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The proper establishment of epithelial polarity allows cells to
sense and respond to signals that arise from the microenviron-
ment in a spatiotemporally controlled manner. Atypical PKCs
(aPKCs) are implicated as key regulators of epithelial polarity.
However, the molecular mechanism underlying the negative
regulation of aPKCs remains largely unknown. In this study,
we demonstrated that PH domain leucine-rich repeat protein
phosphatase (PHLPP), a novel family of Ser/Thr protein phos-
phatases, plays an important role in regulating epithelial polar-
ity by controlling the phosphorylation of both aPKC isoforms.
Altered expression of PHLPP1 or PHLPP2 disrupted polariza-
tion of Caco2 cells grown in 3D cell cultures as indicated by the
formation of aberrant multi-lumen structures. Overexpression
of PHLPP resulted in a decrease in aPKC phosphorylation at
both the activation loop and the turn motif sites; conversely,
knockdown of PHLPP increased aPKC phosphorylation. More-
over, in vitro dephosphorylation experiments revealed that both
aPKC isoforms were substrates of PHLPP. Interestingly, knock-
down of PKC�, but not PKC�, led to similar disruption of the
polarized lumen structure, suggesting that PKC� likely controls
the polarization process of Caco2 cells. Furthermore, knock-
down of PHLPP altered the apical membrane localization of
aPKCs and reduced the formation of aPKC-Par3 complex.
Taken together, our results identify a novel role of PHLPP in
regulating aPKC and cell polarity.

Establishing the polarity of epithelial cells is crucial for the
maintenance of tissue homeostasis. Increasing evidence has
suggested that disruption of polarity promotes the malignant
progression of cancer cells. It has been well documented that
epithelial cells (including those in the gastrointestinal tract)
become polarized during the differentiation process (1). The
polarization process is characterized by the formation of spe-
cialized junctions between neighboring cells and subsequent
separation of two plasma membrane domains: the apical sur-

face facing the external medium and the basolateral surface
connected to adjacent cells and extracellular matrix (2). The
apical and basolateral membranes are segregated by two highly
organized junctions, the tight and adherens junctions, assem-
bled at the site of mammalian cell-cell contacts (3–5). As a
major component of the Par complex, aPKCs2 including PKC�
and PKC�, are known to phosphorylate a number of polarity
proteins, including Par3, LgL, Crumbs, and Lin5/NuMA,
thereby exerting its regulatory roles in cellular polarization (6).
Previous studies have suggested that a precise control of aPKC
activity is required for the proper establishment of epithelial
cell-cell junction and cell polarity (7, 8). Loss of polarity has
been associated with increased cell migration and metastasis
during tumor progression (1, 9).

Differing from conventional and novel PKCs, aPKCs are
insensitive to diacylglycerol- and Ca2�-mediated activation
due to the lack of functional C1 and C2 domains (10). As a
result, the phosphorylation of aPKCs plays a major role in reg-
ulating the kinase activity (10, 11). Specifically, aPKCs are phos-
phorylated at two conserved phosphorylation sites, namely the
activation loop (A-loop) and the turn motif (TM) (10, 11),
and the phosphorylation of both sites is required to achieve
full activation of aPKCs (12). In addition, the N-terminal
pseudosubstrate domain of aPKCs plays an important role in
controlling the kinase activity (10, 13). Interestingly, the
hydrophobic motif site, which is basally phosphorylated in
the conventional and novel PKCs, is replaced with a phos-
pho-mimetic residue in aPKCs (10, 11). Although PDK-1 and
mTOR have been identified as upstream kinases that are
responsible for phosphorylating aPKCs at the A-loop and
TM (12, 14), respectively, phosphatases that dephosphory-
late aPKC remain largely unknown.

PHLPP belongs to a novel family of Ser/Thr protein phos-
phatases that consists of PHLPP1 and PHLPP2 isoforms.
Two splice variants of PHLPP1, PHLPP1� and PHLPP1�,
have been reported, of which PHLPP1� contains an in-frame
extension at the N terminus of PHLPP1� (15, 16). Increasing
evidence indicates that both PHLPP isoforms serve as tumor
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suppressors in breast, colorectal, lung, liver, and pancreatic
cancers (17–20). It has been shown that PHLPP negatively
regulates multiple oncogenic pathways by directly dephos-
phorylating and inactivating key signaling molecules,
including Akt, S6K, and RAF1 (17, 21–25). Moreover,
PHLPP promotes the degradation of conventional PKCs by
dephosphorylating the hydrophobic motif (21). In this study,
we report the identification of both aPKC isozymes, includ-
ing PKC� and PKC�, as novel substrates of PHLPP. The
results from our study reveal that PHLPP plays an important
role in regulating apical-basolateral polarity by dephosphor-
ylating PKC� in Caco2 cells.

Results

PHLPP Regulates Caco2 Morphogenesis and Apical-Basolat-
eral Polarity in 3D Culture—In our effort to investigate the role
of PHLPP in controlling cancer cell growth in three dimen-
sions, we discovered that knockdown of PHLPP in Caco2 cells
resulted in abnormal lumen formation (Fig. 1). As Caco2 cells
grow in 3D matrix, cells localized in the outer layer keep prolif-
erating, whereas the inner part of the cell clusters gradually
undergoes apoptosis due to the lack of contact with the matrix.
The morphogenesis process of these cells involves the forma-
tion of one lumen structure with defined apical-basolateral
polarity (27). Consistent with previous studies (28), the major-
ity of Caco2 sh-Con cells formed a cyst-like structure with a
single hollow lumen after growing in a mixture of Matrigel and
collagen I for 14 days (Fig. 1A). In contrast, the aberrant lumen
structures, including irregular and multi-lumen formation
and filled lumens, were observed in PHLPP knockdown cells
(Fig. 1A). The size of cysts formed by PHLPP knockdown
cells was significantly larger than that of the control cells
(Fig. 1B). The decreased PHLPP expression in the knock-
down cells was confirmed using Western blotting analysis
(Fig. 1C). In addition, the cysts grown in 3D cell cultures
were fixed and stained with the Ki67 antibody to label the
proliferating cells. As shown in Fig. 1D, although Ki67-pos-
itive cells were found only in the cell layer that formed the
lumen structure in sh-Con cells, they were detected at the
center of the cysts formed by PHLPP knockdown cells, indi-
cating that increased cell proliferation and disruption of the
morphogenesis process (Fig. 1D).

Furthermore, Caco2 cells grown in 3D cell cultures were
stained with phalloidin and ZO-1 to evaluate whether the cells
are polarized within the lumen structure. The Caco2 sh-Con
cysts showed a spherical architecture, and the cells surrounding
the lumen were polarized with F-actin and ZO-1 both concen-
trated at the apical side of the lumen, indicating a well defined
apical-basolateral polarity (Fig. 2A). In marked contrast,
PHLPP depletion altered the cyst-like structure by inducing the
formation of multiple lumens (Fig. 2A). The polarity was lost in
those lumen structures as F-actin was localized to both the api-
cal and basolateral membranes and the cells inside the lumen
showed non-polarized membrane distribution of ZO-1 (Fig.
2A). Quantitative analysis revealed that the percentage of cysts
with one lumen was significantly reduced in all PHLPP knock-
down Caco2 cells when compared with sh-Con cells (Fig. 2B).

We next determined the effect of PHLPP overexpression in
Caco2 cells grown in 3D cell cultures. Consistent with the role
of PHLPP in negatively regulating cell proliferation (17), over-
expression of either PHLPP isoform significantly reduced the
size of cysts (Fig. 3, A and B). Overexpression of PHLPP was
confirmed using Western blotting analysis (Fig. 3C). Intrigu-
ingly, we found that overexpression of either PHLPP isoform
resulted in aberrant polarization in Caco2 cells similar to that
observed in PHLPP knockdown cells (Fig. 3D). The percentage
of cysts with one lumen was decreased in PHLPP-overexpress-
ing cells (Fig. 3E). Collectively, these findings suggested that
PHLPP plays an important role in regulating epithelial polarity

FIGURE 1. Knockdown of PHLPP alters morphogenesis of Caco2 cells
grown in three dimensions. Caco2 cells infected with shRNA lentivirus tar-
geting PHLPP1, PHLPP2, or both PHLPP isoforms were seeded in 3D matrix as
a single cell suspension and allowed to grow for 14 days. A, the representative
phase-contrast images of the cyst-like structure formed by control and PHLPP
knockdown cells. The images were obtained using a Nikon TE2000 inverted
microscope with 10� objective. Scale bar, 20 �m. B, the longest diameter of
cysts formed by the control and PHLPP knockdown cells was measured using
the Nikon Elements AR software. The size distributions of 50 randomly chosen
cysts were analyzed for each group of cells and are shown in the box-whisker
plot. The average cyst sizes for the following cells are (means � S.E., in �m):
sh-Con, 105.5 � 5.7; sh-PHLPP1, 140.2 � 8.5; sh-PHLPP2, 132.4 � 7.8; and
sh-PHLPP1�2, 146.8 � 6.5 (n � 50, * indicates p � 0.01 and # indicates p �
0.001 by Student’s t test when compared with sh-Con cells). C, the expres-
sion of PHLPP1 and PHLPP2 in the control and PHLPP knockdown cells as
determined using Western blotting. D, the control and PHLPP knockdown
cells grown in three dimensions were fixed and stained with the Ki67
antibody (green) and DAPI (blue). Confocal images of stained cells were
obtained using an Olympus FluoView FV1000 confocal laser-scanning
microscope. Scale bar, 20 �m. Note that the cysts formed by PHLPP knock-
down cells show a lack of fully polarized structure and an increased num-
ber of Ki67-positive cells.

PHLPP Controls Epithelial Cell Polarity

25168 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 48 • NOVEMBER 25, 2016



and altered expression of either PHLPP isoform disrupts the
morphogenesis process.

PHLPP Negatively Regulates the Phosphorylation of Atypical
PKCs—Because aPKCs are known regulators of cell polarity, we
next investigated whether the PHLPP-induced polarity defect is
mediated through aPKCs. To this end, we determined whether
aPKCs are substrates of PHLPP. Silencing either PHLPP iso-
form resulted in a significant increase in the phosphorylation of
both the A-loop and TM sites in PKC� and PKC� in both SW480
and Caco2 colon cancer cells (Fig. 4). Because the phospho-
specific antibodies against the A-loop and the TM site of aPKCs
recognize both phosphorylated PKC� and phosphorylated
PKC�, each aPKC isoform was first immunoprecipitated from
the cells using isoform-specific antibodies and then analyzed
for changes in phosphorylation. Interestingly, knockdown of
either PHLPP isoform had similar effects on promoting the
phosphorylation at both phosphorylation sites in PKC� and
PKC�, and knockdown of both PHLPP1 and PHLPP2 isoforms
did not induce further increase in phosphorylation, suggesting
that loss of one PHLPP isoform is sufficient to enhance the
phosphorylation of aPKCs (Fig. 4, B and D).

We have previously generated PHLPP1 and PHLPP2 knock-
out mice (22, 26, 29). Here we examined whether phosphoryla-
tion of aPKCs is elevated in PHLPP knock-out MEF cells. As
shown in our previous study, PKC� is the predominant aPKC
expressed in MEF cells, whereas PKC�/� is not detected at the
protein level (12). Knock-out of either PHLPP isoform resulted
in an increase in phosphorylation at both the A-loop and TM
sites in PKC� (Fig. 5A). As a control, the phosphorylation of the
hydrophobic motif of AKT, a known substrate of PHLPP, was
elevated in PHLPP knock-out MEF cells as well (Fig. 5A). In
addition, we examined the phosphorylation status of aPKCs in
colon tissues of PHLPP knock-out mice. Consistently, the phos-
phorylation of PKC� and PKC� at both the A-loop and TM sites
was increased in the colon of PHLPP knock-out mice (Fig. 5, B
and C).

Furthermore, we found that overexpression of either PHLPP
isoform decreased the phosphorylation of endogenous PKC�
and PKC� at both sites in SW480 and Caco2 cells (Fig. 6A). To
further determine whether PHLPP dephosphorylates aPKCs
directly, we performed in vitro dephosphorylation experiments
using purified PP2C domains of PHLPP1 and PHLPP2. PKC�

FIGURE 2. Knockdown of PHLPP alters the apical-basolateral polarity in Caco2 cells grown in three dimensions. Caco2 cells infected with shRNA
lentivirus targeting PHLPP1, PHLPP2, or both PHLPP isoforms were seeded in 3D matrix as a single cell suspension and allowed to grow for 14 days. The cells
were fixed and co-stained with the ZO-1 antibody (red), Alexa Fluor 488-conjugated phalloidin (green), and DAPI (blue). A, representative confocal images were
taken from control and PHLPP knockdown cells showing the localization pattern of actin and ZO-1. Scale bar, 20 �m. B, the percentages of control and PHLPP
knockdown cells with a single lumen were quantified based on the pattern of actin staining and expressed graphically. Fifty randomly chosen cysts were
scored. The shaded bars represent cysts with one lumen, and the open bars represent cysts with multiple or filled lumens.
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and PKC� overexpressed in 293T cells were immunoprecipi-
tated and used as substrates in the dephosphorylation reac-
tions. Our results showed that PHLPP was able to dephosphor-
ylate both the A-loop and TM sites in PKC� and PKC� in vitro

(Fig. 6B). In addition, PHLPP-mediated dephosphorylation of
aPKCs occurred rapidly, and no significant differences in the
time course and extent of dephosphorylation at both sites of
aPKCs were observed (Fig. 6, C and D). Because the phosphor-
ylation of aPKCs is sensitive to PI3K activation (14), we next
examined whether knockdown of PHLPP prevents dephos-
phorylation of aPKCs upon inhibition of PI3K. Indeed, treating
cells with PI3K inhibitor LY294002 induced rapid dephos-
phorylation of both PKC� and PKC� at the A-loop and TM sites
in sh-Con Caco2 cells; however, this dephosphorylation of
aPKCs was largely inhibited in PHLPP knockdown cells (Fig.
6E). To further examine the specificity of PHLPP-mediated
dephosphorylation of aPKCs, we conducted in vitro dephos-
phorylation experiments to compare PHLPP-dependent
dephosphorylation of PKC� with Akt dephosphorylation.
Interestingly, both Akt and PKC� were readily dephosphor-
ylated by the PP2C domains of PHLPP1 and PHLPP2 in a
dose-dependent manner (Fig. 6F), suggesting that PHLPP
functions similarly as a phosphatase toward both Akt and
aPKC in vitro. Taken together, our results demonstrated that
PHLPP is a key regulator mediating aPKC dephosphoryla-
tion both in vitro and in vivo.

PHLPP Regulates the Localization of aPKCs—Atypical PKCs
are known to localize to the apical side of polarized epithelial
cells, and this specialized localization is required to maintain
the cell polarity (7, 30). As we found that silencing PHLPP
resulted in the disruption of cell polarity and increased phos-
phorylation of aPKCs, we next tested whether loss of PHLPP
alters aPKC localization in Caco2 cells. The control and PHLPP
knockdown cells grown in 3D cell cultures were stained with
the PKC� antibody. The results showed that the localization of
PKC� was restricted to the apical side of the single lumen struc-
ture in the sh-Con cells (Fig. 7A). However, PKC� was also
found to localize to the internal membrane in the multi-lumen
structure and the membrane of individual cells inside the
lumen in PHLPP knockdown cells (Fig. 7A). Similar changes in
membrane localization were observed for PKC� in PHLPP
knockdown cells as well (data not shown). Furthermore, the
localization of aPKCs was analyzed in confluent Caco2 cells
grown on glass coverslips. The confluent monolayer Caco2 cells
are known to polarize on 2D surfaces as well. Confocal images
of cells stained with PKC� or PKC� antibodies showed mem-
brane localization of both aPKC isoforms (Fig. 7, B and C).
Interestingly, both PKC� and PKC� were predominately local-
ized to the apical surface above the adherens junction as
marked by E-cadherin staining in the control cells (Fig. 7D);
however, both aPKC isoforms moved away from the apical
membrane and became mislocalized to the cell-cell junction
with significant co-localization with E-cadherin in PHLPP
knockdown cells (Fig. 7D).

To determine the mechanism by which PHLPP loss disrupts
aPKC membrane localization, we examined the formation of
aPKC-Par3 complex. It has been shown previously that Par3 is
phosphorylated by aPKC and this phosphorylation reduces the
interaction between aPKC and Par3 (31, 32). Consistent with
increased aPKC phosphorylation in PHLPP knockdown cells,
the amount of Par3 that co-immunoprecipitated with PKC� and
PKC� was largely reduced (Fig. 8A). The PHLPP loss-mediated

FIGURE 3. Overexpression of PHLPP alters the apical-basolateral polarity
in Caco2 cells grown in three dimensions. Caco2 cells infected with retro-
virus encoding vector, HA-PHLPP1, and HA-PHLPP2 were seeded in 3D matrix
as a single cell suspension and allowed to grow for 14 days. A, the represen-
tative phase-contrast images of the cyst-like structure formed by the control
and PHLPP knockdown cells. The images were obtained using a Nikon TE2000
inverted microscope with 10� objective. Scale bar, 20 �m. B, the sizes of 50
randomly chosen cysts were analyzed for each group of cells using the Nikon
Elements AR software. The box-whisker plot shows the size distribution. The
average cyst sizes for the following cells are (means � S.E., in �m): vector,
127.2 � 6.3; HA-PHLPP1, 103.9 � 6.3; HA-PHLPP2, 89.9 � 4.9 (* indicates p �
0.05 and # indicates p � 0.001 by Student’s t test when compared with vector
control cells). C, the expression of PHLPP1 and PHLPP2 in the control and
PHLPP-overexpressing cells was determined using Western blotting. D, the
control and PHLPP-overexpressing cells grown in three dimensions were
fixed and stained with Alexa Fluor 488-conjugated phalloidin (green) and
DAPI (blue). Representative confocal images were taken from control and
PHLPP knockdown cells showing the localization pattern of actin. Scale bar,
20 �m. E, the percentages of control and PHLPP knockdown cells with a single
lumen were quantified based on the pattern of actin staining and expressed
graphically. Fifty randomly chosen cysts were scored. The shaded bars repre-
sent cysts with one lumen, and the open bars represent cysts with multiple or
filled lumens.
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increase in phosphorylation of aPKCs and Akt was confirmed
in cell lysates of control and PHLPP knockdown cells (Fig. 8B).
Taken together, these results suggested that PHLPP-mediated

dephosphorylation of aPKC may alter the subcellular localiza-
tion of aPKC by modulating the formation of aPKC-Par3 com-
plex in polarized cells.

FIGURE 4. Knockdown of PHLPP increases aPKC phosphorylation. A and B, cell lysates prepared from stable sh-Con, sh-PHLPP1, sh-PHLPP2, and sh-
PHLPP1�2 SW480 (A) and Caco2 (B) cells were immunoprecipitated with PKC�- or PKC�-specific antibody as indicated and subsequently analyzed for the
phosphorylation (p) status at the A-loop and TM sites. C, and D, the relative phosphorylation levels of PKC� and PKC� in SW480 and Caco2 cells, respectively. The
relative phosphorylation of PKC� and PKC� at the A-loop and TM sites was quantified by normalizing the ECL signals generated by the phospho-specific
antibodies to that of total protein. Data shown in the graphs represent the means � S.E. (n � 3, * indicates p � 0.05 by Student’s t test when compared with
sh-Con cells).
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PKC� but Not PKC� Regulates Caco2 Morphogenesis—Previ-
ous studies have shown that inhibition of aPKCs disrupts the
proper establishment of polarity in Caco2 cells grown in 3D
culture (7, 28). Because both PKC� and PKC� have been impli-
cated in apical-basolateral polarity regulation (7, 8) and both
are substrates of PHLPP in cells, we next investigated the func-
tional contribution of each aPKC isoform in the morphogenesis
of Caco2 cells. Stable PKC� and PKC� knockdown Caco2 cells
were generated using two different lentiviral shRNAs (Fig. 9A).
Control and PKC knockdown Caco2 cells were then cultured in
3D matrix and allowed to grow for 14 days. Consistent with the
pro-proliferative function of aPKCs, knockdown of either PKC�
or PKC� reduced the size of cyst-like structures formed in three
dimensions (Fig. 9B). Interestingly, although knocking down
PKC� significantly decreased the percentage of cysts with one
lumen, silencing PKC� had little effect on the morphogenesis of
Caco2 cells in three dimensions (Fig. 9, C and D). Knockdown of
both aPKCs had a similar effect on disrupting the polarization
process of Caco2 cells as silencing PKC� alone (Fig. 9D). These
data indicated that PKC� is likely the downstream effector of
PHLPP in maintaining apical-basal polarity in Caco2 cells.

To further determine the specificity of PHLPP substrates on
regulating cell polarity, control and PHLPP knockdown cells
grown in three dimensions were treated with inhibitors of Akt

or PKC� (Fig. 10A). Treating cells with either Akt or PKC�
inhibitor (Akt-VIII and myristoylated pseudosubstrate of
PKC�, respectively) significantly decreased the size of cysts
formed by both control and PHLPP knockdown cells (Fig. 10B).
In addition, the PKC� inhibitor resulted in a significant disrup-
tion of lumen structure similar to that observed in PKC� knock-
down cells, whereas the Akt inhibitor had little effect (Fig. 10C).
However, inhibition of either Akt or PKC� was unable to rescue
the polarity defect caused by PHLPP loss (Fig. 10C). Collec-
tively, our results indicated that elevated Akt and aPKC activity
likely both contribute to increased cell proliferation seen in
PHLPP knockdown cells grown in three dimensions. However,
inhibition of Akt activity does not affect cell polarity.

Discussion

Atypical PKCs are major regulators of the establishment and
maintenance of cell polarity (6 – 8, 10, 33). Previous studies
have demonstrated that loss of polarity is associated with late
stage or metastatic tumors where cancer cells undergo
epithelial–mesenchymal transition (1, 34, 35). The function of
several oncogenic proteins and tumor suppressors (such as
HER2/ERBB2, KRAS, and LKB1) has also been connected to
their ability to regulate the integrity of epithelial polarity (9,
35–38). In addition, it has been suggested that loss of epithelial
polarity may lead to aberrant activation of receptor tyrosine
kinase (RTK) due to disruption of asymmetrical distribution of
the receptors (39). Here we identified PHLPP as an important
regulator of cell polarity by negatively controlling the phosphor-
ylation of aPKCs. We found that both the A-loop and TM sites
in aPKCs can be dephosphorylated by PHLPP in vitro and in
cells. Functionally, silencing either PHLPP isoform is sufficient
to disrupt the apical-basal polarity of Caco2 cells grown in three
dimensions as indicated by multi-lumen formation. Interest-
ingly, although both aPKC isoforms have been implicated in
regulating cell polarity, our results showed that PKC�, but not
PKC�, is required for the proper morphogenesis of Caco2 cells.

Previous studies have indicated that the full activation of
aPKCs requires phosphorylation at both the A-loop and TM
sites (10, 12). However, the phosphatase-mediated dephosphor-
ylation of these sites in aPKCs has not been studied extensively.
It has been suggested that PKC� may be regulated by PP2A as
overexpression of SV40 small t-antigen, an inhibitor of PP2A,
leads to increased phosphorylation at the A-loop site in 3T3-L1
adipocytes, but the functional effect of this PP2A-mediated
dephosphorylation is unclear (40). Our results here provide
strong evidence indicating that PHLPP negatively regulates the
phosphorylation of aPKCs both in vitro and in cells. However,
because PHLPP has been shown to regulate a number of impor-
tant signaling pathways (such as PI3K/Akt and RAS/RAF the
pathways), we cannot rule out the possibility that the negative
correlation between PHLPP expression and aPKC phosphory-
lation observed in our study is an indirect effect of PHLPP-
mediated regulation of other signaling molecules. Future stud-
ies are needed to define how the specificity of PHLPP-mediated
regulation of different substrates is controlled in vivo. Although
it has been shown that PHLPP preferentially dephosphorylates
the hydrophobic motif of Akt, we found here that both the
A-loop and TM sites of aPKCs are similarly controlled by

FIGURE 5. The phosphorylation of aPKCs is increased in PHLPP knock-out
MEF cells and mouse tissues. A, cell lysates prepared from WT, PHLPP1�/�,
and PHLPP2�/� MEF cells were analyzed for the phosphorylation (p) of PKC�
at the A-loop and TM sites using the phospho-specific antibodies. The relative
phosphorylation was quantified by normalizing the amount of phosphoryla-
tion as detected by the phospho-specific antibody to that of total protein and
shown below the phosphoblots. B, fresh colon tissues were isolated from WT,
PHLPP1�/�, and PHLPP2�/� mice. Two mice from each genotype were ana-
lyzed. Protein extracts were prepared and first immunoprecipitated with the
PKC� or PKC� antibody. The phosphorylation status of PKC� and PKC� was
determined using the phospho-specific antibodies. C, Western blots as
shown in B were quantified by normalizing the amount of phosphorylation
as detected by the phospho-specific antibody to that of total protein. Graphs
show the average results of two mice. Data shown in the graphs represent the
means � S.D.
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PHLPP. This difference may due to the fact that both the
A-loop and TM sites in aPKCs are readily accessible, as shown
in the crystal structure of PKC� (41), whereas the A-loop of Akt
may become less accessible when the hydrophobic motif is
phosphorylated (42).

Both aPKC isoforms have been linked to the establishment
and maintenance of apical-basal polarity in different cell sys-
tems. However, the specific contribution of each aPKC isoform
is less understood as most of the previous studies employed
reagents targeting both aPKCs (7, 43). Although we found that
knockdown of PKC�, but not PKC�, alters the apical-basal
polarity in Caco2 cells, PKC� has been shown to regulate the
polarization process in Madin-Darby canine kidney cells (8).

PKC� is expressed at a lower level and with more restricted
membrane localization when compared with PKC� in Caco2
cells. Thus, the functional involvement of a specific aPKC iso-
form in maintaining cell polarity is likely cell type- and cell
context-dependent.

Consistent with the notion that the activity of aPKC needs to
be tightly controlled to maintain cell polarity, increased aPKC
activity as a result of PHLPP knockdown or decreased aPKC
activity a result of PHLPP overexpression, as well as silencing
PKC� or treating cells with PKC� inhibitor, has the same effect
on disrupting apical-basal polarity. In addition, we found that
inhibition of Akt activity decreases cell proliferation but has no
effect on polarity. Similar results have been reported in breast

FIGURE 6. PKC� and PKC� are substrates of PHLPP. A, cell lysates prepared from SW480 and Caco2 cells stably overexpressing PHLPP1 or PHLPP2 were
immunoprecipitated using antibodies against PKC� and PKC� and subsequently analyzed by Western blotting. The phosphorylation status of PKC� and PKC�
at the A-loop and the TM site was detected using the phospho-specific antibodies. The relative phosphorylation was quantified by normalizing ECL signals
generated by the phospho-specific antibody to that of total protein and is shown below the phosphoblots. B, the time course of aPKC dephosphorylation in
vitro. 293T cells transfected with PKC� and PKC� expression plasmids were lysed and immunoprecipitated using antibodies against PKC� or PKC�. Dephosphor-
ylation reactions were carried out by incubating the immunoprecipitates with the purified PP2C domains of PHLPP1 or PHLPP2 at room temperature for 0 –30
min. The phosphorylation of aPKCs was detected using the phospho-antibodies. C and D, the levels of PKC� and PKC� phosphorylation at the A-loop and TM
sites were quantified by normalizing ECL signals generated by the phospho-specific antibodies to that of total protein. Data shown in the graph represent the
means � S.E. (n � 3). E, knockdown of PHLPP prevents dephosphorylation of PKC� and PKC�. Stable sh-Con, sh-PHLPP1, and sh-PHLPP2 knockdown Caco2 cells
were treated with LY294002 (LY, 20 �M) for 30 min. The phosphorylation status of immunoprecipitated PKC� and PKC� was analyzed using the phospho-specific
antibodies. F, the dose-dependent dephosphorylation of Akt and PKC� in vitro. 293T cells transfected with Akt and PKC� expression plasmids were lysed and
immunoprecipitated using antibodies against Akt or PKC�. Dephosphorylation reactions were carried out by incubating the immunoprecipitates with increas-
ing amounts of PP2C domains of PHLPP1 or PHLPP2 at room temperature for 10 min. The phosphorylation of Akt and PKC� was detected using the
phospho-antibodies.
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cancer cells (44), suggesting that polarity and proliferation are
regulated by independent mechanisms. Although up-regula-
tion of both aPKC and Akt activity may contribute to increased
proliferation seen in PHLPP knockdown cells, aPKC rather
than Akt downstream of PHLPP likely controls cell polarity.
Intriguingly, inhibition of PKC� in PHLPP knockdown cells was
sufficient to block the pro-proliferation effect of silencing
PHLPP but failed to rescue the polarity defect. These results are
consistent with the notion that a threshold of aPKC activity is
required for the correct establishment of epithelial cell polarity
(8). Thus, both knockdown and overexpression of PHLPP may
alter the balance of aPKC activity and result in similar disrup-
tion of epithelial morphogenesis.

Mechanistically, we found that knockdown of PHLPP results
in redistribution of aPKCs from the apical to the basolateral
membrane in Caco2 cells. Previous studies have shown that
the localization of aPKC to the apical membrane depends on
its ability to phosphorylate Par3 and phosphorylation of Par3
partially dissociates aPKC from Par3 (35, 45). This is consis-
tent with our finding that the interaction between aPKC and
Par3 is decreased in PHLPP knockdown cells as the activity

of aPKC increases. Because aPKC is known to function in the
PAR6-CDC42-aPKC complex exclusively on the apical side
of the apical-basolateral membrane border in polarized epi-
thelial cells (35), this PHLPP loss-induced mislocalization
of aPKC as the result of aberrant aPKC-Par3 interaction
likely disrupts the spatiotemporally regulated epithelial
polarity.

In summary, our study identified a novel role of PHLPP in
controlling epithelial polarity by maintaining the balance of
aPKC activity. Previous studies have shown that PHLPP expres-
sion is frequently down-regulated in various cancer types and
PHLPP loss promotes tumor progression by promoting cell
growth and proliferation and inhibiting apoptosis (17, 24, 25,
46, 47). Because loss of epithelial polarity is an important hall-
mark of advanced malignant tumors, the ability of PHLPP to
maintain proper polarization of epithelial cells likely contrib-
utes to its tumor suppressor function. Interestingly, several well
characterized tumor suppressors, including LKB1 and phos-
phatase and tensin homolog (PTEN), are known to control cell
polarity in addition to their ability to negatively regulate cell
survival and proliferation (1). Thus, maintaining cell polarity is

FIGURE 7. PHLPP controls PKC� localization in Caco2 cells. A, stable sh-Con, sh-PHLPP1, and sh-PHLPP2 Caco2 cells seeded in 3D matrix as a single cell
suspension and allowed to grow for 14 days. The cells were fixed and stained with the PKC� antibody (green) and DAPI. Representative confocal images show
the localization of PKC� in the cyst-like structure. Scale bar, 20 �m. B and C, stable sh-Con, sh-PHLPP1, and sh-PHLPP2 Caco2 cells were co-stained with
antibodies against PKC� or PKC� (green) and E-cadherin (red). Nuclei were stained with DAPI (blue). The merged images are shown. Confocal images were
obtained using an Olympus FluoView FV1000 confocal laser scanning microscope with 60� objective. Scale bars, 20 �m. Note that the non-overlapping
staining of aPKCs and E-cadherin indicates that aPKCs are localized to different membrane domains along the cell-cell junction when compared with E-cad-
herin. D, confocal xz images of PKC� or PKC� (green), E-cadherin (red), and nuclei (blue) were generated from merged xy images of control and PHLPP knockdown
Caco2 cells co-stained for these proteins.
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likely a common strategy utilized by different tumor suppres-
sors in regulating cellular homeostasis.

Experimental Procedures

Antibodies and Reagents—Antibodies against PHLPP1 and
PHLPP2 were purchased from Proteintech and Bethyl Labora-
tories, respectively. The antibodies against PKC� (including
N-20 and H-12), PKC� (including C-20 and H-1), Ki67, and
Akt1 were from Santa Cruz Biotechnology. The phospho-
PKC�/� (the A-loop site, Thr-412/Thr-410 in human), phos-
pho-Akt (the Ser-473 site), and E-cadherin antibodies were
obtained from Cell Signaling. The ZO-1, phospho-PKC�/�
(the TM site, Thr-564/Thr-560 in human), and Par-3 (anti-
PAR-3) antibodies were from Thermo Fisher, and the �-tu-
bulin antibody was from Sigma-Aldrich. The expression
plasmids for GST-tagged PP2C domains of PHLPP1 and
PHLPP2 have been described in previous studies (22). Akt
inhibitor VIII (0.5 �M), myristoylated-PKC� pseudosub-
strate inhibitor (20 �M), and PI3K inhibitor LY294002 (20
�M) were purchased from Millipore. The FLAG-tagged
PKC�, HA-tagged PKC�, and HA-Akt1 expression plasmids
were obtained from Addgene.

Cells—Human colon cancer cell lines SW480 and Caco2 and
mouse embryonic fibroblast (MEF) cells were cultured in
DMEM supplemented with 10% FBS (Sigma-Aldrich) and pen-
icillin/streptomycin. Cells stably overexpressing HA-PHLPP1�
and HA-PHLPP2 were generated by infecting with retrovirus
encoding each PHLPP isoform and selecting against puromycin
as described previously (48). The shRNA targeting sequences
were constructed in pLKO.1-puro vector (Sigma-Aldrich), and
the lentivirus-mediated delivery of shRNA and selection for
stable knockdown cells were carried out as described previously
(17, 22). The targeting sequences for human PKC� and PKC�
are the following: for PKC�, 5�-GCCTCCAGTAGACGAC
AAGAA-3� (#1) and 5�-CCCGACATGAACACAGAGGA-3�

(#2); and for PKC�, 5�-GCCTGGATACAATTAACCATT-3�
(#1) and 5�-CCTGAAGAACATGCCAGATTT-3� (#2). The
shPHLPP1�2 double knockdown cells were generated by
infecting stable single PHLPP knockdown cells with shRNA
lentivirus targeting the other PHLPP isoform. The Phlpp1
(Phlpp1�/�) and Phlpp2 (Phlpp2�/�) knock-out mice were
described previously (26, 29, 49). MEF cells were isolated from
wild-type, Phlpp1�/�, and Phlpp2�/� mouse embryos at day 14
of gestation by following standard protocols (22). The primary
MEF cells were immortalized using lentivirus-mediated knock-
down of p53 using pBabe-puro-shp53 (Addgene).

Western Blotting Analysis—Cells were harvested and lysed in
lysis buffer (50 mM Na2HPO4, 1 mM sodium pyrophosphate,
20 mM NaF, 2 mM EDTA, 2 mM EGTA, 1% Triton X-100, 1
mM DTT, 200 �M benzamidine, 40 �g ml�1 leupeptin, 200
�M PMSF), and the detergent-solubilized cell lysates were
obtained after centrifugation for 5 min at 16,000 � g at 4 °C.
Equal amounts of cell lysates as determined by Bradford
assays were resolved by SDS-PAGE and subjected to West-
ern blotting analysis. The density of ECL signals was
obtained and quantified using a FluorChem digital imaging
system (Alpha Innotech).

Immunoprecipitation and in Vitro Dephosphorylation
Assay—The PP2C domains of PHLPP1 or PHLPP2 were pro-
duced as GST-tagged fusion proteins and purified from bacte-
ria as described previously (24, 25). The GST fusion proteins
were treated with PreScission Protease to release PP2C recom-
binant proteins from the GST tag. The in vitro dephosphoryla-
tion experiments were performed according to procedures
described previously (22). Briefly, 293T cells were transfected
with PKC� or PKC� expression plasmids, and cell lysates were
prepared in lysis buffer. The detergent-solubilized cell lysates
were incubated with the PKC� and PKC� antibodies to obtain
PKC� and PKC� proteins. The dephosphorylation reactions

FIGURE 8. Knockdown of PHLPP alters the formation of aPKC-Par3 complex. A, cell lysates prepared from sh-Con, sh-PHLPP1, and sh-PHLPP2 Caco2 cells
were immunoprecipitated with protein A/G beads alone (Mock) or with antibodies against PKC� and PKC�. The presence of Par3, as well as PKC� and PKC�, in
the cell lysate input and immunoprecipitates (IP) was detected using the Par3, PKC�, and PKC� antibodies, respectively. B, the expression of PHLPP and
phosphorylation status of Akt, PKC�, and PKC� in the cell lysates was analyzed using Western blotting.
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were carried out by incubating the immunoprecipitates with
purified PHLPP1-PP2C or PHLPP2-PP2C (0.1 �g) at room
temperature for 0 –30 min in the phosphatase buffer (0.1 M

sodium acetate, 0.05 M bis-Tris, 0.05 M Tris, 2 mM MnCl2, and
10 mM DTT, pH 7.5). For dose-dependent dephosphorylation
of Akt and PKC�, the amounts of purified PP2C proteins used
are 0.01, 0.05, and 0.1 �g in 50-�l reaction.

Three-dimensional Morphogenesis Assay and Immunofluo-
rescence Staining—To monitor the polarization process of epi-
thelial cells, Caco2 cells were cultured in 3D matrix according
to previously reported protocols with minor modifications (7,
27, 28). Briefly, single cell suspensions of Caco2 cells were pre-
pared in serum-free DMEM medium and embedded into a col-

lagen/Matrigel (1:1) mixture. The cells were allowed to grow
into cyst-like structures in 3D matrix for 2 weeks. The size and
morphology of the cysts were examined by phase-contrast
microscopy. For immunofluorescence staining, the cysts were
fixed in 4% paraformaldehyde and permeabilized using 1% Tri-
ton X-100 in PBS. Primary antibodies were diluted in labeling
buffer (1% BSA/PBS) and incubated with cells overnight at 4 °C.
The Alexa Fluor 594- or Alexa Fluor 488-conjugated goat anti-
rabbit IgG secondary antibodies (Thermo Fisher) were used
subsequently. Actin was stained using Alexa Fluor 488-conju-
gated phalloidin, whereas the nuclei of the cells were stained
with DAPI-containing mounting medium. The cellular distri-
butions of endogenous proteins were visualized using an Olym-

FIGURE 9. Knockdown of PKC� but not PKC� disrupts apical-basolateral polarity in Caco2 cells grown in three dimensions. A, stable control (sh-Con) and
aPKC knockdown Caco2 cells were analyzed for the expression of PKC� and PKC� by Western blotting. Two different targeting shRNAs were used to silence each
aPKC isoform. B, the sizes of 50 randomly chosen cysts formed by the control and aPKC knockdown cells were measured using the Nikon Elements AR software
and are shown in the box-whisker plot. The average cyst sizes for the following cells are (means � S.E., in �m): sh-Con, 134.5 � 6.8; sh-PKC�#1, 100.0 � 5.8;
sh-PKC�#2, 110.4 � 6.9; sh-PKC�#1, 101.1 � 6.6; sh-PKC�#2, 114.6 � 7.8; and sh-PKC���, 104.7 � 7.7 (* indicates p � 0.05 and # indicates p � 0.001 by Student’s
t test when compared with sh-Con cells). C, the lumen structure of the cysts formed by the control and aPKC knockdown cells. The cells were stained with Alexa
Fluor 488-conjugated phalloidin (green) and DAPI (blue). Scale bars, 10 �m. D, the percentages of control and aPKC knockdown cells with a single lumen were
quantified based on the pattern of actin staining and expressed graphically. Fifty randomly chosen cysts were scored. The shaded bars represent cysts with one
lumen, and the open bars represent cysts with multiple or filled lumens.
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pus FluoView FV1000 confocal laser-scanning microscope.
Confocal images of cysts grown in three dimensions and cells
grown in two dimensions were obtained with 20� and 60�
objective, respectively.
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