average value for
meteorological parameters and particles
and 1-hour to 8-hour maximum levels for
gaseous pollutants.

Metaanalysis of Studies Using
Single-Pollutant Models
Figures 2–7 show forest plots for the
converted odds ratios of COPD hospital
admissions for PM10, PM2.5, CO, SO2, NO2,
and O3 from single-pollutant models.

Effect of PM10

The pooled estimates of a total of
31 studies included in the metaanalysis
for PM10 showed a marginal effect of a
10-mg/m3 increase of PM10 on COPD
hospital admissions (Figure 2) with very
high heterogeneity (I2 = 79.4%) between
studies. Of these, 23 were ecological
time-series studies, while the rest were
organized as case-crossover investigations.
While in 28 studies researchers estimated
a positive association between COPD-
related hospital admissions and PM10

exposure, the association was significant
in only 15.

8,706 records identified
through database screening

5,040 records after duplicates
removed

70 full text articles excluded:

Incorrect outcome: 15

Incorrect population: 30

Incorrect exposure: 1

Incorrect comparator: 5

Poor quality: 2

Not in English: 5

More recent paper: 6

Meta-analysis with studies
already included: 6

117 full text articles assessed 
for eligibility

46 studies included

5,040 records screened 4,923 records excluded

Figure 1. Flowchart of the literature search and screening process.
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Figure 2. Pollution levels and summary estimates (95% confidence intervals [CIs]) for chronic obstructive pulmonary disease–related hospital admissions
per 10-mg/m3 increase in particulates with a diameter less than 10 mm in diameter (PM10). OR = odds ratio; RE = random effects; WHO=World Health
Organization.
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Most of the studies were conducted in
Europe and North America, where a
marginal effect was estimated (OR, 1.01;
95% confidence interval [CI], 1.00–1.01 for
Europe; OR, 1.00; 95% CI, 1.00–1.01 for
America), while a stronger effect was
reported for studies conducted in Asia
(OR, 1.02; 95% CI, 1.01–1.03). The
stronger effect reported in Asian studies
might be explained by the approximately
threefold higher mean pollution levels of
99.86 48.4 mg/m3 compared with 30.76
2.6 mg/m3 and 31.16 3.0 mg/m3 for North
America and Europe, respectively, which
were lower than the annual mean WHO
guideline values. The metaregression
model also indicates a nonlinear
relationship, with stronger effects
reported at higher ambient concentrations
(Figure E3).

The heterogeneity among European
studies (I2 = 1.93%) was significantly less
than in the other two subgroups. With use
of the trim-and-fill method, we identified
evidence of small-study bias on the effect
estimates of PM10. Contrary to single-city
studies, in three multicity studies—one in
Europe (25) and two in North America
(20, 21)—a significant association was not
found, while in a case-crossover study (23)
and a time-series study (22) study in 10
U.S. cities a marginal association between
PM10 and COPD hospital admissions was
found.

There is insufficient evidence to
assess the lagged effects of particle
exposure on COPD morbidity, as most
studies did not specify the temporal lags of
the dependent variables in the regression.
A further limitation includes the low
temporal resolution of collected PM10

data, which in most studies was the daily
average.

Effect of PM2.5

Due to the lack of available outdoor
measurements of PM2.5 or smaller particles,
evidence available on their potential
association with COPD morbidity is
limited, and the heterogeneity of the pooled
metaanalysis was high (I2 = 89.9%). Of the
12 studies included in the metaanalysis
(Figure 3), a positive association was found
in 10; however, the association was
significant in only 4. Studies in which
researchers collected measurements of
both PM2.5 and PM10 fractions, similar
associations between COPD hospital
admissions and these fractions were found

(21, 22, 26–31). However, overall, a
stronger association was found with PM2.5

(OR, 1.03; 95% CI, 1.01–1.05) than with
PM10, which might be explained by the fact
that smaller particles may penetrate deeper
into the lungs.

Similarly, with PM10, the majority of
studies were performed as time-series
investigations, and most of the evidence
comes from North America. When the
effect estimates in the European and
North American results were pooled, the
heterogeneity was significantly reduced
(I2, 50%). The effect of PM2.5 was
stronger in Asia (OR, 1.04; 95% CI,
1.00–1.08), but there was large
heterogeneity. The highest concentration
levels of PM2.5 (41.26 2.7 mg/m3) were
reported in Asia (where the effect was
stronger and significant), and they were
twice as high as in Europe (23.46
5.3 mg/m3) and four times higher than
in North America (11.36 3.3 mg/m3),
where the effects were lower and
nonsignificant and levels were below
annual mean WHO guideline values.
The metaregression model also
pointed toward a nonlinear relationship
between COPD hospital admissions and
ambient pollution levels, as there was a
higher effect at higher concentrations
(Figure E4).

Although there appears to be a
relationship between PM2.5 and COPD
hospital admissions, the results should be
interpreted with caution because of the
limited number of included studies. We
did not detect any small-city bias with the
trim-and-fill method. Two studies were
organized as multicity investigations—one
in 202 U.S. cities (18) and one in 7
Canadian cities (21)—and the researchers
reported a nonsignificant association
between PM2.5 exposure and COPD
exacerbations.

As in the case of PM10, limited
information exists on seasonal effects of
fine particles on health outcomes, with
researchers in only one study in a tropical
climate estimating larger effects in the cool
season (32). Limited evidence is available
on the lagged effects of PM2.5 exposure on
COPD morbidity and points toward a
shorter temporal lag than PM10 of up to
2 days (30).

Effect of CO
Pooled results of 15 studies for CO
(Figure 4) showed a small but significant

effect of a 1-mg/m3 increase in CO on
COPD admissions (OR, 1.02; 95% CI,
1.01–1.03) with moderate heterogeneity
(I2 = 50.73%) between studies. We excluded
one study done in Asia from the pooled
estimate (33) that increased the
heterogeneity significantly (I2 = 83.6%).
The rescaled ORs for this study were 1.67
(95% CI, 1.37–2.04) in the warm season
and 2.70 (95% CI, 2.04–3.58) in the cool
season. Apart from two European case-
crossover studies (21, 30) in which
researchers found a strong positive
association, all included studies were
time-series investigations. There was some
evidence of small-study bias in the trim-
and-fill funnel plot, supported by the
nonsignificant negative association
estimated by the only multicity
investigation, which was done in
seven Canadian cities (21).

There is insufficient evidence of an
association between COPD hospital
admissions and CO exposure in
geographical locations other than Europe
(six studies) and North America (seven
studies). The heterogeneity between
studies was significantly reduced in both
these geographical subgroups. Researchers
in studies done in Europe estimated an
overall stronger association (OR, 1.04; 95%
CI, 1.02–1.06; I2 = 47.3%) than in North
America (OR, 1.02; 95% CI, 1.01–1.03;
I2 = 37.5%), possibly because CO
concentrations in Europe were higher
(2.16 0.7 mg/m3) than in North
America (1.56 0.2 mg/m3), and the
metaregression indicated that there is a
nonlinear association between effect and
ambient concentrations (Figure E5).
Researchers in most studies found
significant associations with acute (25, 34)
or lagged effects of up to 3 days (21, 30,
31, 35).

Effect of SO2

The overall pooled estimate of SO2 exposure
indicated a borderline effect with COPD
admissions, with moderate heterogeneity
between studies (I2 = 50.8%). Of the
23 studies included in the metaanalysis, a
time-series methodology was employed in
18. There was evidence of small-study bias
(Figure E1).

Most of the studies were performed
in Europe, with small heterogeneity
(I2 = 6.72%) between studies. The effects
were clustered in geographical locations,
with a stronger positive effect estimate in
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Asia (OR, 1.03; 95% CI, 1.00–1.06) than in
North America, where researchers did not
detect a significant association, and there
was only a borderline effect in Europe. SO2

levels in North America and Europe were
similar, with a small SE (18.16 4.7 mg/m3

and 18.06 3.2 mg/m3, respectively), while
levels in Asia were higher, with a large SE
(25.16 11.30 mg/m3). The metaregression
model approximated a linear relationship
between effect size and pollution levels
(Figure E6).

Apart from the spatial variation of the
effect of SO2, a seasonal effect might also
underpin the estimated association. In two

studies in a tropical climate in Taiwan
(33, 36), researchers found a significant
association between SO2 and COPD
hospital admissions only in the cool season
(temperatures ,258C). A possible
explanation might be increased coal
burning for heating during the cool season
in developing countries where levels were
higher. However, seasonal differences were
estimated in a 5-year European study (37),
with a very small but insignificant
association observed in winter and no
relationship seen in the summer. Most
studies estimated acute effects for SO2 (21,
34) or 2-day lagged effects (21, 30, 38). In

only one study (35) did researchers
estimate longer lagged effects of up to
13 days.

Effect of NO2

Results for NO2 (Figure 6) showed an
association (OR, 1.03; 95% CI, 1.02–1.05)
between a 10-µg/m3 increase in NO2

and COPD admissions, with high
heterogeneity (I2 = 91.5%). We found
evidence of small-study bias in single-city
studies (Figure E1). A positive association
was reported in 25 of 27 studies, and a
significant association was reported in
11 studies. Only one multicity study in
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Figure 3. Pollution levels and summary estimates (95% confidence intervals [CIs]) for chronic obstructive pulmonary disease–related hospital admissions
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North America (21) and one in Europe
(39) reported a negative nonsignificant
effect.

The majority of the evidence comes
from Europe, where the heterogeneity
between studies was moderate (I2 = 55%).
The estimated effects in Europe and
North America were similar (OR, 1.01;
95% CI, 1.00–1.02), but they were lower
than the effects in Asia, where the CIs
were wider (OR, 1.07; 95% CI, 1.01–1.13).
The highest NO2 levels were measured in
Europe (57.96 8 mg/m3) and Asia
(51.26 2.4 mg/m3), and the lowest levels
were measured in North America (42.76
10.8 mg/m3), but in all geographical
clusters the measurements were above

mean annual WHO guideline values. A
nonlinear relationship between mean
levels and effect estimates was estimated
in the metaregression, with stronger
effects found at higher concentrations
(Figure E7).

The findings on lagged effects of
NO2 exposure are inconsistent. In three
studies, researchers found significant
acute effects of same-day NO2 exposure
with COPD exacerbations (25, 40, 41) or
1- to 2-day lagged effects (33, 42). Longer
3-day lag effects were reported in three
large studies (21, 27, 35), while
researchers in four smaller studies
reported longer lagged effects lasting up
to 8 days (30, 39, 43, 44).

Effect of O3

In total, there were 23 studies in which
researchers investigated the effect of O3 on
COPD hospital admissions. Nine were
performed in North America, nine in
Europe, three in Asia, and one in Australia
(Figure 7). As in the case of NO2, the
heterogeneity between studies was large
(I2 = 87.23%). Researchers in 18 of the
22 studies reported a positive effect;
however, it was significant in only 10
studies. Overall, the pooled estimates
showed that there was a small positive
effect of O3 on COPD hospital admissions
(OR, 1.02; 95% CI, 1.01–1.03). Mean
levels of O3 were similar in all
geographical locations, ranging from
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Figure 4. Pollution levels and summary estimates (95% confidence intervals [CIs]) for chronic obstructive pulmonary disease–related hospital admissions
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43.9 mg/m3 in Asia to 53.6 mg/m3 in North
America, and, using the metaregression
model, we estimated a linear relationship
with the effects (Figure E8).

The heterogeneity between studies in
geographical subgroups remained high.
The pooled models showed that the
strongest effect (OR, 1.04; 95% CI, 1.03–

1.05) was estimated for Asian countries,
while the effects were marginally
significant for North America (OR, 1.01;
95% CI, 1.00–1.02) and insignificant for
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per 10-mg/m3 increase in SO2 levels. NA =North America; OR = odds ratio; RE = random effects; WHO=World Health Organization.
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Europe (OR, 1.01; 95% CI, 0.99–1.04).
Contrary to the pooled models,
researchers in the multicity studies found
an insignificant effect in North America
(21, 23) and a significant positive effect in

Europe (17). There was no evidence of
small-study bias.

The effect of seasonality on the
association between O3 and COPD-related
hospital admissions is unclear.

Researchers in one study in Canada (21)
estimated that the effect was nearly twice
as large during the warm season as
over the whole year. To the contrary,
researchers in a study in a tropical climate
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Figure 6. Pollution levels and summary estimates (95% confidence intervals [CIs]) for chronic obstructive pulmonary disease–related hospital admissions
per 10-mg/m3 increase in NO2 levels. NA =North America; OR = odds ratio; RE = random effects; WHO=World Health Organization.

SYSTEMATIC REVIEW

1822 AnnalsATS Volume 13 Number 10| October 2016



(33) estimated that the effect was twice as
large in the cool season.

Risk-of-Bias Assessment
The risk of bias for the studies included in
this review (and the proportion of studies
that had low, unclear, or high risk) is shown
in Figure 8. Detailed descriptions for each

individual study are included in the online
supplement.

Discussion

To our knowledge, this is the first study in
which metaanalytic techniques have been

used to pool the effect estimates of the
associations between COPD admissions
with gaseous pollutants (NO2, O3, CO, and
SO2) and particulate matter simultaneously.
The models revealed suggestive evidence
that all investigated pollutants may have a
small but significant effect on COPD
hospital admissions. These findings come
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Figure 7. Pollution levels and summary estimates (95% confidence intervals [CIs]) for chronic obstructive pulmonary disease–related hospital admissions
per 10-mg/m3 increase in O3 levels. NA = North America; OR = odds ratio; RE = random effects; WHO=World Health Organization.
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from a relative small number of studies
with high heterogeneity between them,
however. Geographical clustering of the
effects of pollution on COPD hospital
admissions was evident and reduced
heterogeneity significantly.

Particulate Matter
Previous systematic metaanalyses have been
focused on the association between COPD
exacerbations (8, 9) and exposure to
particulate matter. Zhu and colleagues (11)
estimated a 2.7% increase for COPD
hospital admissions (95% CI, 1.9–3.6%) for
every 10-mg/m3 increase in PM10, and they
reported large heterogeneity in effect
estimates from I2 values of 83.9% (11) to
79.4% (9). We found a marginally
significant effect estimate for PM10 (OR,
1.01; 95% CI, 1.0–1.02), similar to that
reported by Song and colleagues (9) but
smaller than that reported by Zhu and
colleagues (11). Song and colleagues (9)
found that the strength of the association of
COPD hospital admissions with PM10

varied among geographical locations, with
an effect of 1% in China and Europe but a
larger effect of 2% in the United States. We
estimated a similar effect of 1% in Europe,
with very little heterogeneity (I2 = 1.93%);
however, we observed a smaller effect of 1%
in North America and a larger effect in Asia
of 3% (95% CI, 2–5%). A possible
explanation might be that, unlike the
investigators in both previous metaanalyses

(9, 11), we did not include studies in which
asthma was not separated in the diagnosis.
Moreover, we found evidence of a
nonlinear relationship where higher effects
were reported at higher concentrations.

In only one metaanalysis (45) have
researchers estimated the association of
COPD admissions (excluding asthma) with
PM2.5 exposure, and they found an
association 1.02 (95% CI, 1.01–3.71) similar
to the one in the present study (OR, 1.03;
95% CI, 1.01–1.05). In line with the
findings of Atkinson and colleagues (45),
we found large heterogeneity between
studies but no evidence of small-study bias
in the effect estimates of PM2.5 for COPD
hospital admissions.

It is possible that the marginal effect of
particulate matter estimated in this and
previous metaanalytic studies might be
influenced by small-study bias. In large
multicity studies in North America and
Europe (19–21), researchers failed to detect
a significant association between outdoor
PM10 levels and COPD hospital
admissions. Similarly, researchers in the
two multicity studies in North America
(18, 21) did not find a significant
association between PM2.5 exposure and
COPD hospital admissions.

The effect of seasonal variation on the
association between PM10 exposure and
COPD exacerbations is not clear.
Researchers in one multicity study in Italy
(19) reported that the association is 7.5

times stronger in the summer season. In a
study in Taiwan, however (33), researchers
found a stronger effect in the cool season. A
potential explanation for the observed
differences might be related to behavioral
patterns of the populations regarding time
spent outdoors, which may vary in different
climates. Another possible explanation in
the Asian study may be related to the
extensive use of mechanical cooling and air
filtration in the tropical climate during the
warm season, which may reduce exposure
to PM. Similar results have been reported
by Janssen and colleagues (46) in the
reanalysis of the National Morbidity
Mortality Air Pollution study in 14 U.S.
states, where the percentage of households
with air-handling units had a significant
modification effect on COPD hospital
admissions.

Gaseous Pollutants
The systematic evaluation of the association
between COPD exacerbations with gaseous
pollutants indicates a potential link between
CO and SO2 levels, with moderate
heterogeneity and strong geographical
clustering. Both pollutants appeared in
most studies to have acute effects or short
lagged effects of up to 3 and 2 days,
respectively, on COPD admissions, and a
stronger effect in the winter season.
Marginally stronger effects of CO were
estimated in Europe than in North
America. A potential explanation for the
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Figure 8. Risk of bias assessment for studies included in the meta-analysis.
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difference in effects estimated between
Europe and North America may be related
to different levels of ambient CO
concentrations or to the methodological
design of studies, such as the absence of
multicity investigations in Europe.

The effect estimates of SO2 in each
geographical subgroup indicated that the
association was significant only in Asian
countries, with stronger effects in the
winter season, marginally significant in
Europe, and insignificant in North
America, where the majority of the
evidence comes from, possibly because SO2

remains a predominant pollutant in
developing countries. The researchers in
the only two available multicity studies on
the effects of SO2 found contradicting
results, with one study in Europe showing a
marginal positive association (17) and one
study in North America (21) demonstrating
a negative nonsignificant association. A
possible explanation is that the
chronological difference between these two
studies reflects differences in outdoor SO2

concentrations.
The associations between NO2 and O3

exposure with COPD hospital admissions
is less well understood, as the
heterogeneity between studies in this
review was large. Both pollutants showed
marginal associations in Europe and
North America, and stronger effects in
Asia. Researchers in only three studies in
Asia found an association with both O3

and NO2 (29, 33, 40). Studies in Europe
and North America showed an association
either with NO2 (24, 30, 35, 43) or O3

alone (17, 27, 39, 47, 48).

Limitations
A number of limitations in the
methodological design of the studies

included in this review do not allow us to
establish a clear link between the effects of
environmental pollution on COPD
exacerbations. Using hospital admissions as
an indication of exacerbation is a potential
source of ecological fallacy, as it ignores
individual-level characteristics and assesses
health outcomes at a group level.
Relationships at an individual level might
not reflect group-level relationships and vice
versa. Health-care use in COPD can vary
depending on access, and it was not always
possible to separate emergency from
scheduled admissions, adding further
uncertainty to the estimation of
exacerbations.

Although both single-pollutant and
multipollutant models were employed in
many studies, results were included only
from single-pollutant models, and the
findings do not account for any covariance
between air pollutants (such as NO2 and
O3 or NO2 and PM). Other unmeasured
pollutants in the mixture might also be
important in the observed health
outcomes (such as ultrafine particles). The
confounding effects of temperature and
humidity add further challenges.
Although we know that there are seasonal
effects on COPD exacerbations in
northern and southern regions (49), the
relationships between temperature and
humidity and COPD admissions are not
clear.

The studies were grouped on the basis
of geographical location, which had the
potential to reduce the heterogeneity of the
subgroups; however, the small sample size
limited the interpretation of the results. We
used random effects models, which can
account for the heterogeneity between
studies better than fixed models. While this
standardized method may reduce small-

study bias, it cannot differentiate multicity
from single-city studies if the SE is similar.
Moreover, while the random effects pooled
models assumed a linear relationship
between air pollutants and effect estimates,
we found evidence of a nonlinear
relationship with higher effects reported at
higher concentrations for all pollutants
apart from O3 an SO2 that exhibited a linear
relationship.

A significant limitation of the studies
included the low spatiotemporal resolution
of air pollution measurements from fixed
monitoring stations as a surrogate for
personal exposure. However, in practice, air
quality is highly granular, and people,
particularly those with chronic respiratory
diseases, may spend a large fraction of their
time indoors, where they might be exposed
to a mixture of emissions from indoor
sources. Missing daily monitoring data add
further uncertainty in the analysis of time-
series studies with daily lags in the exposure
variable. Rather than using fixed site
monitors as a proxy for “true” exposures,
the development of hybrid models that
combine pollutant dispersion models with
space–time–activity models may prove to
be a more effective way of examining the
effects of personal environmental exposure
on health (50).

Conclusions
A key finding of this review is that the effects
of separate pollutants on COPD admissions
appear to vary across geographical regions.
Effects were evident even at concentrations
below current guideline values, indicating a
need to lower thresholds to protect such
vulnerable groups. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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Perucci CA. Air pollution and hospital admissions for respiratory
conditions in Rome, Italy. Eur Respir J 2001;17:1143–1150.

35 Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K,
Mulholland JA, Ryan PB, Frumkin H. Ambient air pollution and
respiratory emergency department visits. Epidemiology 2005;16:
164–174.

36 Yang CY, Chen CJ. Air pollution and hospital admissions for chronic
obstructive pulmonary disease in a subtropical city: Taipei, Taiwan.
J Toxicol Environ Health A 2007;70:1214–1219.
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