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Abstract

No single study has collected data over individuals’ entire lifespans. To understand changes over the entire

life course, it is necessary to combine data from various studies that cover the whole life course. Such

combination may be methodologically challenging due to potential differences in study protocols,

information available and instruments used to measure the outcome of interest. Motivated by our

interest in modelling blood pressure changes over the life course, we propose the use of Bayesian

adaptive splines within a hierarchical setting to combine data from several UK-based longitudinal

studies where blood pressure measures were taken in different stages of life. Our method allowed us

to obtain a realistic estimate of the mean life course trajectory, quantify the variability both within and

between studies, and examine overall and study specific effects of relevant risk factors on life course blood

pressure changes.

Keywords

adaptive Bayesian splines, repeated measurements, hierarchical models, spline regression, reversible jump

Markov chain Monte Carlo, blood pressure

1 Introduction

Most evidence about changes over the lifespan in markers of physical function has been produced
either by comparison of cross sectional data at different points in time or by longitudinal studies
with limited follow-up. The comparison of cross sectional data can produce misleading results as
samples compared over time may differ due to differential dropout, study design, cohort effects and
eventual changes in measuring instruments. Although some of these are factors that also affect
longitudinal studies, longitudinal data offer the opportunity of investigating population and
person level changes in the outcome of interest. Yet, most longitudinal studies conducted so far
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have limited follow-up. Although studies exist (1946 British birth cohort, 1958 British birth cohort)
where individuals have been followed since birth, study participants have not yet reached old age.
Therefore, to describe changes over the entire lifespan, it is necessary to combine data from studies
where individuals have been assessed during different stages of life.

The combination of data from longitudinal studies, as of cross sectional studies, is
methodologically challenging. As mentioned before, studies will be likely to differ in their design
and these differences will need to be taken into account in the models. For example, some samples
may be age homogeneous at study entry, whilst other samples may be conformed by an age
heterogeneous group; some samples may be population representative whilst others may be
selected samples; and some studies may be gender specific whilst other studies may include both
men and women. It is likely that in some situations, studies may have employed different instruments
to measure the same variable of interest. Furthermore, these differences may be present within the
same study when instruments were changed in the different data collection waves. For instance, as
more technologically advanced devices became available, a switch in the measuring device used to
measure blood pressure occurred between the 1982 and 1989 assessments in the NSHD 1946.

Longitudinal data are often modelled using parametric random effects models,1 as these models
permit the description of mean change whilst informing about variability across individuals about
that mean change. However, standard parametric formulations of random effects models may be
inappropriate for the description of change of some biological markers as most of these parametric
formulations produce unrealistic trajectory shapes.2–4 Non-parametric formulations of random
effects models are a more flexible alternative for the description of change of biological markers.
In particular, splines5 are an appealing and computationally efficient alternative that can be used to
smooth noisy data. Initially an approach where a spline with a fixed and predetermined number of
knots could be used to model the data; however, the choice and location of these knots may influence
the estimation of the smoothed line. For example, a large number of knots would produce a very
detailed line whilst a small number of knots may not capture the pattern of change sufficiently well.

To overcome these difficulties, DiMatteo et al.6 proposed the use of Bayesian adaptive splines to
fit curves with free knots to data drawn from an exponential family. In DiMatteo’s proposed
method, reversible jump Markov chain Monte Carlo (RJMCMC7) allows the number of knots, as
well as their locations, to be estimated as model parameters; hence the spline’s level of detail adapts
to the information present in the data. A prior distribution is required for the number of knots, their
locations, the corresponding spline coefficients and the residual standard deviation. DiMatteo et al.’s
chosen prior allowed the joint marginal posterior distribution for the number and location of knots
to be obtained analytically (by integrating out the other parameters), allowing for efficient
exploration of that marginal posterior by the RJMCMC method. Note that RJMCMC can be
difficult to implement and often relies on the model being mathematically tractable in some way.
DiMatteo et al. applied their approach to single studies, but it is not applicable in hierarchical
settings, as are discussed in this paper.

In this paper, motivated by our interest in understanding changes in BP across the life course, we
extend DiMatteo et al.’s method by incorporating a hierarchical structure to combine data from
multiple longitudinal studies thus covering the entire life course. To the best of our knowledge, ours
is the first attempt to model trajectories of a biomarker over the entire life course. Previously, Wills
et al.8 modelled blood pressure measures of a set of longitudinal studies that include the studies used
in our work independently using splines. In this publication, random effects models that described
change using cubic and quadratic polynomials were fitted to blood pressure measures and the effect
of several risk factors was examined. This paper produced relevant information about study-specific
blood pressure changes and the effect of risk factors on each of these studies, but did not combine
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the different studies. This limited the ability of researchers to examine information such as variability
across the different studies and of estimating a life course trajectory.

The paper is organised as follows. In Section 2, we describe the data sets used. Then, we describe
the model structure in Section 3 and present results in Section 4. We discuss results in Section 5 and
provide the WinBUGS code used for the analyses conducted in Appendix 1.

2 Data

Blood pressure measures from four studies were analysed here. These studies are part of the FALCon
collaboration andwere selected on the basis of being funded by theUKMedical Research Council and
covering different but overlapping periods of the life course with at least two measures of blood
pressure. Studies included in the analysis are: (1) the Avon Longitudinal Study of Parents And
Children (ALSPAC), relating to children born in Avon in the 1990s;9 (2) the Medical Research
Council (MRC) National Survey of Health and Development (NSHD)10 of individuals born in
England, Scotland or Wales in 1946; (3) the Caerphilly Prospective Study (CAPS),11 which includes
only men initially recruited in and (4) the Twenty-07 study (T-07),12 undertaken in the west of
Scotland and started in 1986. The T-07 study is formed by three age defined subcohorts of
individuals born in 1970s, 1950s and 1930s that were regarded as independent studies.

Blood pressure measures were taken by trained nurses in all studies except for CAPS, where
measures were taken by physicians in the first four data collection waves and by a trained field
worker in the fifth wave. In most studies at least two measurements were taken at each assessment.
Instead, in CAPS one single blood pressure measure was taken in all collection waves except the
second when two measures were taken. At the time of taking the measures, participants were seated
and allowed at least 2min rest prior to measurement. Different devices were used over time and in
the different studies to take blood pressure reading. In ALSPAC and late waves of CAPS, NSHD
and T-07 an automated oscillometric (AO) device was used to take the readings, whilst a manual
random zero sphygmomanometer (MRZ) was used in earlier waves of the CAPS, NSHD and T-07
studies. Specifically, in CAPS, an MRZ machine was used in the first four waves and an AO
machine in the last wave. In NSHD, an MRZ machine was used in the first two waves and an
AO in the third one, whilst T-07 switched from an MRZ to an AO in the third wave, when both
machines were used.

Table 1 presents the range of ages of individuals, the number of waves and total number of
individuals for each cohort. Each study collected information specific to their original research aims,
but a common core of socio-demographic variables such as participants’ height and weight,

Table 1. Age range of individuals and number of waves within each cohort.

Study Year initiation

Age range of

participants

Number of

data waves

Total number

of individuals

ALSPAC 1990–1992 7–18 6 9432

T-07 (1970s) 1986 15–38 5 1481

T-07 (1950s) 1986 30–63 5 1391

T-07 (1930s) 1986 55–79 5 1479

NSHD 1946 36, 43, 53 3 3655

CAPS 1990–1992 43–85 5 2949
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occupational social class at study entry and marital status was collected in all studies. In studies of
young people (ALSPAC and youngest cohort of the T-07 study), social class was defined by the
parents’ main occupation. Adult males’ and non-married women’s social classes were defined based
on their own occupations; married women’s social classes were defined according to their husbands’
occupations or, if this information was not available, on their own occupations. Information about
medication intake collected by nurses was available in all studies of individuals aged 18 years
and older.

We derived a set of variables to account for factors known to be associated with hypertension.
First, using information about social class, we derived an indicator of manual occupation at study
entry. Body mass index (BMI) was calculated as weight=height2 ðkg=m2Þ. Using published cut-off
points,13 we defined binary indicators to classify individuals as underweight, normal weight and
overweight.14 For children we used a different criterion as BMI classification varies by age and
gender. If a child has BMI for age below the 5th percentile then it was considered as in the
underweight group while a child with BMI for age above the 95th percentile was considered in
the overweight group,14 with all other children classified as in the normal weight group.

Where information about medication intake was available, blood pressure readings were
corrected for medication intake using published methods15 that assume that blood pressure from
medicated individuals is higher than the observed measure. This correction was conducted by adding
15% of its value to the observed measure.

To correct for possible differences in the blood pressure measures taken in the first and second
reading, we calculated the average of the two readings. Given the differences observed in blood
pressure trajectories within the different studies, data from men and women were analysed
separately.

3 Methods

Suppose we wish to model life course trajectories using splines in some way. As we will invariably
have data on many individuals, we might consider fitting a separate spline to each individual and
then characterising the population distribution of spline parameters in some way. However, this
would require that all individuals share the same set of parameters, albeit with different values,
which is impractical when individuals are observed over different stages of life, not least because
each individual spline would have to be extrapolated into the unobserved age ranges. As an
alternative, we propose using a single spline to define the population mean life course, with
individuals’ departures from that mean behaviour accounted for by adding random effects to the
spline rather than its parameters. We also add random effects to account for differences between
cohorts/studies that are due to unmeasured covariates. A principal advantage of this approach is
that the spline may be adaptive, with an a priori unknown number of knots. Individual-specific
adaptive splines would have different numbers of parameters with different meanings, in general,
which would preclude overall inferences.

3.1 Model description

Let yijk denote the kth blood pressure measurement k ¼ 1, . . . ,Kij

� �
taken for the jth individual

j ¼ 1, . . . , Jið Þ in study i i ¼ 1, . . . , Ið Þ. We assume yijk � Nð�ijk, �
2
ijkÞ, with

�ijk ¼ sijk þ �i þ �i mrzijk þ �ij þ rijk
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where sijk denotes the spline function to be fitted as described below; �i and �i are study-level random
effects, representing study-specific deviations from the mean spline and effects of using an MRZ
device, respectively (mrzijk ¼ 1 if yijk was measured using an MRZ device and mrzijk ¼ 0 if an AO
device was used), whilst �ij represents an individual-level random effect. The term rijk represents the
combined effects of various individual-level risk factors

rijk ¼ �1i manualijk þ �2i bmiuijk þ �3i bmioijk

In this expression parameters �1i , �2i and �3i are study-level random effects and manualijk, bmiuijk
and bmioijk are binary indicators of manual occupation, being underweight and being overweight,
respectively.

The spline sijk is a piecewise polynomial given by

sijk ¼ �1 þ
Xd
‘¼1

�‘þ1 Xijk � x0
� �‘

þ
Xq

l¼1

Xd
‘¼c

�	ðl,‘ Þ Xijk � 
l
� �‘

þ

for Xijk � x0, where Xijk denotes the age of individual j in study i at the kth observation time, x0 is
the lowest age for which the function is defined and xþ ¼ x if x4 0, xþ ¼ 0 otherwise. Parameters

1, . . . , 
q are the ‘knots’ of the spline and the �s are regression coefficients. The constants c � 0 and
d � c represent the ‘continuity’ and ‘order’ of the spline, respectively, and 	ðl, ‘ Þ ¼ qþ l�
ðd� cþ 1Þ þ ‘þ 1. In this paper we use a linear spline by selecting c ¼ d ¼ 1. We choose a linear
form, as opposed to a quadratic or cubic form, say, because then the knots correspond directly to
change points in the fitted trajectory, whereas higher order splines can change direction away from
the knots. This aids in interpreting the fitted trajectory and in specifying a prior distribution (see
below) for the number of knots q, which is estimated as an unknown parameter, so that the
smoothness of the fitted curve is estimated as part of the model, and hence the spline adapts itself
to the information present in the data. We scale the age range so that the minimum and maximum
values are 0 and 1, respectively.

Possible differences in the variability of measurements by device were accounted for by modelling
the residual standard deviation �ijk as a function of the device used as follows

�ijk ¼ �mi
mrzijk þ �ai 1�mrzijk

� �

where �ai and �mi
are study-level random effects representing the study-specific residual standard

deviations associated with the AO and MRZ devices, respectively.

3.2 Model estimation

The model was estimated within a Bayesian framework. Analyses were performed using
WinBUGS16,17 with ‘Jump’ interface installed.18 As described by Lunn et al.,18 the reversible
jump algorithm is implemented in WinBUGS16,17 to draw samples from the joint full conditional
distribution of the coefficients �, knots 
 and number of knots q, whilst standard Gibbs/Metropolis
steps are used to update the remaining model parameters. As the value of q changes during the
Markov chain Monte Carlo (MCMC) simulation, so do the dimensions of � and 
. One of the main
challenges in such ‘variable dimension’ analyses is choosing sensible values for the spline coefficients
when attempting a dimension-changing move. This is because the change of dimension necessitates a
change of parameter space, which may have been visited previously (in the MCMC simulation) only
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rarely, if ever. Hence the MCMC sampler will have had little opportunity to learn about appropriate
parameter values in the new space. This problem can be alleviated if we can derive the full
conditional distribution for the coefficients in closed form, since appropriate coefficients can then
be generated instantly for any set of proposed knots. A multivariate normal prior for the coefficients
� combines with the normal likelihood to give a multivariate normal full conditional, which is
straightforward to derive. In our analyses the prior mean and variance for each coefficient are 0
and 1002, respectively.

As the age range was scaled to the interval (0,1), we chose a Unif(0,1) distribution as a prior
distribution for the location of each knot. The RJMCMC algorithm considered here increased the
model flexibility with regard to the number of knots of the model. However, it requires a prior
distribution for the number of knots q. We chose a Poisson prior with mean 3 as this distribution
represents our a priori expectation that, after increasing throughout childhood and adolescence,
blood pressure may begin to level off in early adulthood; it may then begin to increase again in
middle age, with a possible further change in later life. The shape of the Poisson distribution then
penalises large numbers of knots, which encourages parsimony.

The individual- and study-level random effects (or their logarithms) were assumed to arise from
normal population distributions. For i ¼ 1, . . . , I

�ij � N 0, �2
� �

, j ¼ 1, . . . , Ji,

�i � N 0,!2
�

� �
,

�i � N m� ,!
2
�

� �
,

�li � N m�l ,!
2
�l

� �
, l ¼ 1, 2, 3,

log �mi
� N m�m ,!

2
�m

� �
,

log �ai � N m�a ,!
2
�a

� �

where the means and standard deviations are unknown parameters with appropriate, vague prior
distributions

m� ,m�1 ,m�2 ,m�3 � N 0, 1002
� �

, m�m ,m�a � N log 10, 1002
� �

�,!�,!� ,!�1 ,!�2 ,!�3 � Unif 0, 60ð Þ, !�m ,!�a � Unif 0, 10ð Þ

The upper bound of 60 for standard deviations defined on the natural scale is chosen as systolic
pressures outside the range 0–240mmHg are very unlikely or impossible. For standard deviations
defined on the log-scale, an upper bound of 10 is chosen as this represents a vast degree of variability
on the natural scale.

The code can be found in Appendix 1, and a graphical representation of the model is presented in
Figure 1. For each analysis, two MCMC chains were simulated from different initial states.
Convergence was assessed via visual inspection of the trace plots and by the Brooks–Gelman–
Rubin method.19,20 The Monte Carlo standard error (MCSE) for all parameters of interest was
examined periodically to ensure accurate inferences. The rule of thumb of requiring an MCSE less
than 5%21 (p. 277) was fully satisfied in our analysis, with 52% achieved for the vast majority of
parameters.
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4 Results

Our results indicate that blood pressure increases with age as illustrated in Figure 2. The figure
shows, for both genders, a rapid increase in blood pressure coinciding with peak adolescent growth,
followed by a gentle increase in early adulthood, a midlife acceleration beginning in the fifth decade
of life and a final period of deceleration in late adulthood. Following the rapid acceleration during
adolescence, women typically have lower blood pressure than men (by up to around 10mmHg),
until their late 60s.

Figure 1. Directed acyclic graph (DAG) corresponding to blood pressure life course model. ‘Nodes’ represent

variables in the model and are joined together by arrows to show direct dependence between variables. Solid arrows

denote stochastic dependence whereas ‘dashed’ arrows denote logical dependence (deterministic functions).

Rectangular nodes represent covariates that have been included in the model. The rectangular ‘containers’ labelled

i ¼ 1,. . . ,I, j ¼ 1,. . . ,Ji, etc. denote repetition, i.e. ‘loops’ over the index used in the label.
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Table 2 presents posterior median estimates, along with 95% credible intervals, for the overall
mean parameters. Male individuals with a manual occupation had higher blood pressure than
individuals with a non-manual occupation (posterior median¼ 0.85). Although there is a
suggestion that this is also the case for females (posterior median¼ 0.56), the effect is not
statistically significant, with a posterior credible interval that includes zero. The effect of manual
occupation on blood pressure seems to be greater for males. There is an indication that underweight
individuals have lower blood pressure than normal weight individuals, but this effect is not
significant for either gender. Overweight individuals, on the other hand, were found to have
significantly higher blood pressure than normal weight individuals, for both males and females.
For neither gender was there a significant effect on expected blood pressure of using an MRZ as
opposed to an AO device. Posterior median parameter estimates for both genders were negative,
however, suggesting that blood pressures may be lower, on average, when measured with an MRZ
device. The level of residual variability was similar for both devices, suggesting that neither device is
more variable than the other. Finally, a similar number of knots were estimated in modelling the
men’s and women’s data, reflecting the fact that similar trajectories were estimated for both genders
(see Figure 2). The estimated number of knots was also larger than expected a priori. This is
probably due to confounding, leading to artefacts in the fitted spline, as discussed below.

Figure 2. Overall systolic blood pressure trajectories, with 95% credible bands, for males (dark grey) and females

(light grey).
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Mean posterior estimates of study specific effects are presented in Table 3. The results suggest that
individuals with a manual occupation have higher blood pressure than individuals with a non-
manual occupation consistently over the different studies. However, in studies of female
individuals, estimates only reached significance in ALSPAC, midlife T-07 cohort and NSHD. In
studies of male individuals, significant estimates were found in midlife T-07, NSHD and CAPS
studies. Underweight men and women typically had lower blood pressure than normal weight
individuals. Although the direction of the effect reversed in older NSHD women, the effect of
being underweight in this study did not reach significance (as it also did not for the older T-07
cohort, both genders, NSHD men and T-07 men in the midlife cohort). Consistently across studies,
larger body size was significantly associated with higher blood pressure in both men and women.

It is interesting to note that the direction of estimated study-level random effects (�i) is
consistently the same for both men and women, although only the ALSPAC effect for women
and the CAPS effect for men are significantly non-zero. These suggest that ALSPAC women
typically have blood pressures above the mean curve and CAPS men typically have blood
pressures below the mean curve. Only in the CAPS study was the effect of using a different
device (�) significantly non-zero, indicating that measurement with the manual device was
associated with higher blood pressures in the CAPS study. Study-specific estimates of residual
variation were consistently similar for men and women, and for both devices. There appears to
be an upward trend in residual variation with age.

Previous to the work reported here, we conducted a series of sensitivity analyses on each of the
independent datasets to examine robustness of results to the method of adjustment for medication
intake and to examine whether results varied if the first or second measure was modelled instead of
their average. In both cases, results were robust.

Results reported here were obtained adjusting blood pressure measure for medication intake by
adding 15% to the registered measure. To examine robustness of results to this method, we varied
the percentage added (5, 10, 15, 20, 25%) and also added fixed constants (5, 10, 15mmHg). Results
obtained remained robust.

Table 2. Posterior median estimates (with 95% credible intervals in parentheses) for overall parameters and inter-

study/inter-individual standard deviations.

Posterior median (95% credible interval)

Risk factor/

Parameter

Women Men

Overall SD (inter- Overall SD (inter-

mean study/ind) mean study/ind)

Manual occupation (�1) 0.56 (�0.33, 1.65) 0.45 (0.02, 2.67) 0.85 (0.01, 1.61) 0.47 (0.03, 1.95)

Underweight (�2) �2.22 (�7.61, 2.29) 3.19 (0.27, 12.91) �2.86 (�6.53, 1.53) 2.76 (0.37, 10.22)

Overweight (�3) 4.87 (2.27, 7.72) 2.02 (0.79, 7.14) 5.15 (2.97, 7.51) 2.06 (0.98, 5.73)

Device (�) �1.04 (�3.94, 2.27) 1.00 (0.04, 7.94) �3.48 (�12.95, 6.03) 7.46 (3.62, 24.32)

log �m (log-res sd(MRZ)) 2.56 (1.69, 3.44) 0.50 (0.21, 2.52) 2.60 (2.09, 3.12) 0.41 (0.20, 1.35)

log �a (log-res sd(AO)) 2.67 (1.91, 3.43) 0.60 (0.30, 2.00) 2.65 (2.08, 3.21) 0.54 (0.30, 1.44)

� [individual-level RE] 0 7.07 (6.85, 7.29) 0 9.01 (8.75, 9.28)

� [study-level RE] 0 5.10 (2.38, 15.92) 0 6.93 (3.49, 18.99)

Number knots (q) 10 (7, 13) – 12 (9, 16) –
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Table 3. Posterior mean estimates, standard deviations and 95% credible intervals of study-specific parameters.

Parameter

Women Men

Study Mean (SD) Cr. Interval Mean (SD) Cr. Interval

Mean effects

�1 (Manual occupation) ALSPAC 0.51 (0.22) [0.07,0.95] 0.59 (0.30) [�0.03,1.12]

T-07 (1970s) 0.69 (0.46) [�0.14,1.75] 0.58 (0.55) [�0.71,1.49]

T-07 (1950s) 1.05 (0.67) [0.14,2.65] 1.08 (0.56) [0.10,2.40]

T-07 (1930s) 0.28 (0.62) [�1.28,1.31] 0.65 (0.61) [�0.82,1.73]

NSHD 0.44 (0.19) [0.06,0.80] 1.01 (0.21) [0.62,1.43]

CAPS – – 1.11 (0.44) [0.36,2.11]

�2 (Underweight) ALSPAC �1.88 (0.37) [�2.61,�1.15] �2.17 (0.41) [�2.98,�1.36]

T-07 (1970s) �2.65 (0.88) [�4.41,�0.98] �4.00 (0.95) [�5.88,�2.20]

T-07 (1950s) �4.80 (2.39) [�9.85,�0.90] �2.33 (2.47) [�7.08,3.07]

T-07 (1930s) �3.39 (2.90) [�9.90,1.85] �0.82 (3.35) [�6.08,7.28]

NSHD 0.85 (1.82) [�2.37,4.44] �1.67 (2.13) [�5.47,2.99]

CAPS – – �5.75 (2.25) [�10.47,�2.03]

�3 (Overweight) ALSPAC 3.57 (0.20) [3.19,3.96] 3.65 (0.23) [3.21,4.09]

T-07 (1970s) 4.92 (0.58) [3.78,6.07] 5.93 (0.67) [4.62,7.26]

T-07 (1950s) 5.43 (0.66) [4.14,6.75] 4.46 (0.73) [3.02,5.88]

T-07 (1930s) 7.12 (1.01) [5.15,9.11] 7.27 (1.06) [5.26,9.39]

NSHD 3.52 (0.53) [2.49,4.55] 3.32 (0.50) [2.33,4.31]

CAPS – – 6.45 (0.54) [5.39,7.51]

� (Study effect) ALSPAC 6.49 (3.19) [0.85,13.70] 8.37 (4.08) [�3.01,15.53]

T-07 (1970s) �3.99 (2.83) [�9.33,2.05] �1.56 (3.78) [�11.66,4.58]

T-07 (1950s) �0.96 (2.87) [�6.69,5.00] �1.22 (3.77) [�11.22,4.91]

T-07 (1930s) 0.37 (3.38) [�6.54,7.05] 3.41 (3.87) [�6.49,9.95]

NSHD �0.55 (2.87) [�6.27,5.42] �2.94 (3.77) [�12.96,3.19]

CAPS – – �8.00 (3.85) [�18.22,�1.76]

� (Device) ALSPAC �0.98 (3.73) [�6.80,5.02] �3.49 (11.67) [�26.48,19.56]

T-07 (1970s) �1.15 (1.52) [�3.87,2.20] �1.32 (2.46) [�5.35,4.40]

T-07 (1950s) �1.31 (1.20) [�3.66,1.09] �4.69 (1.45) [�7.54,�1.86]

T-07 (1930s) �0.69 (1.45) [�3.38,2.40] �10.38 (1.34) [�13.02,�7.76]

NSHD �0.79 (1.13) [�2.86,1.55] �5.66 (1.59) [�8.79,�2.63]

CAPS – – 4.62 (1.11) [2.44,6.80]

Variance effects

�a (AO device) ALSPAC 7.04 (0.04) [6.95,7.12] 6.75 (0.04) [6.67,6.83]

T-07 (1970s) 11.91 (0.36) [11.23,12.63] 9.97 (0.35) [9.30,10.67]

T-07 (1950s) 17.35 (0.50) [16.40,18.35] 16.16 (0.47) [15.26,17.11]]

T-07 (1930s) 22.33 (0.68) [21.04,23.71] 21.01 (0.73) [19.64,22.49]]

NSHD 19.30 (0.40) [18.53,20.10] 18.34 (0.39) [17.59,19.12]

CAPS – – 18.70 (0.55) [17.66,19.80]

�m (MRZ device) T-07 (1970s) 9.15 (0.19) [8.78,9.53] 9.83 (0.21) [9.41,10.26]

T-07 (1950s) 11.74 (0.27) [11.22,12.29] 11.10 (0.27) [10.59,11.65]

T-07 (1930s) 20.53 (0.41) [19.74,21.34] 18.74 (0.43) [17.91,19.60]

NSHD 12.91 (0.22) [12.49,13.34] 11.42 (0.19) [11.05,11.81]

CAPS – – 19.00 (0.21) [18.59,19.43]
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5 Discussion

In this paper, we propose a method to combine data from longitudinal studies of individuals in
different stages of life to produce a life course trajectory. The method has been illustrated using
blood pressure measures from four UK-based longitudinal studies. Our results elucidate the nature
of the life course and provide scope for targeting public health interventions at specific age groups.
They are also in general agreement with those reported by Wills et al., who found a rapid increase in
blood pressure coinciding with peak adolescent growth, gentle increase in early adulthood, midlife
acceleration beginning in the fifth decade of life and a final period of deceleration in late adulthood.
In addition, they reported differences in blood pressure trajectories by gender, with a similar blood
pressure level by the seventh decade. Our results show that following rapid acceleration during
adolescence, women typically have lower blood pressure than men (by up to around 10mmHg),
until their late 60s. The local maxima occurring in the late teens for both genders are likely an
artefact of the model rather than true maxima, as discussed below. Males with a manual occupation
have higher blood pressures, as do overweight individuals from both genders. Although some cohort
effects may exist on the risk factors that were not optimally considered when we opted for using cut-
off points for the definition of BMI categories, our results suggest other interesting effects, such as
underweight individuals having lower blood pressure and a trend between residual (unexplained)
variation and age, but these have not been shown to be statistically significant.

Modelling life course trajectories is severely complicated by the fact that individuals are
invariably only monitored over some fraction of their life course. In attempting to draw overall
inferences about the population of interest, we might naturally wish to fit a parametric model to each
individual’s data and characterise the population distribution of model parameters. However, unless
the appropriate model is well established, this seems unrealistic, since in order to obtain a complete
overall/population trajectory, each individual’s fitted trajectory must cover the whole life course,
with much ‘borrowing of strength’ required to extrapolate into the (extensive) unobserved periods.
If the parametric model is linear in the parameters, such as a spline, then one way around this might
be to integrate out the individual-level parameters. However, this would require a bespoke MCMC
algorithm, particularly if the number of knots is unknown, as here, rather than the more general
modelling framework offered by BUGS, say. This might exploit some aspects of DiMatteo et al.’s
RJMCMC approach, but would be substantially more complex due to the hierarchical structure of
our model. (Note that we would have to assume a common set of knots for all individuals.) A very
basic alternative might be to simply average the observed data in each of a series of short ‘age bins’,
but this would preclude the possibility of controlling for covariates, say. Instead, our approach has
been to start with the population life course trajectory and account for departures away from this
‘overall’ behaviour, due to variability between cohorts and individuals within cohorts, say, by
adding random effects. Such an approach is limited, however, by the additive nature of the
random effects. For example, excepting the effects of covariates, an individual can only deviate
from his/her cohort’s overall trajectory, and that cohort can only deviate from the ‘global’
trajectory, by a constant amount (not changing with age). We could explore the inclusion of
multiplicative random effects also, but the model’s flexibility would still be limited.

A principal objective of this work has been to avoid the need for strong parametric assumptions
regarding the shape of the fitted trajectory whilst accommodating possible risk factors. By assuming
the number and location of the spline knots to be unknown, the spline’s ‘smoothness’ is not pre-
determined and it can adapt itself to the information in the data; estimation is thus largely data
driven. As a consequence, the methodology is applicable to much smaller data sets than those
considered herein, although the level of detail in the fitted curve will be reduced accordingly. We
chose to use a linear adaptive spline, as opposed to a quadratic or cubic spline, say, because then the
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knots correspond directly to change points in the fitted trajectory, whereas higher order splines can
change direction away from the knots (the change points also tend to be more ‘visible’ with a linear
spline). This aids in the specification of a prior distribution for the number of knots and in the
interpretation of the fitted trajectory. We note, however, that extensions to higher order splines are
straightforward. In our work, a larger than initially expected number of knots was estimated (12 for
men and 10 for women). This may be a consequence of the large amount of data included in the
analysis, which allows even small variations in the data to be tracked inexpensively by the spline.

In our analyses, the estimation of study-level random effects (�i) presented some difficulty, with
very high autocorrelation in the monitored Markov chains. This may be explained by several
factors. First, there is limited overlap between some of the studies, which makes it difficult to
identify differences between the studies. (In fact, in the presence of more overlap, in addition to a
study effect, it may be necessary to include a cohort effect to better account for potential differences
between the studies.) Second, there is a limited number of studies, meaning that even if contrasts
between studies can be identified, the actual values of the random effects may still be poorly
determined, since a wider range of values is supported by the hierarchical prior when the number
of effects is small. Finally, the flexibility of the spline is such that, where there is little overlap, it can
account for any differences between studies itself, and so the study effects and the spline are
somewhat confounded, making for relatively slow exploration of the posterior distribution. The
problem of slow exploration is alleviated straightforwardly by simulating longer Markov chains,
though in our case this led to lengthy run-times, due to the large data sets (30–40,000 observations).
The problem of confounding is much more challenging, and we believe may be responsible for the
some of the ‘sudden’ direction changes in the fitted trajectories.

The introduced methodology assumes that missing information on blood pressure measurements
is modelled as missing at random. Although a missing at random missing data assumption is likely
to be plausible in the younger cohorts, it may not be realistic in the older cohorts as individuals with
higher blood pressure are more likely to dropout of the studies. Extensions to the proposed method
are under consideration to account for informative missing data.
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Appendix 1

model {

########## likelihood: ##########

for (k in 1:N) {

sbp[k] � dnorm(mu[k], inv.sigma2[k])

mu[k] <- s[k] þ phi[cohort[k]] þ theta[id[k]] þ gamma[cohort[k]]*mrz[k] þ r[k]

inv.sigma2[k] <- 1/pow(sigma[k], 2)

sigma[k] <- sigma.a[cohort[k]]*a[k] þ sigma.m[cohort[k]]*mrz[k]

r[k] <- alpha[cohort[k], 1]*manual[k] þ alpha[cohort[k], 2]*bmiu[k] þ

alpha[cohort[k], 3]*bmio[k]

scaled.age[k] <- (X[k] - min.age)/(max.age - min.age)

}
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s[1:N] <- jump.pw.poly.cs.lin(scaled.age[1:N], q, 0.0001, 0, 1, inits[])

########## random effects: ##########

for (i in 1:I) {

phi[i] � dnorm(0, tau.phi)

for (j in 1:3) {alpha[i, j] � dnorm(m.alpha[j], tau.alpha[j])}

gamma[i] � dnorm(m.gamma, tau.gamma)

log(sigma.a[i]) <- log.sigma.a[i]

log(sigma.m[i]) <- log.sigma.m[i]

log.sigma.a[i] � dnorm(m.sigma.a, tau.sigma.a)

log.sigma.m[i] � dnorm(m.sigma.m, tau.sigma.m)

}

for (j in 1:num.ind) {theta[j] � dnorm(0, inv.zeta2)}

########## priors: ##########

q � dpois(3)I(, 50)

for (j in 1:3) {

m.alpha[j] � dnorm(0, 0.0001)

tau.alpha[j] <- 1/pow(omega.alpha[j], 2)

omega.alpha[j] � dunif(0, 60)

}

m.gamma � dnorm(0, 0.0001)

m.sigma.a � dnorm(2.303, 0.0001)

m.sigma.m � dnorm(2.303, 0.0001)

tau.gamma <- 1/pow(omega.gamma, 2)

tau.sigma.a <- 1/pow(omega.sigma.a, 2)

tau.sigma.m <- 1/pow(omega.sigma.m, 2)

tau.phi <- 1/pow(omega.phi, 2)

inv.zeta2 <- 1/pow(zeta, 2)

omega.gamma � dunif(0, 60)

omega.sigma.a � dunif(0, 10)

omega.sigma.m � dunif(0, 10)

omega.phi � dunif(0, 60)

zeta � dunif(0, 60)

}

}
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