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Abstract

A Mendelian randomization (MR) analysis is performed to analyze the causal effect of an 

exposure variable on a disease outcome in observational studies, by using genetic variants that 

affect the disease outcome only through the exposure variable. This method has recently gained 

popularity among epidemiologists given the success of genetic association studies. Many exposure 

variables of interest in epidemiological studies are time-varying, for example, body mass index 

(BMI). Although longitudinal data have been collected in many cohort studies, current MR studies 

only use one measurement of a time-varying exposure variable, which cannot adequately capture 

the long-term time-varying information. We propose using the functional principal component 

analysis method to recover the underlying individual trajectory of the time-varying exposure from 

the sparsely and irregularly observed longitudinal data, and then conduct MR analysis using the 

recovered curves. We further propose two MR analysis methods. The first assumes a cumulative 

effect of the time-varying exposure variable on the disease risk, while the second assumes a time-

varying genetic effect and employs functional regression models. We focus on statistical testing 

for a causal effect. Our simulation studies mimicking the real data show that the proposed 

functional data analysis-based methods incorporating longitudinal data have substantial power 

gains compared to standard MR analysis using only one measurement. We used the Framingham 

Heart Study data to demonstrate the promising performance of the new methods as well as 

inconsistent results produced by the standard MR analysis that relies on a single measurement of 

the exposure at some arbitrary time point.
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Introduction

The risk of complex diseases is influenced by multiple genetic factors, as well as behavioral 

and environmental factors, and their interactions. In the past ten years, tremendous progress 

has been made in genetic studies for complex diseases [Stranger, et al. 2011]. In addition to 

genetic factors, studying the effect of behavioral and environmental factors on the risk of 

complex diseases has been the focus of conventional observational epidemiology studies. 

Although the observational epidemiology studies have made considerable contributions to 

identifying possible factors affecting the risk of complex diseases, many of these 

observational findings cannot be confirmed by randomized clinical trials (RCTs). For 

example, the association between Vitamin E intake and coronary heart disease (CHD) risk 

identified in an observational study cannot be confirmed by an RCT [Hooper, et al. 2001]. 

The inability to establish causality in observational studies is mainly due to unadjusted 

confounders [Vandenbroucke 2004]. Is it possible that the success of genetic studies can be 

helpful for establishing the causal effect of exposure variables on the risk of complex 

diseases in observational studies? Mendelian randomization (MR), a principle originally 

described by Katan [Katan 1986], is used to study the exposure-outcome causal relationship 

in observational studies using genetic variants that affect the disease outcome only through 

the exposure variable [Lawlor, et al. 2008].

By the Mendel’s second law of independent assortment, the inheritance of two different 

traits is independent, with the exclusion of linkage disequilibrium (LD). Due to the 

independent and random allocation of alleles during gamete formation, the allele inherited 

from each parent is randomly determined. Therefore, at the population level, the associations 

between genetic factors and exposure variables are generally not confounded, in particular, 

by socioeconomic status and behavioral factors [Smith, et al. 2007]. In addition, the 

association between genetic factors and disease risk cannot be due to reverse causality 

[Lawlor, et al. 2008]. Therefore, genetic variants can be used as an instrument for an 

exposure variable to study its effect on a disease outcome. MR study is an application of 

instrumental variable (IV) analysis, which uses genetic variants as IVs to study the causal 

effect of an exposure variable on a disease outcome. IV analysis is commonly used in 

econometrics to make causal inference in observational studies. As depicted in Fig. 1, in 

order to be valid IVs, genetic variants must satisfy three assumptions: 1. the genetic variants 

are associated with the exposure variable; 2. the genetic variants are independent of the 

confounders that confound the association between the exposure variable and the disease 

outcome; 3. the genetic variants only affect the disease outcome through the exposure 

variable. The third assumption is also known as the exclusion restriction assumption and 

indicates the independence between genetic variants and disease outcome given the exposure 

variable and other observed confounders in the analysis. The three assumptions are 

necessary for testing the causal effect of the exposure variable on the disease outcome. At 
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least another assumption, that is, all the associations in Fig. 1 are linear and are not subject 

to interactions, is needed for causal effect size estimation in MR analysis [Lawlor, et al. 

2008].

The disease outcomes in epidemiology studies are often binary, for example, type 2 diabetes 

(T2D). One of the most commonly used IV analysis methods for a binary outcome is the 

two-stage residual inclusion (2SRI) [Holmes, et al. 2014b; Terza, et al. 2008]. Specifically, a 

linear regression model is fitted in the first stage for the exposure variable using the IV(s) 

and measured covariates. In the second stage, a nonlinear model is fitted for the binary 

disease outcome using the exposure variable, measured covariates, and residuals from the 

first stage linear regression model. In theory, 2SRI uses the residuals from the first stage 

regression as a proxy for the unmeasured confounders. 2SRI is also known as the control 

function method for IV analysis [Wooldridge 2010] and has been used in MR studies with 

binary disease outcomes [Holmes, et al. 2014b]. A Wald test using robust standard errors, an 

adjusted closed form solution for the standard errors, or bootstrapped standard errors is 

recommended for testing the significance of the causal effect in 2SRI [Terza, et al. 2008; 

Wooldridge 2010].

MR analysis is a very attractive approach for causal inference analysis in observational 

studies, especially for the exposure variables that are difficult to be studied using RCTs, such 

as body mass index (BMI). However, MR studies are subject to strong assumptions. 

Although the first two assumptions are not difficult to satisfy as described above, there may 

be violations of the exclusion restriction assumption, including pleiotropy, LD, and 

population stratification [Lawlor, et al. 2008; VanderWeele, et al. 2014]. The exclusion 

restriction assumption is often very difficult to validate and can only be statistically tested 

when there is over-identification. Moreover, a single genetic variant, usually a single 

nucleotide polymorphism (SNP), only explains a small proportion of the total variation in 

the exposure variable. Hence the genetic variant might turn out to be a weak IV, which can 

be a challenge in the MR studies, leading to inconclusive and insignificant results. Multiple 

SNPs or a genetic risk score (GRS), which is a weighted count of the effect alleles of 

multiple SNPs, have been used to resolve the weak IV problem and increase the statistical 

power in MR studies [Holmes, et al. 2014b; Palmer, et al. 2012; Pierce, et al. 2011]. In 

addition, the possible violation of the exclusion restriction assumption can be alleviated by 

using multiple SNPs instead of just one SNP in MR studies [Lawlor, et al. 2008].

Another challenge in MR studies is that the exposure variables of interest are often time-

varying (Fig. 2), for example, BMI and high-density lipoprotein (HDL) levels. Current MR 

analyses only use the exposure variable data from a single arbitrary time point, usually at the 

baseline level [Holmes, et al. 2014b; Voight, et al. 2012], even though longitudinal data of 

the time-varying exposures have been collected in many prospective cohort studies, for 

example, the Framingham Heart Study (FHS) [Splansky, et al. 2007]. A time-varying 

exposure may vary substantially over time, and a single measurement is often not adequate 

to capture the time-varying information. Furthermore, the exposure variables that change 

continuously over one’s lifespan might have a cumulative effect on the risk of a disease, e.g., 

lifelong reduced plasma levels of triglycerides-rich lipoproteins reduce the risk of CHD, but 

a reduced level of triglycerides-rich lipoproteins at an arbitrary baseline time point might not 
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always reduce the risk of CHD because the CHD risk will also depend on triglycerides-rich 

lipoproteins at other time points in life [Crosby, et al. 2014]. Davis et al. pointed out that 

using a single measure of a time-varying exposure could underestimate the relationship 

between the exposure variable and the outcome variable, not only due to the measurement 

error in the exposure, but also failure to capture its long-term change [Davis, et al. 1990]. 

More importantly, it is the lifetime genetic effect on the exposure that is assumed and 

estimated in the MR analysis framework, which, however, is unlikely to be obtained with 

cross-sectional exposure data [Evans and Davey Smith 2015]. Given this limitation, how 

should the longitudinal data of a time-varying exposure variable be incorporated in an MR 

analysis? Here we propose modeling longitudinal data using functional data analysis 

methods. Specifically, the underlying individual curve of the time-varying exposure variable 

is recovered using the functional principal component analysis through conditional 

expectation (PACE) method, which is designed for modeling irregular and sparse 

longitudinal data [Yao, et al. 2005]. Then MR analysis is performed by assuming that the 

time-varying exposure variable has a cumulative effect or burden on the risk of the disease. 

We propose two methods. For the first method, the cumulative effect of the time-varying 

exposure variable is calculated from the recovered curves and standard MR analysis is then 

performed using the cumulative effect of the exposure variable. The second method further 

assumes a time-varying genetic effect on the exposure variable, for which the functional 

regression models are used. Note that here we focus on testing if a time-varying exposure 

variable has a causal effect on the risk of a disease, rather than effect size estimation. Our 

simulation studies mimicking real data show that the proposed functional data analysis-

based methods incorporating longitudinal data have higher statistical power than the 

standard MR analysis using a single measurement of the time-varying exposure variable. 

The proposed method that assumes a time-varying genetic effect has the highest statistical 

power. We also demonstrate promising performance of the proposed methods by 

investigating if BMI has a causal effect on the risk of T2D and CHD, and if HDL has a 

causal effect on the risk of CHD, using the FHS longitudinal data. To the best of our 

knowledge, this is the first work aiming to incorporate longitudinal data of a time-varying 

exposure variable in MR analysis to test its causal effect on a binary disease outcome.

Methods

Notation

We consider a cohort study for MR analysis. Suppose the cohort study has a total sample 

size of n subjects. Let yi be the binary disease outcome recorded at time Ti, yi = 0 or 1, for i 
= 1, …, n. Let Xi = (xi1, xi2, …, xiJi)

T, be the longitudinal data vector of the time-varying 

exposure variable of subject i. The time when xij is recorded is tij, where tij < Ti for j = 1, …, 

Ji. Gi denotes the vector of multiple SNPs or the GRS of subject i. Zi is the vector of 

observed covariates of subject i. Neither Gi nor Zi is time-varying.

MR analysis using baseline measurement of a time-varying exposure variable

Conventional MR analysis for a time-varying exposure variable involves performing a 2SRI 

using only one measurement from the longitudinal data, usually at the baseline, for example, 

xi1. Specifically, a linear regression model is fitted for xi1 in the first stage: xi1 = β0 + β1Gi + 
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β2Zi + vi to obtain the fitted residual v̂i. Then a logistic regression model is fitted in the 

second stage: , where E(yi) is the expected value of 

yi. To test the null hypothesis that the baseline level of the time-varying exposure variable 

has no effect on the disease outcome, i.e., H0: α1 = 0, a Wald test using the robust standard 

error (Huber-White standard error), an adjusted closed form solution for the standard error, 

or a bootstrapped standard error can be performed [Cai 2010; Holmes, et al. 2014b; Palmer, 

et al. 2011; Terza, et al. 2008]. The limitation of the conventional analysis method is that a 

single measurement is not adequate to capture the information in the exposure variable that 

changes over time, leading to possible loss of power and biased results.

Functional data analysis methods for MR analysis with a time-varying exposure variable

A time-varying exposure variable changes continuously over time. It is intrinsically 

functional data with longitudinal observations collected only at certain time points, as shown 

in Fig. 2. Therefore, we propose to use functional data analysis techniques to incorporate 

longitudinal data in MR analysis. Of note, we previously employed functional data analysis 

approaches to model longitudinal exposures in the context of gene-environment interactions 

(GxE) that may modify the risk of complex disease [Wei, et al. 2014].

PACE—Longitudinal data from observational studies are often sparse and collected at 

irregular time points. In addition, different subjects may have different numbers of 

observations. Given the characteristics of the longitudinal data, we propose to use the PACE 

method [Yao, et al. 2005] to recover the underlying curves for the exposure variable. The 

PACE method was developed specifically for modeling sparse longitudinal data with 

irregular observations by assuming that the longitudinal observations of each subject are 

sampled from an underlying curve with noise and the curves of all the subjects are 

independent with the same mean function and covariance function [Müller 2009; Yao, et al. 

2005]. Let μ(t) be the mean function and R(s, t) = cov[x(s), x(t)] be the covariance function 

of the collection of curves in a closed time interval , where s, t ∈ . Eigen decomposition 

can be performed to expand the covariance function as , where 

λk’s are nonnegative eigen-values (λ1 ≥ λ2 ≥ ···) and ϕk(t)’s are eigen-functions. Then the 

curve of subject i can be expressed as  by the Karhunen-Loève 

theorem [Yao, et al. 2005]. ξik is the kth functional principal component (FPC) score of 

subject i with a mean of 0 and a variance of λk, where ξik = ∫ [xi(t) − μ(t)]ϕk(t)dt. The 

numerical integration method for FPC score calculation works well for densely observed 

data, but not for sparse longitudinal data. To solve this problem, Yao et al. [Yao, et al. 2005] 

introduced additive measurement errors into the model as , 

where the measurement error εij is assumed to follow the classical measurement error 

assumption with a mean of 0 and a variance of σ2 [Carroll, et al. 2006]. For sparse data, the 

best prediction of ξik is the conditional expectation 

by assuming that ξik and εij are jointly normally distributed, where ϕik = (ϕk(ti1), …, 

ϕk(tiJi))
T, ΣXi = cov(Xi, Xi), and μi = (μ(ti1), …, μ(tiJi))

T [Yao, et al. 2005]. When applied to 

real data, μ̂(t) and R̂(s, t) are estimated by pooling all the observations xij (i = 1, …, n; j = 1, 
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…, Ji) together. The mean function μ̂(t) is estimated using a local linear smoother. The 

covariance function R̂(s, t) is estimated by smoothing the sample covariance function (xij − 

μ̂(tij))(xil − μ̂(til)) using a local linear smoother in the direction of the diagonal and a local 

quadratic smoother in the direction orthogonal to the diagonal to take into account 

measurement errors. Eigen decomposition is then performed for R̂(s, t) after discretization 

and ξ̂ik can be calculated by plugging in the parameter estimates from the previous steps. 

The last step is to recover the individual curve using the leading eigen-functions as 

 for t ∈ . The selection of the number of eigen-functions K can 

be based on the fraction of variance explained (FVE), Akaike information criterion (AIC), or 

Bayesian information criterion (BIC) [Yao, et al. 2005]. The PACE method has been 

implemented in R package “PACE”.

MR analysis is subject to strong assumptions. For effect estimation, a more strict assumption 

that all the associations in Fig. 1 are linear is required [Lawlor, et al. 2008]. For a binary 

disease outcome, the linear association assumption cannot be satisfied. Therefore, we focus 

on testing if a time-varying exposure variable has a causal effect on a binary disease 

outcome, and do not focus on the effect size estimation. This is consistent with the fact that 

the focus of MR analysis is to identify causal risk factors for a disease, not to obtain precise 

estimation of the effect size [Burgess 2013]. We propose two methods for testing the causal 

effect.

New Method I: PACE+2SRI—The first method assumes that the time-varying exposure 

variable has a cumulative effect on the risk of the disease. The cumulative value of the time-

varying exposure variable xi can be calculated from the recovered curve by integration:

(1)

where T0 is the lower bound of the time interval  and Ti is the disease incidence time or 

the time that the follow-up of yi is censored. Then standard 2SRI can be performed using the 

cumulative value xi. A linear regression model is fitted in the first stage:

(2)

to obtain the fitted residual ŵi. A logistic regression model is then fitted in the second stage:

(3)

A Wald test based on the robust standard error (Huber-White standard error) is used to test 

the null hypothesis that the time-varying exposure variable has no effect on the disease risk, 

i.e., . We denote this method as PACE+2SRI.
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New Method II: PACE+2SFRI—As gene expression levels change over time, the genetic 

effect on a time-varying exposure variable might change over time as well. To take this 

phenomenon into account, we propose the second method for conducting MR analysis for 

the recovered functional data using functional regression techniques. Specifically, let Di(t) = 

xî(t) − μ̂(t) be the functional data of the time-varying exposure variable with trend removed. 

A two-stage functional residual inclusion (2SFRI) can be performed. In the first stage, we fit 

a functional linear model for the time-varying exposure variable as:

(4)

to obtain the fitted residual r̂i(t), where β1(t) is the time-varying genetic effect on the 

exposure. The functional linear model has been implemented in the R package “fda” 

[Ramsay, et al. 2009]. In the second stage, a functional logistic regression model is fitted to 

assess the effect of the time-varying exposure variable on the binary disease outcome:

(5)

For hypothesis testing purposes, we assume a time-constant effect for both the exposure 

variable and the fitted residual so that the functional logistic regression model (5) can be 

simplified to a logistic regression model:

(6)

where , and . To test the null hypothesis that the cumulative 

time-varying exposure has no effect on the disease outcome, i.e., H0:γ1 = 0, we use a Wald 

test with the robust standard error (Huber-White standard error). We denote this method as 

PACE+2SFRI. Of note, the simplified model (6) is in line with the “burden test” in 

association testing for rare variants [Li and Leal 2008].

IV-outcome association test in MR analysis

If the objective of a MR analysis is only to test if an exposure variable has a causal effect on 

a disease outcome, it has been suggested that it suffices to test the association between the 

IV(s) and the disease outcome given that the IV(s) are valid [Holmes, et al. 2014b; 

VanderWeele, et al. 2014]. This is analogous to “intent-to-treat” in an RCT. Specifically, a 

logistic regression model is fitted: , where E(yi) is the 

expected value of yi. Given the validity of Gi, rejecting H0: θ1 = 0 amounts to rejecting the 

null hypothesis that the exposure variable has no causal effect on the disease outcome. 

Although the IV-outcome association test can maintain the Type I error rate in the absence of 
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causal effect, its power can be different from that of the two-stage methods when there is a 

causal effect as demonstrated in our method comparison detailed below.

Simulation Studies

We performed simulation studies to evaluate the performance of the two proposed functional 

data analysis-based methods in comparison with the standard MR analysis, which uses only 

the baseline measurement of a time-varying exposure variable and the IV-outcome 

association test method. We considered two simulation set-ups.

Simulation Set-up I

We simulated data by assuming that genetic variants have time-varying effects on the 

exposure variable and the exposure variable has a cumulative effect on the disease risk. To 

mimic the real data, we used the parameter estimates obtained from studying the effect of 

BMI on the risk of T2D using the GRS as the IV in the FHS data analysis as described in the 

next section. We simulated the time-varying exposure of subject i as: xi(ti) = β0(ti) + β1(ti)Gi 

+ β2(ti)sexi + β3 (ti)ui + vi(ti), where ti ∈ [31, Ti] and Ti ∈ [51,60]. Ti was the age that the 

disease outcome yi was recorded, which was randomly sampled from the age interval of 51 

to 60. Gi, the GRS of subject i, was simulated from N(0,0.452). Sex was simulated from a 

Bernoulli (0.5) distribution and then standardized to have a mean of 0. ui represents the 

unmeasured confounders, simulated from the standard normal distribution. We further let 

β0(ti) = μ̂(ti), which was the mean BMI function over time estimated from the PACE 

procedure. β̂1(t) and β̂2(t) were the estimated time-varying coefficients of GRS and sex from 

the first stage of 2SFRI when analyzing the effect of BMI on the risk of T2D using the FHS 

data. We simulated data using β2(ti) = β̂2(ti) and β1(t1) = β̂1(ti), 2β̂1(ti) or 4β1̂(ti) to assess 

the performance of different methods using different IV strength levels. In addition, β3(ti) = 

1+ 0.2(sin(πti/20) +cos(πti/20)). The residual vi(ti) was resampled from the BMI residuals 

estimated from the first stage of 2SFRI. Then the binary disease outcome was simulated 

from a binomial distribution Binom(1, pi), where 

. The estimated coefficient of the 

cumulative effect of BMI was 0.0054, based on analyzing its effect on the risk of T2D using 

the FHS data. We let h = 1 or 2 to simulate data with different causal effect sizes. We also 

simulated data with h = 0 to check if Type I error rates of the functional data analysis-based 

methods can be well controlled. To simulate sparse and irregular longitudinal measurements 

of the time-varying exposure variable, we randomly selected two to five observations at 

different age points for each subject from the simulated time-varying exposure variable 

(xi(ti)) as the observed data. We analyzed each simulated data set using four methods, 2SRI 

using only the first measurement of the time-varying exposure variable, PACE+2SRI, PACE

+2SFRI, and the IV-outcome association test. Gi was used as the IV, and sex and Ti were 

included as observed covariates in all the analysis. The number of FPCs in the PACE 

procedure was selected based on at least 95% of FVE. We fixed the sample size of each 

simulated data set at n=1000. Using the significance level of 0.05, we conducted 2000 

replications for empirical Type I error rate evaluation and1000 replications for empirical 

statistical power evaluation. For different IV strength levels, we calculated the mean F-test 

Cao et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistic for testing the association between the GRS and longitudinal exposure data using 

linear mixed models (LMMs).

Simulation Set-up II

To mimic the real data, we simulated the longitudinal data of the time-varying exposure 

variable and genetic variants by resampling from the FHS data. We further simulated the 

binary disease outcome using FPC scores instead of assuming a cumulative effect of the 

exposure variable on the disease risk. Let datai = (xi1, xi2, … xi7, SNPi1, SNPi2,…, SNPi14, 

sexi, Ti, FPCi1, FPCi2, FPCi3)T be the data vector of subject (i = 1, …, 1722) in the FHS 

data, which was used to analyze the effect of BMI on the risk of T2D. The vector (xi1, xi2, 

… xi7)T was the longitudinal BMI data collected from seven clinical visits. Many subjects 

had missing BMI values, meaning that not all the subjects had seven measurements. (SNPi1, 

SNPi2,…, SNPi14)T were the 14 SNPs used for constructing the GRS, and Ti was the time 

that the disease outcome was recorded. FPCi1, FPCi2, and FPCi3 were the top three FPC 

scores selected in the PACE procedure to recover the BMI curve. More detailed information 

on the FHS data is described in the next section. The data vectors in the simulated data sets 

were resampled with replacement from the observed FHS data vectors datai (i = 1,…,1722). 

We fixed the sample size of each simulated data set at n=1722, the same as the real data. We 

used parameter estimates from the real data analysis to simulate binary disease outcomes. 

For statistical power evaluation, the binary disease outcome of subject l in a simulated data 

set was generated from the binomial distribution Binom(1,p;), where 

. This amounts to assuming a time-

varying causal effect with , where 

 and  was the time-varying causal effect and 

exposure, respectively. We simulated data in three cases. In the first case, we let a1 = 0.027, 

a2 = −0.006, and a3 = −0.064, where the effect sizes are the same as the ones estimated from 

the real data. In the second case, we doubled the effect sizes and let a1 = 0.054, a2 = −0.012, 

and a3 = −0.128. In the third case, we let a1 = 0.027, and a2 = a3 = 0, meaning only FPC1 

affects the disease outcome. For empirical Type I error rate evaluation, the binary disease 

outcome of subject l in a simulated data set was generated from a binomial distribution 

Binom(1,pl), where . We analyzed the simulated data sets using 

either the 14 SNPs as IVs or the GRS as a single IV. Sex and Ti were included as covariates 

in all the analysis. For the IV-outcome association test, a Wald test was used when the GRS 

was used as the IV and a likelihood ratio test (LRT) was used when the 14 SNPs were used 

as IVs. With a significance level of 0.05, we simulated 2000 data sets for empirical Type I 

error rate evaluation and 1000 data sets for empirical statistical power evaluation.

Application to the FHS data

To demonstrate the proposed functional data analysis-based methods for testing the causal 

effect of a time-varying exposure variable on a binary disease outcome, we analyzed the 

effect of BMI on the risk of T2D and CHD, and the effect of HDL on the risk of CHD using 

the FHS data. The FHS is a family-based prospective cohort study with subjects from three 
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generations: the Original Cohort, the Offspring Cohort, and the Third Generation Cohort 

[Splansky, et al. 2007]. The Offspring Cohort is the largest cohort with both genetic 

information and longitudinal phenotype measurements collected from seven clinical visits 

[Cupples, et al. 2009]. We performed MR analyses using unrelated individuals from the 

Offspring Cohort. The FHS data was downloaded from NCBI dbGaP. We selected the age 

interval from 25 to 75 years to recover the BMI curves and HDL curves from the 

longitudinal data using the PACE method. We chose such an age interval that at least 50 

measurements of an exposure variable were collected at each age point when the data were 

pooled together to ensure stable estimation of both the mean function and the covariance 

function in the PACE procedure. The disease outcomes were censored at the last clinical 

visit that was at or before 75 years of age. The subjects included in the analysis had at least 

two measurements of the exposure variable in the age interval from 25 to 75 years before the 

disease incidence or censoring. The sample size for analyzing the effect of BMI on the risk 

of T2D was 1722 with 171 cases, while those for analyzing the effects of BMI and HDL on 

the risk of CHD were 1709 with 113 cases and 1669 with 110 cases, respectively. Following 

the previous MR analyses of the causal effect of BMI on cardiometabolic traits and events 

[Holmes, et al. 2014b], we used the 14 selected BMI SNPs identified from large-scale meta-

analyses [Guo, et al. 2013]. The SNP data were extracted from the FHS Candidate Gene 

Association Resource (CARe) study. The weights used for the BMI GRS calculation were 

the same as those used by Holmes et al. [Holmes, et al. 2014b]. To analyze the causal effect 

of HDL on the risk of CHD, we used the 14 HDL SNPs as used in a previous MR study 

[Voight, et al. 2012]. We extracted 2 of the 14 HDL SNPs from the FHS CARe study data 

and imputed the rest of the 14 SNPs from the FHS Affymetrix 500K array using the 1000 

Genomes Project haplotypes as the reference panel. We used SHAPEIT for phasing 

[Delaneau, et al. 2012] and IMPUTE2 for imputation [Howie, et al. 2012]. The HDL GRS 

was constructed following Voight et al. [Voight, et al. 2012]. We conducted MR analyses 

using the functional data analysis-based methods, the standard MR method using only the 

baseline measurement, and the IV-outcome association test. We used the first measurement 

of the time-varying exposure variable in the age interval from 25 to 75 years as the baseline 

measurement. We used either the GRS as a single IV or the SNPs used in GRS calculation as 

multiple IVs. We included sex and age when the disease outcome was recorded as 

covariates. The same covariates were included in the observational analysis, where the 

exposure variable’s effect on the disease outcome was assessed using logistic regression 

models.

Results

Simulation Studies

In simulation set-up I, we simulated data by assuming that the time-varying exposure 

variable has a cumulative effect on the disease risk. Table 1 shows the empirical Type I error 

rates of the different analysis methods in the presence of unmeasured confounders. At the 

significance level of 0.05, all the MR analysis methods were able to control Type I error 

rates at the nominal level, while direct observational analyses had inflated Type I error rates. 

Table 2 shows the empirical power of the four MR analysis methods, i.e., 2SRI using only 

the baseline measurement, PACE+2SRI, PACE+2SFRI, and the IV-outcome association test, 
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for a time-varying exposure variable, at varying IV strength levels and different cumulative 

effect sizes of the time-varying exposure variable on the disease risk. As expected, the power 

increased as either the IV strength or the causal effect size increased. The two functional 

data analysis-based methods always had higher statistical power than either the MR analysis 

method that uses only the baseline measurement or the IV-outcome association test in each 

of the simulated scenarios (Table 2). The IV-outcome association test had much lower power 

than the other three MR analysis methods.

In simulation set-up II, we simulated the longitudinal measurements of the time-varying 

exposure variable by resampling from the FHS real data. The disease outcomes were 

simulated using the FPC scores without assuming a cumulative effect from the exposure 

variable. Table 3 shows the empirical Type I error rate and power of different MR analysis 

methods using either the GRS as the IV or the 14 SNPs as multiple IVs. All the methods 

were able to control the Type I error rates at the nominal level except that the type I error 

rate of baseline 2SRI using 14 SNPs as multiple IVs was slightly larger (0.059). We observe 

substantial power gain by using the functional data analysis-based methods, especially the 

PACE+2SFRI method. When comparing MR analysis using the GRS as a single IV with that 

using the SNPs which were included in the GRS calculation as multiple IVs, the IV-outcome 

association test method had power loss, while the other methods had substantial power gain 

when the SNPs were used as multiple IVs in all the three simulated cases. We also 

performed MR analysis at each visit (see supplemental methods for details) in simulation 

set-up II. To use the minimum p-value (minP) obtained from analyzing the exposure variable 

data in each of the seven visits individually, we observe that the Bonferroni correction is 

necessary to control the Type I error rate (Table S1). The power of the Bonferroni corrected 

minP method was much lower than that of the baseline method only method, PACE+2SRI, 

and PACE+2SFRI.

The FHS Data Analysis

We performed MR analyses of the causal effect of BMI on the risk of T2D and CHD, and 

the causal effect of HDL on the risk of CHD, using data from the FHS Offspring Cohort. 

Fig. 3 shows the longitudinal BMI data and HDL data that were included in MR analyses. 

For both BMI and HDL, the individual fluctuation patterns could be very different. While 

some subjects had relatively stable trajectories over time, others had substantial changes 

across visits, hence establishing that the time-varying information cannot be adequately 

captured by a single measurement. We used the PACE method to recover the individual BMI 

curves and HDL curves from the longitudinal data. The smoothed mean BMI function 

increased slowly over time. The smoothed mean HDL function was almost constant over 

time (Fig. S1). We used the leading three eigen-functions (Fig. S2) and their corresponding 

FPC scores in BMI functional data recovery, which explained 84.7%, 13.6%, and 1.5% of 

the variation, respectively, with a total of 99.8% variation explained. The first eigen-function 

shows an almost constant shift from the mean curve. The second eigen-function shows a 

slowly increasing trend over time, while the third one increases from 25 to approximately 50 

years of age, and then decreases. Fig. 4 shows the observed longitudinal BMI data and the 

corresponding underlying time-varying curves recovered using PACE of four randomly 

selected subjects. Although the trajectories of different subjects varied, the PACE-recovered 
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curves were able to capture the different patterns. The recovered curves either went through 

or were adjacent to the longitudinal data points, confirming that majority of the variation in 

the observed data were well captured. For HDL, we used the leading two eigen-functions 

(Fig. S2) and their corresponding FPC scores in the functional data recovery, which 

explained 99% and 0.9% of the variation, respectively, with a total of 99.9% variation 

explained. The first eigen-function shows a slowly increasing trend over time. The second 

eigen-function shows an increasing trend up to approximately 55 years of age, followed by a 

decrease. Fig. S3 shows the observed longitudinal HDL data and the recovered time-varying 

underlying curves of four randomly selected subjects. Again, the PACE method was able to 

recover the time-varying information for the subjects with different patterns.

Before performing the MR analyses, we checked the strength of the association between the 

GRS and longitudinal exposure data using an LMM. The F-test statistic for the association 

between the BMI GRS and longitudinal BMI data was 13.25, higher than the weak IV 

threshold of F-test statistic of 11 [Pierce, et al. 2011]. The F-test statistic for the association 

between the HDL GRS and longitudinal HDL data was 8.94, below the weak IV threshold. 

We did not perform the test for the exclusion restriction with the FHS data because such a 

test cannot be performed when only one IV is used for one exposure variable (exact-

identification). In addition, there are no consistent ways to test the exclusion restriction in 

our two proposed MR analyses combined with the functional data analyses, even when we 

have multiple IVs (over-identification) because there are no validated exclusion restriction 

tests for these new methods yet in the literature.

The MR analysis results of the FHS data are shown in Table 4. When analyzing the causal 

effect of BMI on the risk of T2D using the GRS as the IV, PACE+2SRI had the smallest p-

value of 0.008, more significant than the baseline only analysis (p-value of 0.014), the IV-

outcome association test (p-value of 0.026), and the PACE+2SFRI analysis (p-value of 

0.057). When using the 14 BMI associated SNPs as IVs, MR analysis using the baseline 

BMI data, PACE+2SRI, PACE+2SFRI, and the IV-outcome association test had p-values of 

0.061, 0.026, 0.089, and 0.033, respectively. We did not identify a significant causal effect of 

either BMI or HDL on the risk of CHD, irrespective of whether we used the GRS as the IV 

or the SNPs as multiple IVs in the MR analyses. When performing direct observational 

analysis of the association between BMI and the risk of CHD, the baseline BMI had a 

significant association, while the cumulative BMI did not. The direct observational analysis 

of the association between HDL and the risk of CHD shows a significant association with 

the cumulative HDL level, but not the baseline HDL level. We also analyzed the effect of 

BMI on the risk of T2D and CHD, and the effect of HDL on the risk of CHD by individual 

clinical visits (Table S3, S4, and S5). We only used the exposure data collected between 25 

and 75 years of age, to be consistent with the data used for functional data analysis-based 

methods. The sample sizes of different visits were different, but comparable. However, the 

results are not consistent across clinical visits. For example, in MR analysis of the causal 

effect of BMI on the risk of T2D using the GRS as the IV (Table S3), the result based on the 

BMI measurement from the 6th clinical visit was very significant (p-value of 0.002), while 

the result based on the BMI measurement from the 7th clinical visit was not significant (p-

value of 0.097).
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Discussion

In this work, we have proposed two novel functional data analysis-based methods, i.e., 

PACE+2SR and PACE+2SFRI, for incorporating longitudinal data of a time-varying 

exposure variable in the MR analysis when the disease outcome is binary. We have shown 

that the new methods outperform the current MR analysis that uses a single measurement at 

some arbitrary time point and the IV-outcome association test.

MR studies have been widely used in recent years to identify causal risk factors in 

observational studies, especially for the factors that cannot be studied using RCTs, for 

example, BMI, HDL and alcohol consumption [Holmes, et al. 2014a; Holmes, et al. 2014b; 

Voight, et al. 2012]. Many of these risk factors change continuously over one’s lifespan, and 

consequently a single measurement cannot capture such time-varying information. In 

addition, MR analysis inherently assumes that genetic variants affect these time-varying 

exposure variables, e.g., BMI, for the entire lifetime [Evans and Davey Smith 2015]. 

However, longitudinal data have not been taken into account in current MR studies, and only 

one measurement of a time-varying exposure variable, usually at the baseline, is used. The 

functional data analysis methods we introduce here incorporate longitudinal data in the 

analysis, and assume that the time-varying exposure variable has a cumulative effect on the 

risk of developing a disease. We have seen an increase in statistical power in our simulation 

studies using the functional data analysis-based methods, regardless of whether the data 

were simulated with or without the cumulative effect assumption. The PACE+2SFRI method 

had substantially higher power in simulation set-up II, where the longitudinal data of the 

exposure variable was resampled from the FHS real data. This may imply that the genetic 

variants have a time-varying effect on the exposure variable, which leads to a power gain in 

the statistical analysis that takes the time-varying information into account. In the FHS data 

analysis, the estimated functional coefficient of the BMI GRS changes over time (Fig. 5). 

The estimated effect of the GRS on BMI increases slowly from age 25 to 50 years, followed 

by a slow decrease. The estimated combined genetic effect of the 14 SNPs on BMI also 

changes over time (Fig. S4). Overall subjects with more effect alleles have higher fitted BMI 

values across their lifetime.

The GRS is widely accepted in current MR studies to increase IV strength by combining the 

effect of multiple SNPs [Holmes, et al. 2014b; Palmer, et al. 2012; Proitsi, et al. 2014; 

Voight, et al. 2012], where the weights used to construct the GRS are effect estimates from 

previous large-scale association studies. For example, Holmes et al. [Holmes, et al. 2014b] 

constructed the BMI GRS using SNP effect estimates from an association study with 

108,912 subjects [Guo, et al. 2013]. In our simulation set-up II, we observed a statistical 

power increase by using the SNPs in the GRS as separate IVs, compared to using the GRS 

as a single IV (Table 3). The SNP weights used in the GRS calculation, estimated from 

108,912 subjects, may not represent the SNP effect sizes well for the FHS data with 1722 

subjects that we used in the simulation studies. This might have led to a power loss in the 

GRS-based MR analyses. Extensive simulation studies conducted by Pierce et al. [Pierce, et 

al. 2011] found that using multiple genetic variants as separate IVs may result in weak IVs, 

while combining them could lead to statistical power loss, which is in agreement with our 

simulation results. Weak IVs may lead to inflated type I error rate in stage II testing due to 
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poor estimation in stage I [Burgess, et al. 2015]. Therefore, we suggest that researchers 

conduct an MR analysis using both IV methods, i.e., the first method using the GRS as a 

single IV and the second method using the multiple SNPs from the GRS computation as 

separate IVs.

In the FHS data analysis, we identified a significant causal effect of BMI on the risk of T2D 

using the PACE+2SRI method. When using the PACE+2SFRI method, the effect was not 

significant based on a significance level of 0.05, but the p-values were close to 0.05. We did 

not identify a significant causal effect of either BMI or HDL on the risk CHD. Our analysis 

results are generally consistent with previous MR study results based on much larger sample 

sizes. Holmes et al. showed that BMI had a causal effect on the risk of T2D, but not on the 

risk of CHD in a MR study with a sample size of 34,538 [Holmes, et al. 2014b]. Voight et al. 

showed that HDL did not have a causal effect on the incidence of myocardial infarction in a 

MR study with a sample size of 53,813 [Voight, et al. 2012]. In addition, randomized 

clinical trials have shown that HDL increasing therapy does not reduce cardiovascular risk 

[Landray, et al. 2014]

The limitation of this work is that the two new proposed methods are only aimed for 

hypothesis testing, not for causal effect size estimation. Our simulation studies showed that 

the new methods were able to control the Type I error rates well, confirming that the new 

methods are valid for testing purpose. However, statistical models that are valid for testing 

may not provide consistent estimates [Dai, et al. 2014]. Consistent effect size estimation is 

challenging in causal inference and is subject to strong assumptions. Nevertheless, the main 

focus of MR studies is to identify disease risk factors, rather than effect size estimation 

[Burgess 2013].

Although the MR analysis is subject to strong assumptions, it is a very useful method to 

identify potential causal risk factors from observational studies [Evans and Davey Smith 

2015]. The two proposed methods for incorporating longitudinal data of a time-varying 

exposure will help improve the versatility of the MR analysis. These novel methods are 

readily applicable to existing longitudinal cohort studies, such as the FHS, and new large-

scale electronic health record (EHR)-based longitudinal cohorts, for example, the Genetic 

Epidemiology Research on Adult Health and Aging (GERA) Cohort of 100,000 individuals 

[Lapham, et al. 2015], and, in principle, can be applied to the planned Precision Medicine 

Initiative longitudinal cohort of one million individuals [Collins and Varmus 2015]. R 

programs implementing the proposed methods will be posted on our website at: https://

sites.google.com/site/utpengwei/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Directed acyclic graph of MR analysis assumptions.
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Fig. 2. Directed acyclic graph of MR analysis with a time-varying exposure variable
Blue points represent observed longitudinal data. The black line represents unobserved level 

that changes continuously over time.
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Fig. 3. The observed FHS longitudinal data
For the plot on the left and the plot in the middle, each line represents the longitudinal BMI 

data of a subject included in MR analysis. For the plot on the right, each line represents the 

longitudinal HDL data of a subject included in MR analysis.
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Fig. 4. PACE-predicted vs. observed BMI data
Each plot shows the BMI data of a randomly selected subject.

Cao et al. Page 20

Genet Epidemiol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. The estimated functional coefficient of the BMI GRS from the first stage of 2SFRI
The dotted lines indicate the point-wise 95% confidence limits.
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