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AMP-activated protein kinase (AMPK) is an energy sensor
and master regulator of metabolism. AMPK functions as a fuel
gauge monitoring systemic and cellular energy status. Activa-
tion of AMPK occurs when the intracellular AMP/ATP ratio
increases and leads to a metabolic switch from anabolism to
catabolism. AMPK phosphorylates and inhibits acetyl-CoA car-
boxylase (ACC), which catalyzes carboxylation of acetyl-CoA to
malonyl-CoA, the first and rate-limiting reaction in de novo syn-
thesis of fatty acids. AMPK thus regulates homeostasis of acetyl-
CoA, a key metabolite at the crossroads of metabolism, signal-
ing, chromatin structure, and transcription. Nucleocytosolic
concentration of acetyl-CoA affects histone acetylation and
links metabolism and chromatin structure. Here we show that
activation of AMPK with the widely used antidiabetic drug
metformin or with the AMP mimetic 5-aminoimidazole-
4-carboxamide ribonucleotide increases the inhibitory phos-
phorylation of ACC and decreases the conversion of acetyl-CoA
to malonyl-CoA, leading to increased protein acetylation and
altered gene expression in prostate and ovarian cancer cells.
Direct inhibition of ACC with allosteric inhibitor 5-(tetradecy-
loxy)-2-furoic acid also increases acetylation of histones and
non-histone proteins. Because AMPK activation requires liver
kinase B1, metformin does not induce protein acetylation in
liver kinase B1-deficient cells. Together, our data indicate that
AMPK regulates the availability of nucleocytosolic acetyl-CoA
for protein acetylation and that AMPK activators, such as met-
formin, have the capacity to increase protein acetylation and
alter patterns of gene expression, further expanding the pleth-
ora of metformin’s physiological effects.

Acetylation is one of the epigenetic post-translational mod-
ifications of histones; it affects chromatin structure and regu-
lates diverse cellular functions, such as gene expression, DNA
replication and repair, and cellular proliferation (1, 2). Acetyla-
tion and deacetylation of chromatin histones, mediated by his-

tone acetyltransferases (HATs)3 and histone deacetylases
(HDACs), respectively, represent the major mechanisms for
epigenetic gene regulation. The dynamic balance between his-
tone acetylation and deacetylation, mediated by the activities of
HATs and HDACs, is stringently regulated in healthy cells but
is often dysregulated in cancer (3, 4).

Histone acetylation depends on intermediary metabolism for
supplying acetyl-CoA in the nucleocytosolic compartment (5).
In mammalian cells, the nucleocytosolic enzyme ATP-citrate
lyase is the major source of acetyl-CoA for histone acetylation
(6). Another mechanism for generation of acetyl-CoA in the
nucleus involves translocation of pyruvate dehydrogenase from
mitochondria to the nucleus (7). In yeast, global histone acety-
lation depends on nucleocytosolic acetyl-CoA produced by
acetyl-CoA synthetase (5). In both yeast and mammalian cells,
the nucleocytosolic acetyl-CoA is the link among cellular
energy, carbon metabolism, histone acetylation, and chromatin
regulation (8 –11).

The nucleocytosolic acetyl-CoA is a critical precursor of sev-
eral anabolic processes, including de novo synthesis of fatty
acids. Acetyl-CoA carboxylase (ACC) catalyzes the carboxyla-
tion of acetyl-CoA to malonyl-CoA, the first and rate-limiting
reaction in the de novo synthesis of fatty acids (12). The ACC
activity affects the concentration of nucleocytosolic acetyl-
CoA. We have previously shown that attenuated expression of
yeast ACC increases global acetylation of chromatin histones
and alters transcriptional regulation (13). Moreover, chronic
inhibition of ACC in mouse hepatocytes increases protein
acetylation (14). The human genome encodes two tissue-spe-
cific ACC isoforms, ACC� (ACCA) and ACC� (ACCB) (15).
ACCA activity is controlled by AMP-activated protein kinase
(AMPK), a conserved cellular energy sensor and master regu-
lator of metabolism. A hallmark of AMPK activation is phos-
phorylation of ACCA at Ser79, which results in reduced activity
of ACCA and inhibition of fatty acid synthesis (16, 17). In yeast,
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inactivation of SNF1, the budding yeast ortholog of mammalian
AMPK, results in increased ACC activity, a reduced pool of
cellular acetyl-CoA, and globally decreased histone acetylation
(18).

The main objective of this study was to test the hypothesis
that inhibition of ACC activity in human cells increases the
nucleocytosolic pool of acetyl-CoA and histone acetylation. We
show that suppression of ACC activity either by direct inhibi-
tion or by metformin-mediated AMPK activation increases
acetylation of histones and non-histones proteins and induces
transcriptional changes in prostate and ovarian cancer cells.
Metformin, widely used for diabetes type 2 treatment, de-
creases ATP production by inhibiting mitochondrial respiratory
chain complex I, leading to AMPK activation (19 –23). The
metformin therapy is associated with a reduced risk of cancer in
diabetes type 2 patients; however, the mechanisms are not com-
pletely understood (24). Our results indicate that some of the
physiological effects of metformin may involve increased acety-
lation of histone and non-histone proteins and altered patterns
of transcriptional regulation.

Results

Inhibition of Acetyl-CoA Carboxylase Increases Protein Acet-
ylation—Histone acetylation depends on intermediary metab-
olism for supplying acetyl-CoA as a substrate for HATs in the
nucleocytosolic compartment (5, 6). Cytosolic acetyl-CoA is
also used by acetyl-CoA carboxylase to yield malonyl-CoA, a
precursor for de novo synthesis of fatty acids (25, 26). We have
previously shown that acetyl-CoA carboxylase Acc1p regulates
homeostasis of nucleocytosolic acetyl-CoA and acetylation of
histones and nonhistone proteins in yeast (13). To investigate
whether ACCA regulates histone acetylation also in mamma-
lian cells, we analyzed histone acetylation in prostate cancer
PC3 and ovarian cancer OVCAR3 cells treated with 5-(tetrade-
cyloxy)-2-furoic acid (TOFA), an allosteric ACCA inhibitor
that decreases conversion of acetyl-CoA to malonyl-CoA and
induces apoptosis in lung and colon cancer cells (27). Our
results show that inhibition of ACCA significantly increases
acetylation levels of histones H3 and H4 in PC3 cells and to a
lesser extent in OVCAR3 cells (Fig. 1A).

In addition to histones, many other proteins are acetylated
(3, 8). To determine whether ACCA inhibition selectively
affects only histone acetylation or has a similar effect on acety-
lation of other proteins, we assayed acetylation of �-tubulin and
p65 NF�B. �-Tubulin is acetylated at Lys40 by a conserved �-tu-
bulin acetyltransferase, increasing stability of microtubules
(28). The transcription factor NF�B regulates expression of
genes involved in inflammation, growth, development, and apo-
ptosis (29, 30). Acetylation of p65 at Lys310 is required for the
full transcriptional activity of NF�B (31). Our results show that
the acetylation levels of �-tubulin and p65 are increased after
TOFA treatment in PC3 and OVCAR3 cells without affecting
the total cellular levels of these proteins (Fig. 1A).

AMPK Activation Increases Acetylation of Histones and Non-
histone Proteins—ACCA activity is inhibited by AMPK phos-
phorylation (32–34). A hallmark of AMPK activation is ACCA
phosphorylation at Ser79, resulting in ACCA inactivation and
inhibition of fatty acid biosynthesis (35). We have shown that

inactivation of the yeast AMPK homolog SNF1 results in a
decreased level of nucleocytosolic acetyl-CoA, leading to
hypoacetylation of chromatin histones and non-histone pro-
teins (18). Because SNF1 modulates acetyl-CoA homeostasis in
yeast cells, we speculated that activation of AMPK in mamma-
lian cells might decrease ACCA activity, leading to increased
acetylation of histones.

As expected, stimulation of AMPK in PC3 and OVCAR3
cells with the AMP homolog 5-amino-1-�-D-ribofuranosyl-
1H-imidazole-4-carboxamide (AICAR) increased AMPK phos-
phorylation at Thr172, a hallmark of AMPK activation by liver
kinase B1 (LKB1), the primary upstream kinase that activates
the AMPK pathway (34). Activation of AMPK resulted also in
phosphorylation of ACCA at Ser79 (Fig. 1B), known to decrease
ACCA enzymatic activity (35). Importantly, AMPK activation
by AICAR increased acetylation of histones H3 and H4, �-tu-
bulin, and p65 in both PC3 and OVCAR3 cells (Fig. 1B).

AMPK can also be activated by drugs that inhibit the mito-
chondrial electron transport pathway and oxidative phosphor-
ylation and reduce the cellular ATP level. One of these drugs is
metformin, a widely used antidiabetic drug that inhibits mito-
chondrial complex I, reducing ATP production and increasing
AMP levels (20, 23). Upon AMP binding, AMPK becomes a
better substrate for its activator kinase LKB1 (34). In PC3 and
OVCAR3 cells, metformin activated AMPK as shown by
increased AMPK phosphorylation at Thr172 and ACCA phos-
phorylation at Ser79 (Fig. 2A). In accordance with ACCA inac-
tivation, 0.03 and 0.3 mM metformin decreased cellular malo-
nyl-CoA levels to 80 and 20% compared with untreated cells,
respectively (Fig. 2B). Similarly to TOFA and AICAR, treat-
ment of PC3 and OVCAR3 cells with metformin increased
acetylation of histones H3 and H4, �-tubulin, and p65 (Fig. 2A).
The lowest concentration of metformin effective in increasing
protein acetylation was about 30 �M (Fig. 2), which corresponds
to the metformin concentration in human plasma following a
therapeutic dose of around 30 mg/kg (36). Together, our results
indicate that, by regulating ACCA activity, AMPK controls
acetyl-CoA homeostasis and protein acetylation.

AMPK Silencing Impairs AICAR-induced Protein Acet-
ylation—To investigate whether activation of AMPK, rather
than a modulation of other cellular activities, accounts for the
AICAR-induced increase in protein acetylation in PC3 cells, we
analyzed global acetylation of histones and non-histone pro-
teins after small interfering RNA (siRNA)-mediated silencing
of both AMPK�1 and AMPK�2. As shown in Fig. 3A, AMPK
siRNA silencing suppressed the cellular AMPK level by about
50% in untreated cells and by about 70% in AICAR-treated PC3
cells. Cells with suppressed AMPK expression exhibited signif-
icantly reduced acetylation of histones H3 and H4, tubulin, and
p65 after AICAR treatment (Fig. 3A). These results indicate
that activation of AMPK is responsible for the increased protein
acetylation.

Treatment of PC3 and OVCAR3 cells with TOFA results in
increased protein acetylation (Fig. 1A). To confirm that the
mechanism responsible involves inhibition of the ACCA activ-
ity, we analyzed protein acetylation in PC3 cells transfected
with ACCA siRNA as well as with control non-silencing siRNA.
Cell transfection with ACCA siRNA suppressed the ACCA
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protein levels by about 60%. The ACCA suppression signifi-
cantly increased acetylation of histones H3 and H4 as well as
increased acetylation of tubulin and p65 (Fig. 3B). These results
are consistent with the effect of TOFA on protein acetylation
(Fig. 1A); we interpret these results to mean that decreased
activity of ACCA results in increased protein acetylation. These
results are also consistent with increased protein acetylation
upon repression of yeast ACC (13).

LKB1 Is Required for Metformin-induced Protein Acet-
ylation—The tumor suppressor serine/threonine LKB1 acti-
vates AMPK by phosphorylation at Thr172. LKB1 is a low
energy sensor that regulates tumorigenesis and apoptosis by
regulating AMPK and mTOR pathways (37). LKB1-deficient
cells have increased mTOR signaling due to the lack of tuberous
sclerosis 2 protein phosphorylation by AMPK, which results in
increased growth and tumorigenic potential. To investigate

whether metformin-induced protein acetylation requires LKB1-
dependent activation of AMPK, we analyzed global protein
acetylation of histones and non-histone proteins in PC3 cells
transfected with LKB1 siRNA as well as with control non-
silencing siRNA. As shown in Fig. 4A, LKB1 siRNA silencing
suppressed the cellular LKB1 level by about 80% in untreated
cells and by about 95% in metformin-treated PC3 cells. The
LKB1 suppression abolished the increase in protein acetyla-
tion after metformin treatment (Fig. 4A), suggesting that
LKB1 activity is required for metformin-induced protein
acetylation.

To further investigate the role of LKB1 in metformin-in-
duced protein acetylation, we used HeLa S3 cells that lack LKB1
expression (38). Metformin did not induce AMPK phosphory-
lation at Thr172 or ACCA phosphorylation at Ser79 and did not
increase acetylation of histones H3 and H4, �-tubulin, and p65

FIGURE 1. Inhibition of ACCA activity by TOFA or AMPK activation by AICAR increases protein acetylation in PC3 and OVCAR3 cells. PC3 and OVCAR3
cells were treated with 0, 0.1, 1.0, and 10 �g/ml TOFA for 48 h (A) or 0, 0.3, 1, 3, 10, and 30 mM AICAR for 24 h (B). Samples were analyzed by Western blotting with
antibodies against acH3, acH4, total histone H3, AMPK, pAMPK, ACCA, pACCA, tubulin, acTubulin, p65, acp65, and actin. The figure represents typical results
from three independent experiments. Quantitative evaluation of the Western blots was performed by densitometric analysis of the band intensities. The ratios
of acH3/H3, acH4/H3, acTubulin/tubulin, and acp65/p65 were plotted; they represent means � S.D. (error bars). Values that are statistically significantly
different (p � 0.05) from the untreated samples are indicated by an asterisk.
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in HeLa S3 cells (Fig. 4B). However, inhibition of ACCA with
TOFA in HeLa S3 cells increased acetylation of histones H3 and
H4, �-tubulin, and p65 (Fig. 4C). Taken together, our results
suggest that the metformin-induced protein acetylation in PC3
and OVCAR3 cells is due to the LKB1-dependent activation of
AMPK and AMPK-dependent inactivation of ACCA.

AMPK Activation Globally Increases Acetylation of Chroma-
tin Histones and Alters Transcriptional Patterns—To test
whether metformin regulates histone acetylation globally or
only at specific loci, we used chromatin immunoprecipitation
(ChIP) to evaluate the occupancy of histone H3 acetylated at
Lys14 (acH3) as well as hyperacetylated histone H4 (acH4;
acetylated at Lys5,8,12,16) in the promoter regions of �-actin

(ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
cyclin-dependent kinase inhibitor p21, apoptosis regulator
Bcl-2, proinflammatory genes IL6 and IL8, the transcription
factor Bcl-3, the transcriptionally inactive euchromatin gene
MYOD1 encoding myogenic differentiation 1 protein, and the
transcriptionally inactive heterochromatin gene SAT2 encod-
ing spermidine/spermine N1-acetyltransferase. We used anti-
H3 antibody that recognizes the C-terminal region of histone
H3, which is not post-translationally modified. The ChIP signal
obtained with this antibody thus represents the total H3 occu-
pancy and can be used to calculate the histone acetylation levels
per nucleosome content (18). To account for differences in
nucleosome density at different genomic loci, we corrected the

FIGURE 2. AMPK activation by metformin increases protein acetylation in PC3 and OVCAR3 cells. A, PC3 and OVCAR3 cells were treated with 0, 0.01, 0.03,
0.1, 0.3, and 1 mM metformin for 72 h. Whole cell extracts were analyzed by Western blotting using antibodies against acH3, acH4, total histone H3, AMPK,
pAMPK, ACCA, pACCA, tubulin, acTubulin, p65, acp65, and actin. The figure represents typical results from three independent experiments. Quantitative
evaluation of the Western blots was performed by densitometric analysis of the band intensities. The ratios of acH3/H3, acH4/H3, acTubulin/tubulin, and
acp65/p65 were plotted; they represent means � S.D. (error bars). Values that are statistically significantly different (p � 0.05) from the untreated samples are
indicated by an asterisk. B, metformin decreases the cellular malonyl-CoA level. PC3 cells were treated with 0, 0.03, and 0.3 mM metformin for 72 h. Malonyl-CoA
was assayed in cell lysates by ELISA. The experiment was repeated three times, and the results are shown as means � S.D. (error bars). Values that are statistically
different (p � 0.05) from the control (0 mM metformin) are indicated by an asterisk.
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acH3 and acH4 occupancies for histone H3 content and gener-
ated values that represent acetylation per nucleosome. In met-
formin-treated PC3 cells, acetylation of histone H3 was
increased 4- and 10-fold in the promoters of IL8 and IL6,
respectively. The acetylation status of histone H3 in the other
promoters was not altered. Acetylation of histone H4 was
increased 1.3–7.5 times in all examined promoters (Fig. 5).
Upon treatment of PC3 cells with AICAR, acetylation of his-
tone H3 was increased 2–3.4 times in the promoters of p21, IL8,
ACTB, and Bcl2, whereas acetylation of histone H4 was
increased 1.2–5.2 times in all examined promoters (Fig. 6). The
fact that the increased acetylation of histone H4 was not always
accompanied by increased acetylation of histone H3 is in an
agreement with the notion that different acetylation levels of
histones H3 and H4 are due to different affinity of individual
HATs for acetyl-CoA (8, 39 – 42). Individual genes differed in
the acetylation levels, and as expected the transcriptionally
inactive heterochromatin gene SAT2 displayed the lowest

acetylation. This result is consistent with the general correla-
tion between acetylation of promoter histones and transcrip-
tional activity (43).

Our observation that metformin or AICAR treatment
increases histone acetylation raised the possibility that gene
expression might be also altered upon AMPK activation. We
found that treatment of PC3 cells with metformin increased
expression of p21, IL8, Bcl-2, Bcl-3, and cIAP2 genes 1.3–2.0-
fold. Similarly to metformin, AICAR treatment increased
expression of p21, IL6, IL8, Bcl-2, Bcl-3, cIAP1, and cIAP2
genes 1.2–2.8-fold. However, expression of the highly
expressed housekeeping genes GAPDH and ACTB was not
affected after metformin or AICAR treatment (Fig. 7).

Metformin Increases Recruitment of Acetyl-p65 NF�B to Gene
Promoters—Many non-histone acetylated proteins are tran-
scription factors, including p65 NF�B, p53, STAT1, STAT3,
and MYC (3, 8). Acetylation of these proteins also regulates
transcription, presumably independently of histone acetyla-

FIGURE 3. AMPK and ACCA regulate protein acetylation. Shown is Western analysis of whole cell extracts using antibodies against AMPK, ACCA, acH3, acH4,
total histone H3, tubulin, acTubulin, p65, acp65, and actin in PC3 cells transfected with AMPK�1/2-specific siRNA or control siRNA and treated for 48 h with 3
mM AICAR (A) or with ACCA-specific siRNA or control siRNA and incubated for 24 h (B). The figures represent typical results from three independent experi-
ments. Quantitative evaluation of the Western blots was performed by densitometric analysis of the band intensities. The band intensities of AMPK and ACCA
in cells transfected with control non-silencing siRNA were arbitrarily set at 1. The ratios of acH3/H3, acH4/H3, acTubulin/tubulin, and acp65/p65 were plotted;
they represent means � S.D. (error bars). Values that are statistically significantly different (p � 0.05) from the untreated samples are indicated by an asterisk.
Values that are significantly different (p � 0.05) from each other are indicated by a bracket and an asterisk.
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tion. For example, p65 can be acetylated at lysine residues 218,
221, and 310 by p300 and CBP acetyltransferases. Acetylation of
Lys221 enhances DNA binding and impairs p65 binding to I�B�
(44). Conversely, acetylation of Lys310 does not affect DNA or
I�B� binding but is required for the full transcriptional activity
of NF�B. We found that AMPK activation by metformin and
AICAR increased acetylation of p65 NF�B at Lys310 in PC3 and
OVCAR3 cells (Figs. 1B and 2). These results indicate that the
NF�B activity might be increased as a result of AMPK activa-
tion. To determine whether p65 NF�B acetylated at Lys310

(acp65) recruitment to target promoters is also increased in
metformin- or AICAR-treated cells, we measured occupancy of

acp65 and p65 in the promoters of Bcl-2, Bcl-3, IL6, IL8, cIAP1,
and cIAP2 genes. Our results show that even though metformin
does not increase the total amount of p65 bound to the promot-
ers, the occupancy of acp65 is 1.4 –2.5 times higher in met-
formin-treated PC3 cells (Fig. 8A). Interestingly, AICAR treat-
ment increased recruitment of acp65 only to promoters of
Bcl-3, IL6, and cIAP2 but did not alter acp65 occupancy at IL8
and cIAP1 promoters and reduced acp65 occupancy at Bcl-2
promoter (Fig. 8B). acp65 NF�B is a substrate for the NAD�-
dependent HDAC sirtuin SIRT1 (45), and AMPK activation
with AICAR increases the NAD�/NADH ratio, resulting in
SIRT1 activation (46, 47). However, by inhibiting complex I of
the mitochondrial electron transport pathway and glycero-
phosphate dehydrogenase, metformin inhibits conversion of
NADH to NAD� and thus reduces the mitochondrial NAD�/
NADH ratio (20, 48, 49). Indeed, treatment of lung carcinoma
and osteosarcoma cells with metformin decreases the NAD�/
NADH ratio almost 10-fold (50). It is possible that although
AMPK activation by AICAR increases the NAD�/NADH ratio,
resulting in SIRT1 activation and deacetylation of acp65, treat-
ment with metformin does not increase the NAD�/NADH
ratio, therefore maintaining high levels of acp65 NF�B at the
Bcl-2 promoter.

Discussion

The key finding of this study is that the inexpensive and
widely used antidiabetic drug metformin has a previously
unrecognized effect of increasing acetylation of histones and
non-histone proteins. The mechanism involves metformin-
mediated AMPK activation, resulting in phosphorylation and
inhibition of ACCA, reduced conversion of acetyl-CoA into
malonyl-CoA, and increased acetylation of histone and non-
histone proteins (Fig. 9). AMPK is an energy sensor and master
regulator of metabolism and functions as a fuel gauge monitor-
ing systemic and cellular energy status (17, 21). Activation of
AMPK occurs when the intracellular AMP/ATP ratio increases
and leads to a metabolic switch from anabolism to catabolism.
AMPK activity is induced through phosphorylation of Thr172

by LKB1 (37). The metformin-mediated increase in protein
acetylation is LKB1-dependent because suppression of LKB1 by
LKB1 siRNA abolishes the metformin-induced protein acetyla-
tion. In addition, HeLa S3 cells that lack LKB1 expression and
are unable to activate AMPK (38) fail to increase protein acety-
lation upon metformin treatment (Fig. 4B). When activated,
AMPK phosphorylates key metabolic enzymes, such as ACCA,
and transcription factors, thus inhibiting growth and synthesis
of glucose, lipids, and proteins. At the same time, activated
AMPK stimulates catabolism of fatty acids and glucose uptake.
Additionally, AMPK inhibits cell proliferation by stabilizing the
tumor suppressors tuberous sclerosis 2 protein and p53 and by
regulating the cyclin-dependent kinase inhibitors p21 and p27;
this implicates AMPK as a potential target for cancer treatment
(51–54).

Although our results suggest that AMPK activation stimu-
lates protein acetylation through ACCA inhibition, AMPK also
regulates protein acetylation through the activity of HDACs.
Activation of AMPK increases fatty acid oxidation, leading to
production of ketone bodies, including �-hydroxybutyrate

FIGURE 4. LKB1 is required for metformin-induced protein acetylation. A,
PC3 cells were transfected with LKB1-specific siRNA or control siRNA and
treated with 1 mM metformin for 48 h. HeLa S3 cells and PC3 cells were treated
with 0 and 1 mM metformin for 72 h (B) or 0 and 1 �g/ml TOFA for 48 h (C).
Samples were analyzed by Western blotting with the indicated antibodies.
The figures represent typical results from three independent experiments.
Quantitative evaluation of the Western blots was performed by densitomet-
ric analysis of the band intensities. The intensity of the LKB1 band in cells
transfected with control non-silencing siRNA was arbitrarily set at 1. The ratios
of acH3/H3, acH4/H3, acTubulin/tubulin, and acp65/p65 were plotted; they
represent means � S.D. (error bars). Values that are statistically significantly
different (p � 0.05) from the untreated samples are indicated by an asterisk.
Values that are significantly different (p � 0.05) from each other are indicated
by a bracket and an asterisk.
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(�OHB), in the liver. The ketone bodies are the main energy
source during starvation or prolonged exercise (55). Similarly
to the HDAC inhibitor butyrate, �OHB specifically inhibits
class I and II HDACs, increases acetylation of histones, and
changes global transcription in kidney (56). Furthermore, class
IIa HDACs (HDACs 4, 5, and 7) are hyperphosphorylated and
excluded from the nucleus in the liver after metformin treat-
ment in an AMPK-dependent manner (57). Another mecha-
nism by which AMPK regulates protein acetylation involves
sirtuin SIRT1 (58). AMPK enhances SIRT1 activity by increas-
ing cellular NAD� levels in skeletal muscle (46, 47). In this case,
however, AMPK activation would be expected to produce a
decrease in histone acetylation.

AMPK activation affects protein acetylation by four distinct
mechanisms: (i) phosphorylation and inhibition of ACCA; (ii)
inhibition of class I and II HDACs by increasing hepatic �OHB
levels; (iii) inducing translocation of HDACs 4, 5, and 7 from the
nucleus to the cytoplasm; and (iv) regulation of SIRT1 activity

by modulating the NAD�/NADH ratio (59). Which mecha-
nism AMPK utilizes probably depends on the particular cell
type and the physiological conditions. Our results suggest that,
in prostate and ovarian cancer cells with increased acetyl-CoA
flux into fatty acids biosynthesis, activation of AMPK increases
protein acetylation through phosphorylation and inhibition of
ACCA, inhibition of fatty acid synthesis, and nucleocytosolic
accumulation of acetyl-CoA. This conclusion is supported by
the increased protein acetylation upon ACCA inhibition with
TOFA or upon ACCA suppression by ACCA siRNA (Figs. 1
and 3). The same mechanism probably also operates in non-can-
cer cells with high acetyl-CoA flux into the fatty acid biosynthetic
pathway. Because inhibition of ACCA in yeast also promotes his-
tone acetylation due to increased availability of acetyl-CoA (13), it
appears that regulation of protein acetylation by AMPK/ACCA is
conserved in yeast and mammalian cells.

The recent interest in the use of AMPK agonists to support
cancer prevention and treatment is based on clinical studies

FIGURE 5. Metformin-treated cells display increased untargeted acetylation of chromatin histones. PC3 cells were treated with 0 and 1 mM metformin for
72 h. ChIP experiments were performed with antibodies against total histone H3, acH3, and acH4. Occupancies of H3, acH3, and acH4 were determined in the
promoter regions of p21, IL6, IL8, ACTB, GAPDH, SAT2, MYOD1, Bcl-2, Bcl-3, cIAP1, and cIAP2 genes. Acetylation per nucleosome was calculated as ratios of acH3
to total H3 and acH4 to total H3. The experiments were repeated three times, and the results are shown as means � S.D. (error bars). Values that are statistically
different (p � 0.05) from the control (0 mM metformin) are indicated by an asterisk.
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that show that the use of metformin is associated with signifi-
cantly lower cancer incidence in diabetic patients (24, 60). The
mechanism of metformin function in diabetes treatment con-
sists of decreasing glucose production by gluconeogenesis in
the liver through inhibition of mitochondrial respiratory chain
complex I (19, 20, 23). The decrease in mitochondrial ATP pro-
duction results in AMPK activation; however, the AMPK acti-
vation does not seem to be required for the antidiabetic effect of
metformin (22, 23). Untreated diabetes type 2 is associated with
a significantly increased risk of cancer, attributed mostly to the
growth-promoting effect of chronically elevated plasma glu-
cose and insulin levels (61, 62). The mechanism of metformin’s
antitumor effect is not completely understood. It appears that
metformin inhibits tumor growth through both AMPK-inde-
pendent and AMPK-dependent mechanisms. The AMPK-in-
dependent mechanism has been attributed to the improved
glucose and insulin blood levels. The AMPK-dependent

mechanism of metformin is mediated through the inhibition of
mTORC1 signaling (63, 64) and the NF�B pathway (65). In
addition, AMPK activation inhibits tumor growth through
inhibition of fatty acid synthesis (66, 67). An increased rate of
fatty acid synthesis is essential for tumor progression. Blocking
lipid biosynthesis by inhibiting lipogenic enzymes, such as
ACCA, fatty-acid synthase, ATP-citrate lyase, or stearoyl-CoA
desaturase, decreases proliferation and increases apoptosis of
cancer cells (68 –71).

Our results show that, in addition to the above effects, AMPK
activation results in increased histone acetylation. Active tran-
scription generally correlates with increased acetylation of pro-
moter histones; HDAC inhibitors have been developed for can-
cer treatment with the aim of increasing histone acetylation and
restimulating expression of genes, such as tumor suppressor
genes, that are silenced in cancer cells (43, 72, 73). In general,
HDAC inhibitors increase histone acetylation and expression

FIGURE 6. AICAR-treated cells display increased untargeted acetylation of chromatin histones. PC3 cells were treated with 0 and 3 mM AICAR for 24 h. ChIP
experiments were performed with antibodies against total histone H3, acH3, and acH4. Occupancies of H3, acH3, and acH4 were determined in the promoter
regions of p21, IL6, IL8, ACTB, GAPDH, SAT2, MYOD1, Bcl-2, Bcl-3, cIAP1, and cIAP2 genes. Acetylation per nucleosome was calculated as ratios of acH3 to total
H3 and acH4 to total H3. The experiments were repeated three times, and the results are shown as means � S.D. (error bars). Values that are statistically different
(p � 0.05) from the control (0 mM AICAR) are indicated by an asterisk.
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of p21 and proapoptotic genes and induce apoptosis (74, 75).
Our results show that, similarly to HDAC inhibitors, activation
of AMPK in PC3 cells increases histone acetylation within
the p21 promoter and increases expression of p21 (Figs. 1, 2,
5, and 7).

The effect of AMPK on protein acetylation is not limited to
histones. Our results show increased acetylation of �-tubulin
upon AMPK activation with AICAR or metformin in both PC3
and OVCAR3 cells (Figs. 1 and 2). �-Tubulin is acetylated by
tubulin acetyltransferase at Lys40 in the microtubule lumen and
deacetylated by HDAC6 and SIRT2 (76 –78). Tubulin acetyla-
tion marks stable microtubules and is required for polarity
establishment and directional migration. Activation of HDAC6
results in a loss of �-tubulin acetylation and induces epithelial-
mesenchymal transition, a hallmark of cancer progression (79).
The increased acetylation of �-tubulin and stabilization of
microtubules thus may represent additional mechanism of
metformin’s anticancer effect.

Our data indicate that AMPK regulates acetylation of histone
and non-histone proteins. Activation of AMPK by the safe and
inexpensive antidiabetic drug metformin results in increased
acetylation of histones and altered transcriptional regulation,
previously unrecognized effects of metformin. Metformin dis-
plays antiproliferative and proapoptotic properties toward

cancer cells; however, the underlying mechanisms are not
yet fully understood. The effect of metformin on protein
acetylation and transcriptional regulation may represent one
of these mechanisms and may provide a rationale for the
development of novel combination cancer therapies involv-
ing metformin.

Experimental Procedures

Reagents—Metformin and TOFA were obtained from Cay-
man Chemical (Ann Arbor, MI). AICAR was obtained from LC
Laboratories (Woburn, MA). All other reagents were molecular
biology grade and were from Sigma.

Cell Culture—All cell lines were obtained from American
Type Culture Collection (ATCC, Manassas, VA). Prostate can-
cer PC3 cells were cultured in Ham’s F-12K (Kaighn’s) medium
(ATCC) supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Invitrogen) and antibiotics (100 units/ml penicillin
and 100 �g/ml streptomycin) as described (80). HeLa S3 and
ovarian cancer OVCAR3 cells were cultured in RPMI 1640
medium (Invitrogen) supplemented with 20% FBS and antibi-
otics (81). Before treatment, cells were seeded (5 � 105 cells/ml)
for 24 h in 6-well plates and grown at 37 °C with 5% CO2. Met-
formin was dissolved in PBS, pH 7.2; AICAR and TOFA were
dissolved in DMSO and stored at �80 °C. An equivalent vol-
ume of either PBS or DMSO was used in all experiments as a
solvent control. Cell viability was measured using trypan blue
exclusion.

Western Blotting—Whole cell extracts were prepared as
described previously (81). Denatured proteins were separated
on 10 or 12% denaturing polyacrylamide gels. Western blotting
was performed as described previously (82). Western blots were
quantified using NIH ImageJ software (W. S. Rasband, National
Institutes of Health, imagej.nih.gov/ij/, 1997–2011). The fol-
lowing primary antibodies were used: anti-histone H3 poly-
clonal antibody (ab1791, Abcam) at a dilution of 1:3000, anti-
acH3 polyclonal antibody (07-353, Millipore) at a dilution of
1:2000, anti-acH4 (penta) polyclonal antibody (06-946, Milli-
pore) at a dilution of 1:500, anti-AMPK monoclonal antibody
(2603, Cell Signaling Technology) at a dilution of 1:1000, anti-
AMPK phosphorylated at Thr172 (pAMPK) monoclonal anti-
body (2535, Cell Signaling Technology) at a dilution of 1:1000,
anti-ACCA monoclonal antibody (3676, Cell Signaling Tech-
nology) at a dilution of 1:1000, anti-ACCA phosphorylated at
Ser79 (pACCA) polyclonal antibody (3661, Cell Signaling Tech-
nology) at a dilution of 1:1000, anti-tubulin polyclonal antibody
(2144, Cell Signaling Technology) at a dilution of 1:1000, anti-
tubulin acetylated at Lys40 (acTubulin) polyclonal antibody
(3971, Cell Signaling Technology) at a dilution of 1:500, anti-
p65 NF�B polyclonal antibody (sc-372, Santa Cruz Biotechnol-
ogy) at a dilution of 1:500, anti-acp65 polyclonal antibody
(ab52175, Abcam) at a dilution of 1:500, and anti-actin poly-
clonal antibody (A5060, Sigma) at a dilution of 1:1000.

siRNA Transfections—Human AMPK�1/2 (sc-45312), ACCA
(sc-40312), LKB1 (sc-35816), and non-silencing (sc-37007)
siRNAs were obtained from Santa Cruz Biotechnology. Prior to
transfection, PC3 cells were seeded into a 6-well plate and incu-
bated in a humidified 5% CO2 atmosphere at 37 °C in antibiotic-
free RPMI 1640 medium supplement with 10% FBS for 24 h to

FIGURE 7. AMPK activation with metformin or AICAR alters gene expres-
sion patterns. PC3 cells were treated with 0 and 1 mM metformin for 72 h (A)
or 0 and 3 mM AICAR for 24 h (B). Total RNA was isolated and assayed for 18S
ribosomal subunit, p21, IL6, IL8, ACTB, GAPDH, Bcl-2, Bcl-3, cIAP1, and cIAP2
transcripts by real time RT-PCR. The results were normalized to 18S ribosomal
RNA subunit and expressed relative to the value for untreated cells. The
experiments were repeated three times, and the results are shown as
means � S.D. (error bars). Values that are statistically different (p � 0.05) from
the control (0 mM metformin or AICAR) are indicated by an asterisk.
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80% confluence. For each transfection, an 80 nM final concen-
tration of either non-silencing siRNA-A control or AMPK,
ACCA, or LKB1 siRNA was used. Cells were transfected for 6 h
in siRNA transfection medium (sc-36868) with siRNA transfec-
tion reagent (sc-29528) according to the manufacturer’s
instructions (Santa Cruz Biotechnology). After transfection,
fresh medium with antibiotics was added, and the cells were
grown for 24 h before treatment.

ChIP Assay—In vivo chromatin cross-linking and immuno-
precipitation were performed essentially as described previ-
ously (83). Immunoprecipitation was performed with the fol-
lowing antibodies: anti-histone H3 antibody (ab1791, Abcam),

anti-acH3 antibody (07-353, Millipore), anti-acH4 (penta) anti-
body (06-946, Millipore), anti-p65 NF�B antibody (sc-372,
Santa Cruz Biotechnology), and anti-acp65 NF�B antibody
(ab52175, Abcam). The primers used for real time PCR were
as follows: p21, 5�-GTGGCTCTGATTGGCTTTCTG-3� and
5�-CTGAAAACAGGCAGCCCAAG-3�; GAPDH-2, 71006
(Active Motif); MYOD1, GPH110002C(�)01A (SABiosci-
ences); SAT2, GPH110003C(�)01A (SABiosciences); IGX1A
(ChIP negative control), GPH100001C(�)01A (SABiosci-
ences); ACTB, 71005 (Active Motif); Bcl-3, 5�-TTGCG-
GAGAGAAACACCTACT-3� and 5�-CGCTCTCTCTGC-
CTCTGTT-3�; cIAP1, 5�-TGACTGGCAGGCAGAAA-

FIGURE 8. AMPK activation with metformin or AICAR increases recruitment of acetylated p65 to NF�B-regulated promoters. PC3 cells were treated with
0 and 1 mM metformin for 72 h (A) and 0 and 3 mM AICAR for 24 h (B). ChIP experiments were performed with antibodies against p65 and acp65. The experiments
were repeated three times, and the results are shown as means � S.D. (error bars). Values that are statistically different (p � 0.05) from the control (0 mM

metformin or AICAR) are indicated by an asterisk. IP, immunoprecipitation.
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TGA-3� and 5�-TTTGCCCGTTGAATCCGAT-3�; cIAP2, 5�-
TTCAGTAAATGCCGCGAAGAT-3� and 5�-TGGTTTG-
CATGTGCACTGGT-3�; Bcl-2, 5�-TGCATCTCATGC-
CAAGGG-3� and 5�-CCCCAGAGAAAGAAGAGGAGTT-3�;
IL6, 5�-CCTCACCCTCCAACAAAGATTT-3� and 5�-
TTCATAGCTGGGCTCCTGGA-3�; and IL8, 5�-GGGCCAT-
CAGTTGCAAATC-3� and 5�-GCTTGTGTGCTCTGCT-
GTCTC-3�.

Real Time RT-PCR—Total RNA was isolated using an
RNeasy Mini kit (Qiagen, Valencia, CA). The iScript one-step
RT-PCR kit with SYBR Green (Bio-Rad) was used as a super-
mix, and 20 ng/�l RNA was used as template on a Bio-Rad
MyIQ Single Color Real-time PCR Detection System (Bio-Rad).
The primers used for mRNA quantification were as follows:
Bcl-3, PPH02009D (Qiagen); Bcl-2, PPH00079B (Qiagen); IL6,
PPH00560C (Qiagen); IL8, PPH0568A (Qiagen); cIAP1,
PPH00340B (Qiagen); cIAP2, PPH00326B (Qiagen); and p21
and ribosomal subunit 18S (84). Primers for GAPDH (5�-
GGAGCGAGATCCCTCCAAAAT-3� and 5�-GGCTGTTGT-
CATACTTCTCATGG-3�) and ACTB (5�-CATGTACGTT-
GCTATCCAGGC-3� and 5�-CTCCTTAATGTCACGC-
ACGAT-3�) were obtained from PrimerBank (85).

Malonyl-CoA Assay—PC3 cells were grown to 70% conflu-
ence and treated with metformin for 72 h. Cells were harvested
and lysed in 1 ml of radioimmune precipitation assay buffer (10
mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 1% Triton,
0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl, 1 mM

PMSF). Malonyl-CoA was assayed in cell lysates by ELISA
(ABIN366452, Antibodies-online GmbH) according to the
manufacturer’s instructions.

Statistical Analysis—The results represent at least three inde-
pendent experiments. Numerical results are presented as
means � S.D. Data were analyzed using an InStat software
package (GraphPad Software, San Diego, CA). Statistical signif-
icance was evaluated by one-way analysis of variance, and p �
0.05 was considered significant.
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