
1Scientific Reports | 6:37307 | DOI: 10.1038/srep37307

www.nature.com/scientificreports

Statistical power considerations in 
genotype-based recall randomized 
controlled trials
Naeimeh Atabaki-Pasdar1, Mattias Ohlsson2, Dmitry Shungin1, Azra Kurbasic1, 
Erik Ingelsson3, Ewan R. Pearson4, Ashfaq Ali1,* & Paul W. Franks1,5,6,*

Randomized controlled trials (RCT) are often underpowered for validating gene-treatment interactions. 
Using published data from the Diabetes Prevention Program (DPP), we examined power in conventional 
and genotype-based recall (GBR) trials. We calculated sample size and statistical power for gene-
metformin interactions (vs. placebo) using incidence rates, gene-drug interaction effect estimates and 
allele frequencies reported in the DPP for the rs8065082 SLC47A1 variant, a metformin transported 
encoding locus. We then calculated statistical power for interactions between genetic risk scores 
(GRS), metformin treatment and intensive lifestyle intervention (ILI) given a range of sampling frames, 
clinical trial sample sizes, interaction effect estimates, and allele frequencies; outcomes were type 2 
diabetes incidence (time-to-event) and change in small LDL particles (continuous outcome). Thereafter, 
we compared two recruitment frameworks: GBR (participants recruited from the extremes of a GRS 
distribution) and conventional sampling (participants recruited without explicit emphasis on genetic 
characteristics). We further examined the influence of outcome measurement error on statistical power. 
Under most simulated scenarios, GBR trials have substantially higher power to observe gene-drug and 
gene-lifestyle interactions than same-sized conventional RCTs. GBR trials are becoming popular for 
validation of gene-treatment interactions; our analyses illustrate the strengths and weaknesses of this 
design.

Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits1–8, the 
clinical relevance of which is sometimes assessed in existing randomized controlled trials (RCT) by testing for 
effect-modification by modeling gene-treatment (e.g., drugs or lifestyle) interactions9,10.

Data on gene-treatment interactions may help optimize therapy, as determining the nature and extent of inter-
actions can elucidate mechanisms and illustrate differences in treatment efficacy by genetically distinguishable 
subpopulations10, a concept broadly related to precision medicine. This is relevant when the treatment’s efficacy is 
heterogeneous, with some patients who respond well and others who do not, and when treatments are expensive 
or convey serious side effects in a patient subgroup.

Modeling gene-treatment interactions in existing Phase III RCTs is a pragmatic use of existing data; however, 
most trials were not designed for this purpose, often lack power, and may not focus on the most relevant pheno-
types or treatments. Thus, genotype based recall (GBR) trials, which are designed explicitly to test given hypothe-
ses about gene-treatment interactions, represent an alternative approach that is gaining traction in academia and 
industry, as focusing on genetically at-risk participants might enhance power to assess treatment efficacy by virtue 
of accelerated outcome incidence rates and/or enhanced drug sensitivity11–13.

Statistical power to observe gene-treatment interactions is conditional on several factors, not least the effect 
allele frequency; thus, increasing the number of effect allele carriers within a clinical trial population should 
enhance power. This can be achieved in RCT cohorts by recruiting participants with specific genotypes (GBR)14. 
For complex traits, gene-lifestyle or gene-drug interactions for a single locus tend to be small in magnitude; 
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therefore, the amalgamation of multiple variants into genetic risk scores (GRS) might enhance power. When 
the objective is to test interactions using a GRS, GBR trials focus on two distinct subgroups, one with many and 
the other with few effect alleles at the loci of interest, with the size of the initial sampling-frame determining the 
extent to which genetic risk can be juxtaposed. When a single rare variant is the focus, the GBR approach can be 
used to equilibrate risk allele frequencies, potentially increasing power.

The purpose of this simulation study was to compare power and sample-size requirements to observe 
gene-treatment interactions using the GBR and conventional recruitment paradigms for RCTs. To maximize the 
relevance of this work, we compared results from GBR trial simulations with those for conventional trials using 
published data from the Diabetes Prevention Program (DPP), an existing Phase III RCT of drug and lifestyle 
interventions. The results of these analyses are presented in web-based power/sample size calculator, which we 
anticipate will facilitate the design of future GBR trials (https://gbr-power.crc.med.lu.se).

Materials and Methods
Diabetes Prevention Program (DPP).  To inform the assumptions that underlie the statistical power mod-
els described below, we drew on published data from the DPP trial. Initially ~31,000 people were screened with an 
oral glucose tolerance test (OGTT)15. Of these, 3,234 overweight/obese adults from five ethnic groups with ele-
vated fasting and 2-hr post-load plasma glucose concentrations were randomized to receive metformin (850 mg 
twice daily, n =​ 1,073), or intensive lifestyle intervention (ILI) (n =​ 1,079), focusing on weight loss through exer-
cise (150 min moderate-to-high intensity activity per week) and diet; the placebo control arm received sham 
metformin pills and standard-of-care (n =​ 1,082)16. The primary outcome was diabetes incidence confirmed by 
repeated fasting or 2-hr plasma glucose concentrations (≥​7.0 or ≥​11.1 mmol/l respectively), obtained at semi-an-
nual screening visits. At baseline and/or 1 yr post-randomization, biomarkers, including lipoprotein sub-fractions 
and genotypes (n =​ 2,994 participants consented to genotyping)9 were assayed (see ref. 17 for further details).

Genetic variables, gene-treatment interactions and population scenarios.  We used parameters 
for two phenotypes reported by the DPP focused on: i) incidence of type 2 diabetes (T2D) in the metformin and 
ILI arms for interaction metrics between a variant at the solute carrier family 47 multidrug and toxin extrusion, 
member 1 (SLC47A1) locus and metformin (vs. placebo) in relation to diabetes incidence9; ii) interaction metrics 
between a GRS (32 SNPs) and ILI (vs. placebo) in relation to 1-yr changes in small LDL particle size10. Data on 
genetic effects and gene-treatment interaction effects were obtained from these papers and used in the following 
models. First we calculated sample sizes and statistical power to detect interactions according to the DPP param-
eters for the conventional RCT and GBR settings.

To generate additional statistical power data that extends the DPP examples described above, we calculated 
statistical power for genetic interactions with metformin or ILI interventions in relation to disease incidence and 
change in a quantitative trait focusing on a GRS comprised of 20 SNPs (an arbitrary number) with moderate-high 
minor allele frequencies (MAF), small or large effects, and varying degrees of outcome measurement error.

For the DPP-specific examples, we used diabetes incidence and follow-up duration and the per allele 
interaction effect estimate (HR =​ 0.68) between a variant at the SLC47A1 locus (MAF =​ 0.44) and metformin 
(vs. placebo), as reported in the DPP16. We adopted a sampling-frame of 31,000, consistent with the DPP’s 
sampling-frame17. For GRS ×​ ILI interactions, we calculated an unweighted GRS by simulating 32 SNPs with 
risk allele frequencies reported in the DPP (n =​ 1,909)10 and by summing risk alleles, as previously described18. 
Summary statistics obtained from this GRS were then used to simulate the GRS variable in the sampling-frame. 
The per allele interaction effect reported in the DPP for change in small LDL particles is 0.03 nmol/l given lifestyle 
intervention, and is used in our simulations.

We then assessed interactions between treatments (metformin or ILI vs. placebo) and SNPs with moderate 
(MAF =​ 0.05–0.2) and high (MAF =​ 0.2–0.5) frequencies, with small (β​ =​ 0.05–0.15) and large (β​ =​ 0.15–0.30)  
effects, individually (SNPs) and together (GRSs). “Small effects” correspond to per allele diabetes HRs of  
0.95–0.86, while “large effects” correspond to HRs of 0.85–0.74 in the metformin arm (vs. placebo). Small and 
large effect sizes correspond to 0.05 to 0.15 nmol/l/yr decrease and 0.15 to 0.30 nmol/l/yr decrease in small LDL 
particles, respectively, per risk allele with ILI (vs. placebo)10. The GRSs were calculated assuming the genotype dis-
tributions conformed to Hardy-Weinberg expectations. The maximum theoretical range of the GRS was 0–40 risk 
alleles, and the GRS was normally distributed. To confirm this assumption of normality, we modeled 20 random, 
uncorrelated SNPs from the GLACIER cohort (n =​ 6,064)19 with MAFs of 0.20–0.50 (Supplementary Figure 1).

When simulating a GBR trial, we sampled directly from the most extreme point of each tail and worked 
inwards towards the centre point. Therefore, no explicit cut-point was used.

Marginal and interaction effects for diabetes incidence were simulated using Cox proportional hazards mod-
els, and linear regression for 1-yr change in small LDL particles, with treatment, GRS, and GRS ×​ treatment 
interactions fitted as independent variables.

In addition to considering different allele frequencies and effect estimates, we also considered the impact that 
the size of the sampling-frame (N =​ 5,000, 10,000, 50,000, 100,000 and 500,000) and measurement error have on 
power. To assess the impact of measurement error, we generate outcomes reflecting those assessed with different 
levels of precision, described by the correlation (r2) between a criterion measure and weaker measure of the out-
come (r2 of 0.8, 0.6 and 0.4 representing high, moderate and low precision respectively).

We provide an online power calculator (https://gbr-power.crc.med.lu.se), through which power or sample size 
can be calculated for other scenarios (more/less SNPs, lower MAFs, and different outcomes).

Simulations for GRS × metformin interactions and calculation of summary statistics for diabetes  
incidence.  To calculate the underlying survival time variable we used the method described by Bender et al.20. 

https://gbr-power.crc.med.lu.se
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The survival time as a function of predictor variables and their effect is estimated using the following formula 
(equation (1)) and is defined as the time-to-event for each participant given the covariates such as metformin and 
SNPs:

β= − × −−T H log U x[ ( ) exp( )], (1)0
1

where T denotes the survival time, U follows a uniform distribution on the interval [0, 1], x is a matrix of covari-
ates, −H0

1 denotes the inverse cumulative baseline hazard function when x is zero and β is a vector of regression 
coefficients for marginal effects of all the SNPs and their interactions with metformin. The matrix x contains 
vectors for covariates such as metformin, individual SNP variables and variables of the cross product of the SNP 
and metformin. The longest follow-up time was set to 4.0 years and overall type 2 diabetes incidence was set to 
37% at the study endpoint as approximated from published DPP data16. To obtain summary statistics for 
Cox-proportional hazard models, the model defined in equation (2) was fitted to data using the coxph function in 
the R program21, where the GRS variable was used as a covariate in the regression model.

β β β= × + + ×h t x t Met GRS Met GRS( ) h ( ) exp( ( ) ( ) ( )) (2)main main int0

Simulations for GRS × ILI interactions and 1-yr change in small LDL particle size.  We calculated 
1-year small LDL particle size using the equation summarized in equation (3).

β β β β+ + + ×~y ILI x ILI x( ) (3)main main int0

where βmain is the vector of marginal effects for the 20 index SNPs; βint is the vector of interaction effects; and x is 
the matrix of SNP vectors with corresponding allele frequencies; and y is the estimated small LDL particle size for 
each individual based on population parameters specified in equation (3) according to the estimates published by 
the DPP consortium or as mentioned above.

Models for effect size estimates.  To obtain summary statistics for linear models, the following model was 
used to calculate summary statistics using the lm function in the R program21, where the GRS variable was used 
as a covariate in the regression model (equation (4)).

In order to obtain summary statistics for marginal and interaction effects, the following regression equation 
was modeled:

β β β+ + ×~y ILI GRS ILI GRS( ) ( ) ( ) (4)main main int

Statistical power calculation.  We implemented simulations to provide an estimate of power likely to 
result from subsequent RCTs given various sample sizes. To determine the number of iterations needed to derive 
precise estimates of power, we tested various iterations from 10–2,000 at frequent integrals. We found that in 
almost all scenarios ≤​1,000 iterations were needed (often only 100) to achieve reliable power estimates; however, 
for the sake of consistency, 1,000 iterations are used in all of the power calculations included in the web-based 
power calculator.

We used two methods to calculate statistical power for interaction effects:
The Zero/One method was used to calculate power from the Cox simulations. Each simulation was scored with 

1 when the P-value for the interaction β​, taken from the summary of the coxph function, was <​0.05, and 0 for the 
simulations where the P-value for the interaction β​ was ≥​0.05. We then summed the number of scores equal to 
one and divide by the total number of simulations to estimate power.

For linear models, the standard error method was used. We took the effect size and standard error of the inter-
action term from the summary of the lm function in R for each simulation, and then averaged these effect sizes 
and standard errors respectively, and incorporated these into equation (5):

γ
γ
−−β −α~Z Z

SE( ) (5)1 1 2

where γ​ is the effect size (i.e. the difference between the value of null hypothesis and alternative hypothesis for the 
parameter being tested) SE (γ​) is the standard error of the effect size (a function of sample size), α​ is the signifi-
cance level, −αZ1 2

 is the z-score of − α1
2

, β​ is the probability of making a type 2 error and Z1−β is the z-score of  
1 −​ β​ and representing the power of the test22.

Applying the Zero/One method to calculate power for interaction effects modeled with linear regression 
yielded the same results as the standard error method.

When using the Standard Error method (equation 5 above), α​ is the significance level in the equation, which 
denotes the probability of type 1 error. Applying the Zero/One method, we also consider type 1 error by scoring 
each simulation with 1 when the P-value for the parameter of interest is below the significance level (here 0.05), 
and 0 where the P-value is equal to or above 0.05. An entry field labeled as “Significance Level” is also provided 
in the web interface for the type 1 error rate the user specifies. In all simulations described here, type 1 error rates 
were set to 0.05 for both study designs to avoid bias.

Results
Statistical power to observe the interaction between the rs8065082 variant at SLC47A1 and 
metformin treatment (vs. placebo control) in diabetes incidence, as reported in the DPP.  With 
a sampling-frame of 31,000 individuals, power to observe an interaction between the rs8065082 variant and 
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metformin was higher with the GBR approach compared with the conventional sampling approach. For example, 
a sample size of ~3,000 is required to achieve 80% power using conventional sampling, while 80% power can be 
achieved with ~1,700 participants using the GBR approach (Fig. 1).

Impact of MAFs and effect sizes on GRS × treatment interactions in diabetes.  With a sampling- 
frame of 10,000 individuals, statistical power to observe GRS ×​ treatment interactions was significantly higher for 
the GBR approach compared with the conventional sampling approach in all four tested scenarios; these scenarios 
are: high-frequency SNPs with large effect size; high-frequency SNPs with small effect size; moderate-frequency 
SNPs with large effect size; and moderate-frequency SNPs with small effect size. For high-frequency SNPs with 
large effect sizes, trials with ~390 and ~650 participants would be required to achieve 80% power to observe a 
GRS ×​ metformin interaction using the GBR and conventional sampling approaches, respectively (Fig. 2A). For 
high-frequency SNPs with small effect sizes, these sample sizes are ~700 and ~2,500 respectively (Fig. 2B). For 
moderate-frequency SNPs with large effect sizes, these sample sizes are ~250 and ~1,000 respectively (Fig. 2C). 
For moderate-frequency SNPs with small effect sizes, these sample sizes are ~1,700 and ~4,500 respectively 
(Fig. 2D).

Statistical power to observe the GRS × ILI interaction for 1-yr change in small LDL particles 
reported in the DPP.  Taking a sampling-frame of 31,000 and a 32 SNP GRS, the GBR approach yields higher 
statistical power than the conventional sampling approach for different sample sizes (Fig. 3). To obtain 80% power 
with the given assumptions, ~400 participants are required using the GBR approach, whereas ~1,900 would be 
required with conventional recruitment.

Impact of MAFs and effect sizes on GRS × treatment interactions for 1-yr change in small LDL 
particles.  Like the examples given above using Cox proportional hazards models, the GBR approach yields sig-
nificantly higher power compared with the conventional sampling approach in all tested scenarios (high-frequency 
SNPs with large and small effect sizes and moderate-frequency SNPs with large and small effect sizes).  
With a sampling-frame of 10,000 participants, ~100 and ~700 participants would be required using the GBR and 
the conventional sampling approaches respectively to observe a GRS ×​ ILI interaction where the GRS is com-
prised of high-frequency SNPs with large effects (Fig. 4A). With a GRS comprised of high-frequency SNPs con-
veying small effects, the sample sizes required to achieve 80% power are ~1,000 and ~3,900 respectively (Fig. 4B). 
With a GRS comprised of moderate-frequency SNPs that convey large effects, these sample sizes are ~285 and 
~1,600 respectively (Fig. 4C). With a GRS comprised of moderate-frequency SNPs with small effect sizes, these 
sample sizes are ~2,700 and ~7,000 respectively (Fig. 4D).

Effect of sampling-frame size on statistical power in GRS × treatment interactions.  Changing 
the sampling-frame size does not materially affect the mean of the GRS, but the number of observations at the 
extremes of the GRS distribution grows as the sampling-frame increases in size (Supplementary Figure 2). This 
has no material impact on statistical power when participants are randomly sampled from the population, as in 
conventional clinical trials. However, for the GBR approach, increasing the sampling-frame yields a progres-
sively greater genetic contrast between the two recalled groups, thereby increasing power (Fig. 5A–B for Cox and 
5C-D for linear models) in almost all scenarios. For example, where high-frequency variants with small effects 
were considered, increasing the initial sampling-frame (5,000 through 10,000, 50,000, 100,000, 500,000 partic-
ipants) significantly improves statistical power (Fig. 5A–B). Similarly, for the linear model, the GBR approach 
yielded significantly higher power. Increasing the initial sampling-frame had no effect on statistical power in the 

Figure 1.  Statistical power (y axis) to observe an interaction between variant rs8065082 at SLC47A1 and 
metformin using GBR and conventional sampling approaches (based on DPP clinical trial parameters). 
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conventional trial scenario. Figure 6 shows comparisons for a range of other scenarios, each of which demon-
strates higher power to observe interactions for the GBR vs. conventional sampling approaches.

Measurement error and power to observe interactions.  The smaller sample size requirements of 
GBR trials might permit deeper or more precise phenotyping of participants. This is perhaps most relevant when 
statistical power to observe interaction effects remains low, even when the GBR approach is used. Because error 
in the assessments of exposures and outcomes profoundly influences power to observe interaction effects23, we 
proceeded to examine the extent to which reductions in measurement error influence sample size requirements 
and power. As Fig. 7 shows, power to observe interactions improves in both settings, but there are scenarios where 
power is suboptimal in conventional trials even when the outcomes are precisely assessed, but where improve-
ments in measurement precision in a GBR trial raises power to an acceptable level. The required sample sizes to 
reach 80% power using the GBR approach were ∼​20, ∼​70 and ∼​300 for low, moderate and high error, respec-
tively. With conventional sampling, the required sample sizes were ∼​200, ∼​600 and ∼​1,800 for low, moderate 
and high error, respectively.

Figure 2.  Statistical power (y axis) for different sample sizes using conventional sampling and GBR approach: 
(A) high-frequency SNPs with large effect sizes, (B) high-frequency SNPs with small effect sizes, (C) moderate-
frequency SNPs with large effect sizes, and (D) moderate-frequency SNPs with small effect sizes. Simulations 
performed using Cox-proportional hazards models for time to event data.
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Discussion
We assessed plausible scenarios within which one might consider testing genotype ×​ treatment (drug or life-
style) interactions. Using the population parameters and effect estimates from the DPP for time-to-event9 and 
quantitative10 outcome variables, we demonstrate through simulations that the GBR approach is ubiquitously 
more powerful than the conventional sampling approach used in clinical trials when the objective is to validate a 
genotype ×​ treatment interaction.

To place our data in context with real-world examples of genotype ×​ treatment interactions, we undertook 
simulations using published data from the DPP, an RCT within which genotype ×​ treatment interactions have 
been reported for metformin9 and lifestyle10 interventions. Our simulations suggest that with a total of 2,155 
participants randomized to the metformin and placebo control interventions, the DPP was likely underpowered 
(61%) to observe the interaction between the rs8065082 SLC47A1 variant and metformin in type 2 diabetes inci-
dence. A trial of equivalent design to the DPP would require roughly 3,000 participants to achieve 80% power to 
observe this interaction effect; a comparable level of power could be achieved in a GBR trial comprised of as few 
as 1,700 participants (Fig. 1).

We show that recruiting clinical trial participants based on predetermined genetic characteristics is often 
a substantially more powerful approach for validating gene ×​ treatment interaction effects than conventional 
approaches, where participants are recruited randomly and subsequently genotyped. Nevertheless, there are 
scenarios where GBR trials are likely to be especially appealing; for example, where the genotype of interest is 
infrequent or where the procedures or assays needed to adequately phenotype participants are very costly or 
challenging to perform.

In scenarios where the index genotypes are very common within the background population, the GBR 
approach is less compelling, not least because it has considerable caveats. For example, trials that recruit partic-
ipants by genotype are by definition designed in such a way that the trial population is genetically unrepresent-
ative of the background population. Thus, unlike conventional RCTs, GBR trials are unlikely to be suitable for 
extensive secondary hypothesis testing. Furthermore, GBR trials of the nature described here are unlikely to be 
suitable for discovery of genetic loci that interact with treatment, owing to the special genetic characteristics of 
the trial cohort and the specific hypothesis GBR trials are designed to test, whereas it is conceivable that very large 
conventional RCTs might be suitable for this purpose. Nevertheless, focusing recruitment on the subgroup of the 
population at the highest genetic risk of the trial’s outcome (rather than adopting the approach we define here of 
juxtaposing high and low risk participants for a specific locus or set of loci), is likely to improve power for dis-
covery of novel genetic variants that interact with treatments in clinical trials; this, as Shork and Topol eloquently 
quantified12, is primarily attributable to the higher incidence rates of the trial’s outcome anticipated in people at 
high genetic risk. However, as the authors note, most genetic variants that might be used for this purpose have 
been discovered using prevalent outcome data, and a core assumption that is made in these analyses, that variants 
that predispose to higher odds of prevalent disease also raise incidence rates, is yet to be shown for most suscep-
tibility variants. It is also important to keep in mind that if the genotypes upon which participants are recalled 
influence retention, power to observe interactions may be diminished and results may be biased. Thus, when GBR 
trials are designed, it would be prudent to first determine whether the genotypes of interest are associated with 
retention, which could be done using analyses of existing RCT data.

Our work focuses predominantly on scenarios where genotype might influence response to interventions. It 
is also possible that the same genotypes might affect the residual risk of developing the disease or trait of interest 
(i.e., the variant conveys both marginal and interaction effects), which would affect power12. To address this, the 
marginal and interaction effect estimates are incorporated into our calculations (and can also be adjusted in the 
web calculator by the user).

Figure 3.  Statistical power to observe GRS × lifestyle interactions on 1-year small LDL particle levels 
(based on DPP clinical trial parameters). 
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Some of our analyses focus on an intronic variant at SLC47A1, which is unlikely to be functional. We elected 
to do so because we sought a real-world, published comparison9. However, it is important to keep in mind when 
designing GBR trials that the observation of gene-treatment interactions is likely to be greatest when participants 
are recalled on genotypes at functional loci rather than their non-functional proxies, as the latter will result in a 
degree of exposure misclassification. The extent to which power will diminish depends on the degree of linkage 
disequilibrium between the functional and proxy variants, such that low linkage disequilibrium between variants 
will result in greater losses in power, in much the same way as phenotype assessment error affects power (Fig. 7).

There are also specific ethical considerations for GBR trials. Many new cohort studies request participants to 
consent to be recalled for subsequent sub-studies, such as GBR trials. In the UK, for example, the UK Biobank 
(N~500,000)24, INTERVAL (N~50,000)25, and NIHR BioResource (N~20,000–100,000)26 are all designed with 
future GBR studies in mind. Similar initiatives are underway in other countries. However, where GBR studies are 
planned in cohorts that began long before the GBR study design was established, it is unlikely that appropriate 
consent was obtained; in these settings, it may be necessary to re-consent participants before GBR can be initi-
ated, or focus the recall on stored biosamples rather than the physical recall of participants27.

Figure 4.  Statistical power (y axis) for different sample sizes using conventional sampling and GBR 
approaches for trials design to observe gene × treatment (lifestyle vs. control) interactions for 1-year 
small LDL particle levels. Genetic risk score with different underlying allele frequencies and effect sizes are 
considered: (A) high-frequency SNPs with large effect sizes, (B) high-frequency SNPs with small effect sizes, 
(C) moderate-frequency SNPs with large effect sizes, and (D) moderate-frequency SNPs with small effect sizes. 
Simulations were performed using linear regression.
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For some of our analyses, a sample-frame of 31,000 participants was selected as this represents the number 
screened for the DPP trial. It is worth keeping in mind though that only ~10% of these people were eventually 
enrolled into the DPP, as many were ineligible. Thus, a GBR trial designed to test the SLC47A1 hypothesis would 
require sampling-frames many times larger than 31,000, if enough participants who are fully eligible are to be 
identified, which has clear cost implications for GBR trials. However, a larger sampling-frame would allow an 
even more extreme juxtaposition of the two genotype groups, which would further enhance power in the GBR 
trial. Whilst the cost implications of needing such large sample-frames are important, once the sampling-frame is 
in place, such as is the case in the UK cohorts outlined above, this limitation is largely offset.

Although we are unaware of other studies that closely parallel ours, Hu et al.28 assessed the economic implica-
tions of enrolling participants at high-risk of disease based on clinical and genetic characteristics, with the expec-
tation that doing so would maximize event rates. The study also helps illustrate the costs and benefits, as well as 
statistical power implications of recalling participants by genotypes for studies of risk prediction and prevention. 
Whilst this approach described by Hu et al.28 differs in many ways to the GBR design we explore here, the core 
principle of recruiting participants on the basis of their genetic characteristics to enhance the statistical power of 
an analysis is the same.

Figure 5.  Comparison of the conventional sampling approach with the GBR approach. Statistical power 
is shown on the y axis and sample size on the x axis from a range of initial sampling-frames. GRS based on 
high-frequency SNPs with small effect estimates were considered and simulations performed for: (A) Cox 
proportional hazard model for time to event data for GBR sampling, (B) Cox proportional hazard model for 
time to event data for conventional sampling, (C) Linear regression models for 1-year small LDL particle levels 
for GBR sampling, and (D) Linear regression models for 1-year small LDL particle levels for conventional 
sampling.
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At least two published studies describe statistical power for phenotype-based recall studies29,30, although not in 
the context of clinical trials. Sampling from the extremes of phenotypic distributions has proven powerful for the 
detection of rare variants and for studying disease mechanisms in cross-sectional settings. Indeed, the mechanis-
tic understanding of numerous highly penetrant traits has been greatly enhanced by studies designed in this way, 
particularly when the phenotype is easily observed such as in congenital obesity31 and some cancers32. Sampling 
from the extremes of the distribution for a given phenotype increases power to detect rare variants substantially, 
with as much as a four-fold reduction in sample size requirement29,30. However, there are significant caveats to 
phenotype-based recall studies that genotype-based recall studies do not face. For example, most phenotypes are 
affected by multiple exposures, whereas germline DNA variants are not; thus, confounding in phenotype-based 
recall studies may be much more difficult to contain than in the genotype-based recall setting. This is especially 
important in RCTs, where the point is to provide a high level of causal inference.

In addition to the comparison of power in GBR and conventional trials, we also explored the influence of 
phenotype measurement error on power under the two recruitment scenarios. Our primary aim was not to deter-
mine whether error in the assessment of the outcome impacts power to observe interaction effects, as this has 
been done before23,33. Instead, we report these results because they are likely to prove useful for those designing 
GBR trials. Consider, for example, scenarios where even with GBR recruitment a trial is underpowered to observe 
interactions using standard phenotyping procedures; in these cases, the costs saved by undertaking the trial in 

Figure 6.  Sample size (y axis) required for 80% power for different initial sampling-frames (x axis) and 
different allele frequencies and effect estimates. Line color indicates different scenarios for genetic variant 
allele frequencies and effect estimates: (A) Cox-proportional hazard model, (B) linear regression model.

Figure 7.  Effect of measurement error on power: (A) shows power curves for phenotypes (outcomes) measure 
with varying degree of measurement error using the GBR paradigm, (B) shows power with different sample 
sizes using the conventional participant recruitment paradigm. Statistical power is plotted on the y-axis and 
samples sizes are plotted on x-axis.
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fewer participants could be reinvested in the trial by performing more detailed phenotyping or extending the 
duration of follow-up.

Our simulations are predicated on several core assumptions, almost all of which are described in detail else-
where in this paper. An additional assumption we make in the GRS models is that genotype ×​ treatment inter-
action effects are linear across the distribution of these scores. It is possible, however, that the manner in which 
genotypes at the extremes of a GRS distribution interact with treatments differ from those in the middle of the 
GRS distribution; this could be easily addressed by including a small group of participants from the middle of the 
GRS distribution within a GBR trial.

It is also important to keep in mind that the GBR design will not have superior power over conventional trials 
when: i) the sampling frame is too small to identify sufficient numbers of minor allele carriers or ii) genetic risk 
scores are used and the recalled groups are not sufficiently distinct.

In some instances, genetic variables will be strongly correlated with other factors (phenotypes) that can be 
easily measured, and recruiting on these variables rather than by genotype might be more cost-effective. However, 
there will be scenarios where the marginal and interactions effects for a given locus are not correlated, and where 
this is true the index variants may not have phenotypic proxies that could be used to recall on. Moreover, even 
where such proxy phenotypes exist, the relationship between them and the outcomes of the trial may not be 
causal, which may introduce confounding.

In some cases, the costs of genotyping large sampling-frames may be a rate-limiting factor; for instance, where 
a single GBR validation trial will be performed and a sampling frame dedicated to that study must be generated. 
In that setting, the cost-benefit ratio of a GBR trial may well be unfavorable. However, our paper is set against the 
backdrop of several very large bioresources that have been (or will soon be) extensively genotyped. The genera-
tion of these sampling frames and the high costs of genotyping the entire sample is justified on the basis that the 
sampling frame will be utilized for many different scientific objectives.

In summary, we have performed simulations to demonstrate the statistical power characteristics of GBR trials, 
showing ubiquitously that this is a more powerful design than conventional recruitment strategies when testing 
genotype ×​ treatment interactions. To facilitate the design of future GBR trials, we have incorporated our work 
into a web interface for calculating power in GBR trials (https://gbr-power.crc.med.lu.se).
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