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Abstract

West Nile virus (WNV) is a neurotropic, single-stranded RNA (ssRNA) flavivirus that can cause 

encephalitis, meningitis, and death in humans and mice. Human Toll-like receptor (TLR) 7, 8, and 

mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of 

mouse TLR8 in antiviral immunity is poorly understood. Here, we report that TLR8 deficient 

(Tlr8−/−) mice were resistant to WNV infection compared to wild-type (WT) controls. Efficient 

WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8−/− mice was 

attributed to overexpression of Tlr7 and an interferon-stimulated gene Isg-56 expression, while 

reduced expression of the pro-apoptotic gene coding Bcl2-associated X protein (Bax) was 

observed. Interestingly, suppressor of cytokine signaling -1 (SOCS-1) directly associated with 

TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, while 

selective siRNA knockdown of Socs-1 resulted in induced Isg-56 and Tlr7 expression following 
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WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated 

antiviral immunity during WNV infection in mice.

Introduction

West Nile virus (WNV) is a mosquito-borne, single-stranded (ss) RNA flavivirus that has 

caused significant morbidity and mortality in North America (1). In humans, WNV can 

cause a wide range of debilitating illnesses, from febrile-like illness to viral encephalitis, 

paralysis, and even death (2). However, the pathogenesis of WNV is still not clearly defined, 

and there is no approved WNV vaccine or specific antiviral therapeutic available for human 

use.

After mosquito inoculation, WNV initially infects skin Langerhans cells and macrophages, 

and then further replicates in draining lymph nodes, spleen, and other peripheral organs 

generating transient viremia. Prior to the development of specific humoral or T cell-

mediated immune responses, WNV may enter into the spinal cord and brain, leading to 

symptomatic neuronal dysfunction. Therefore, early control of WNV infection of neurons 

heavily relies on innate immunity. Toll-like receptors (TLRs) are a family of innate pattern 

recognition receptors (PRRs) that are located on either plasma-, or within endosomal-

membranes of host cells. WNV has been reported to be recognized by TLR3 (3) and TLR7 

(4), which play important roles during antiviral immunity by initiating a variety of cellular 

signal transduction cascades, including the Myd88 dependent and independent cascades to 

control infection (3-8), and initiates the expression of interferon stimulated genes (Isg), 

which can inhibit viral replication and transcription/translation of viral proteins through 

various antiviral mechanisms (9, 10). On the other hand, TLR signaling can be compromised 

when single nucleotide polymorphisms (SNPs) are present in Tlr2, Tlr3, Tlr4, Tlr7, Tlr8, 
and Tlr9 genes that have been associated with defective antiviral immunity in human 

immunodeficiency virus (11, 12), herpes simplex virus type 2 (13), and Rift Valley fever 

virus (14) infections.

Human TLR8 can recognize viral ssRNA, but mouse TLR8 has been described as non-

functional (15-17) and its natural ligand remains unknown. This may be due to a deletion of 

five amino acids in the leucine-rich repeat ectodomain of TLR8 in mice, which is a region 

critical for recognition of viral ssRNA (18, 19). Although somewhat controversial (20), one 

study has suggested that mouse TLR8 could recognize specific DNA motifs in vaccinia virus 

(21), while another report has suggested that TLR8 recognizes a combination of 

imidazoquinoline and poly-T oligodeoxynucleotides (22), however the natural ligand of 

mTLR8 still remains elusive. Interestingly, overexpression of murine TLR8 neither activates 

interferon regulatory factor 3 (IRF-3) nor interferon-α in HEK293T cells, suggesting TLR8 

may inhibit the type I interferon pathway (23). In addition, TLR8 knockout (Tlr8−/−) mice 

develop lupus-like autoimmunity due to increased TLR7 function (24-26). Therefore, the 

function of TLR8 in mice is complicated and its role during antiviral immunity needs to be 

further investigated.

Signal transduction pathways that are triggered following cytokine and PRR engagement 

must be tightly regulated to prevent aberrant immune responses. Regulation is maintained 
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through protein tyrosine phosphatases, protein inhibitors of activated STATs (PIAS), and 

suppressors of cytokine signaling (SOCS) proteins (27, 28). Socs genes are expressed at a 

relatively low levels in an inactivated state, but are rapidly transcribed following TLR or 

cytokine engagement (28). For instance, Socs-1 and Socs-3 are induced following WNV 

infection, possibly acting as neuroprotective responses within the brain to regulate aberrant 

inflammation (29). SOCS-1 has been shown to inhibit STAT-1 signaling of IFNα (30), 

suggesting SOCS-1 regulates type I IFNs. Antiviral immunity involves the secretion of type 

I IFNs, such as IFNα and IFNβ, from viral-infected cells and act through a paracrine or 

autocrine mechanism, which engages the JAK/STAT signal transduction pathway to induces 

a multitude of antiviral molecules that directly or indirectly inhibit viral infection (31). 

Interferon stimulated gene-56 (Isg-56, ISG-56/IFIT-1) has been shown to be induced by 

active STAT-1/2 and IRF-3/5/7/9 molecules following type I IFN signaling transduction (32) 

and protects neurons from WNV infection (33, 34).

Herein, we report that TLR8 partners with SOCS-1 to control TLR7-mediated antiviral 

immunity in the central nervous system (CNS) of mice during WNV infection.

Materials and Methods

Ethics statement and biosafety

All animal experimental procedures were reviewed and approved by the Institutional Animal 

Care and Use Committees at The University of Southern Mississippi (USM) and Yale 

University. All the in vitro experiments and animal studies involving live WNV were 

performed by certified personnel in biosafety level 3 (BSL3) laboratories following standard 

biosafety protocols approved by USM and Yale University Institutional Biosafety 

Committees.

Viruses, animals, cells, and chemicals

WNV isolate (CT2741) was kindly provided by Dr. John F. Anderson at the Connecticut 

Agricultural Experiment Station. To prepare virus stocks, WNV was propagated and titered 

in Vero cells (ATCC CCL-81) by a plaque assay, as previously described (35). Tlr8−/− mouse 

breeding pairs were provided by Dr. Richard A. Flavell and wild-type (WT, C57BL/6J) 

control mice were purchased from the Jackson Laboratories (Bar Harbor, ME). Seven week-

old WT and Tlr8−/− mice were inoculated intraperitonealy with 2000 plaque forming units 

(PFUs) of WNV in 1% gelatin for survival analysis and tissue collection, according to 

previous publications (36-38).

BMDCs were isolated from WT or Tlr8−/− mice (3 to 6 month old) and cultured as 

previously described (39). Briefly, mouse bone marrow cells were collected from femurs and 

grown in DMEM supplemented with 10% FBS, 2% plasmacytoma cell medium containing 

GM-CSF (J588L), 1% Pen/Strep, 1% L-glu and 50 μM of β-mercaptoethanol until 

maturation (11 days). Mature BMDCs were either infected with WNV or stimulated with the 

TLR7 ligands CL264 (Invitrogen) or Loxoribine (Invitrogen).

Murine primary mixed neuronal cultures were isolated from WT and Tlr8−/− mice (6 to 12 

month old), as previously described with some modifications (40). Briefly, whole brains 
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were isolated in ice-cold HEPES-buffered saline (HBS), minced and triturated in Papain (2 

mg/ml) in HBS and incubated for 15 minutes at 37°C. Following incubation, cells were 

plated on poly-ornithine pre-treated plates for 20 minutes at 37°C, followed by a gentle wash 

with HBS to remove cellular debris. Cells were cultured in DMEM:F12 (1:1) medium 

(Thermo Scientific) supplemented with 1% Pen/Strep, 10% FBS, 1% L-glu, and glucose 

(4.5g/l). On day 11, supernatant was removed and replaced with Neurobasal®-A media (Life 

Technologies) supplemented with 2% B-27 (Life Technologies), 10% FBS, 1% L-glu and 

1% Pen/Strep. The mature neurons were infected with WNV (MOI = 1) for 24 or 48 hr.

Murine Neuro-2a cell line (CCL-131) and the murine macrophage cell line, RAW 264.7 

cells (TIB-71) were purchased from ATCC and were maintained in DMEM containing 10% 

FBS and 1% Pen/Strep at 37°C with 5% CO2.

TLR7 and TLR8 ligands CL264, CL075, loxibrine and PolydT were all purchased from 

Invivogen and used at indicated concentrations and time points.

Interferon bioassay

Bioactive type I IFN in culture supernatant was analyzed by a previously described method 

(41) that measured IFN pre-treated protection against encephalomyocarditis virus (EMCV) 

in a susceptible cell line (L929, ATCC). Briefly, culture supernatant collected from WT and 

Tlr8−/− mice BMDCs that were infected in vitro with WNV for 24 hr (MOI = 5) were UV-

inactivated (10 minutes at 120 mJ/s). The crude, UV inactivated supernatant was added to 

monolayers of L929 cells (cultured in DMEM supplemented with 10% FBS and 1% Pen/

Strep) in 96-well flat bottom plates. Following incubation for 14 h at 37°C, medium was 

removed and cells were infected with EMCV (MOI = 10) for 7 hr. ECMV-mediated cell 

death was measured using a CellTiter 96 aqueous cell proliferation assay kit (Promega) and 

an ELx808 ultra microplate reader (BIO-TEK Instruments, Inc.). The percentage (%) of 

protected cells was calculated as described (41), according to the following formula: (optical 

density at 492 nm [OD492] of supernatant-treated EMCV-infected cells / OD492 of non-

EMCV-infected cells × OD492 of EMCV-infected cells) / (OD492 of non-EMCV-infected 

cells) × 100%).

Quantitative PCR (qPCR)

Mouse tissues, blood, or cultured cells were collected for total RNA extraction with 

TRIreagent (Molecular Research Center, Inc.) and converted into first strand cDNA using 

the iSCRIPT™ cDNA synthesis kit (Bio-Rad). qPCR assays were performed using iTAQ™ 

polymerase supermix for probe-based assays (Bio-Rad) or iQ™ SYBR® Green Supermix 

polymerase (Bio-Rad). WNV-envelope (WNV-E) gene and mouse gene primers and probes 

sequences were adapted according to previous publications: WNV-E (4), β-Actin (42), Tlr7 
(24), Irf-7 (43), Ifn-α (43), Isg-56 (43), Isg-54 (44), Isg-49 (44), Ifn-β (43), and Socs-1 (45). 

Primers were designed for murine Bax, forward 5’-TGCTAGCAAACTGGTGCTCA-3’ and 

reverse 5’-TAGGAGAGGAGGCCTTCCCAG-3’. Data were presented either as relative fold 

change (RFC) by the 2−ΔΔCT method, using β-actin as a housekeeping gene, or was 

expressed as a ratio of target gene to β-actin copy numbers. All the primers and probes were 

synthesized either by Integrated DNA Technologies or Applied Biosystems.
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RNA interference

siRNAs were designed using the Thermo Scientific siRNA designing tool (siDESIGN 

Center) targeting murine Isg-56 (10nM, 5’-

GUAAGUAGCCAGAGGAAGGUGAUGCUU-3’) or a scrambled sequence (5’-

ACUACUUCAGGUGUGAGCUAAUAUACC-3’) and were transfected with RNAiMAX 

Lipofectamine reagent (Life Technologies) into Neuro-2a cells in OPTI-MEM medium (Life 

Technologies) for 20 minutes. DMEM containing 2% FBS was then added and cell were 

cultured for 24 hr. Following incubation, media was removed and cells were infected with 

WNV (MOI = 5) for 48 hr. Cells were then collected for qPCR and flow cytometric 

analyses.

Murine siRNAs targeting murine Socs-1 (Santa Cruz Biotechnologies) were transfected into 

RAW 264.7 cells (6 × 105 cells/ml) following manufactures recommendation, with some 

minor changes. Briefly, lipoplexes were prepared in OPTI-MEM media (Life Technologies) 

by mixing siRNA (25 nM) and transfection reagent (Santa Cruz Biotechnology) for 30 

minutes. Cells and lipoplexes were mixed in 12-well plates and incubated in OPTI-MEM for 

24 hr. DMEM containing 2% FBS was added to the cells followed by infection with WNV 

(MOI = 0.1) and cells were cultured for and additional 24 hr. Following infection, cells were 

collected and prepared for qPCR analysis.

Immunocytochemistry and immunofluorescence assays

Murine BMDCs were isolated, and plated at 3 × 105 cells / well and infected with WNV at 

day 11. Infected cells were then fixed with 4% paraformaldehyde (PFA) in PBS for 15 

minutes at room temperature (RT). The cells were washed with PBS, blocked with 2% 

normal goat serum (Life Technologies) containing 0.4% Triton-X for 1 hr at room 

temperature (RT), and probed with monoclonal mouse-anti-flavivirus glycoprotein E IgG 

antibody (4G2, ATCC D1-4G2-4-15 HB-112) overnight at 4°C. The cells were then washed 

with PBS and probed with goat polyclonal anti-mouse-HRP IgG (KPL) for 2 hr at RT. 

Immuno-positive cells were developed with TrueBlue peroxidase substrate (KPL). Images 

were taken using an Axiostar Plus light microscope (Zeiss) and mean pixel intensity was 

quantified using ImageJ (version 1.48), as previously described (46).

Similarly, primary neurons were isolated from mice, infected with WNV, and fixed as 

described above. After a 1 hr blocking step at RT with 2% normal goat serum containing 

0.4% Triton-X, neurons were probed with mouse monoclonal-anti-WNV-E (1:50, Abcam) 

and rabbit polyclonal anti-ISG-56 antibodies (1:100) overnight at 4°C. The cells were then 

washed with PBS and probed with polyclonal goat-anti-mouse-FITC IgG (eBioscience) and 

polyclonal goat-anti-rabbit-DyLight594 IgG (Thermo Scientific) for 2 hr at RT. The cells 

were then washed with PBS, mounted using Vectashield® mounting medium containing 

DAPI, and imaged as above.

For brain immunohistochemistry, WNV infected WT and Tlr8−/− mice were euthanized (day 

6 p.i) and perfused with ice-cold PBS. Half brain was fixed overnight in 4% PFA, followed 

by frozen tissue cyroprotection with daily changes in 10%, 20%, and 30% sucrose in PBS. 

Brain tissues were frozen in Tissue-Plus™ O.C.T. buffer (Fisher Healthcare) and midsagittal 
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sections (10 μm) were cut using a Tissue-Tek®Cryo3® microtome/cryostat (Sakura) and 

mounted on pre-cleaned Superfrost® Plus microscope slides (Fisher Scientific). Apoptotic 

measurement of brain tissue was detected by TACS® 2 TdT-Fluor in situ apoptosis detection 

kit (Trevigen) following manufacturer’s recommendations and images were acquired using a 

confocal LSM 510 microscope (Zeiss).

Immunoblotting and immuoprecipitation

Mouse whole brains were prepared with lysis buffer containing 50 mM Tris-HCl, 150 mM 

NaCl, and 0.25% sodium dodecyl sulfate (SDS), 0.25% Sodium Deoxycholate, 1 mM EDTA 

and 1% Proteinase inhibitor cocktail (Sigma P8340). Protein concentration in lysates was 

quantified by a Bradford Assay (Bio-Rad) and cell lysates were mixed with 2× Laemmli 

buffer (Bio-Rad) containing 0.1% β-mercaptoethanol (Sigma), boiled at 95°C for 5 minutes, 

and rapidly spun down. Whole-cell protein lysates (5-10 μg/well) were separated by 

polyacrylamide gel electrophoresis and were transferred to a nitrocellulose membrane (Bio-

Rad). The membrane was blocked with 5% bovine serum albumin (BSA) for 1 hr and 

probed with rabbit polyclonal anti-TLR7 (Cell Signaling Technology), rabbit polyclonal 

anti-ISG-56 (Pierce Antibodies), rabbit monoclonal anti-STAT-1 (Cell Signaling 

Technology), rabbit monoclonal anti-IRF-7 (Abcam) antibodies in 5% BSA overnight at 

4°C. The immunolabeled membrane was then probed with secondary HRP-conjugated goat 

anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Inc.) for 2 hr. β-Tubulin-HRP (Cell 

Signaling Technology) was used as a loading control. Membranes were developed with 

SuperSignal West Pico Chemiluminescence Substrate (Thermo Scientific) and images were 

acquired using a ChemiDoc™ XRS+ System (Bio-Rad).

For immunoprecipitation, Neuro-2a cell lysates were prepared as mentioned above, and were 

mixed with rabbit polyclonal anti-TLR7 (1:50, Cell Signaling Technology) or rabbit 

polyclonal anti-TLR8 (1:50, Sigma) antibodies for 2 hr at RT, washed in 1× TBS containing 

0.05% Tween 20, and 0.5 M NaCl, and were mixed with Dynabeads Protein G (Life 

Technologies) for an additional 1 hr. Samples were then washed and resuspended in 2× 

Laemmli buffer containing 0.1% β-mercaptoethanol, boiled at 95°C for 5 minutes, and 

rapidly spun down. Proteins from whole-cell lysates were separated by polyacrylamide gel 

electrophoresis and transferred to a nitrocellulose membrane. Membranes were then probed 

with a rabbit polyclonal anti-SOCS-1 antibody (1:1000, Sigma) in 5% BSA overnight at 

4°C, followed by probing with a secondary peroxidase-conjugated goat anti-rabbit IgG 

(Jackson ImmunoResearch Laboratories, Inc.) for 2 hr, and developed as above. Loading 

control input bands were detected following back incubation with the rabbit polyclonal anti-

TLR8 antibody (Sigma).

Flow cytometry

TLR7 expression in blood cells—Blood samples were collected in EDTA-coated tubes 

from WNV infected WT and Tlr8−/− mice by retro-orbital bleeding and red blood cells 

(RBC) were lysed by adding RBC lysis buffer (Sigma). Blood cells were washed two times 

to remove lysed RBCs and resuspended in flow cytometry buffer (PBS +2% FBS) at 5 × 105 

cells/ ml. Cells were probed overnight at 4°C with rabbit polyclonal anti-TLR7 antibody 

(Cell Signaling Technology), washed two times with flow buffer, and probed with secondary 
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goat-anti-rabbit-DyLight594 IgG (Thermo Scientific) for 2 hr at RT. Cells were then washed 

two times and analyzed in a BD LSRFortessa flow cytometer (BD Biosciences) and data 

were acquired using BD FACSDIVA™ version 7.0 (BD Biosciences). Cells probed only with 

secondary antibody were used as controls for fluorescence gating.

TLR7, WNV antigen and IFNα in BMDCs—WT and Tlr8−/− BMDCs were infected 

with WNV (MOI = 5) for 24 hr, as described above. The cells were fixed with 2% PFA and 

permeabilized with PBS +0.05% Tween-20 (permeabilization buffer). The cells were 

incubated overnight with mouse monoclonal anti-WNV-Envelope IgG2b (1:100, Abcam) 

antibody, rat monoclonal anti-IFNα IgG1 (1:100, Abcam), or rabbit polyclonal anti-TLR7 

(1:100, Cell Signaling Technology) followed by two washes with permeabilization buffer, 

and probed with a secondary goat-anti-mouse-IgG antibody conjugated to FITC (Santa Cruz 

Biotechnology), goat-anti-rat-IgG antibody conjugated to Alexa Fluor® 555 (Molecular 

Probes), or goat-anti-rabbit-IgG antibody conjugated to DyLight594 (Thermo Scientific), 

respectively, for 2 hr at RT in dark. For WNV antigen detection, cells were washed two 

times with permeabilization buffer, and resuspended in DAPI (100 μM) for 10 minutes, then 

analyzed FITC mean fluorescent expression (MFI) with a flow cytometer (BD 

LSRFortessa). DAPI expression was analyzed with a microplate reader (BioTek® 

SynergyHI) using Gen5 (version 2.07) software to determine the ratio of FITC+ MFI 

normalized to DAPI+ cells.

Secreted IFNα in cell medium—UV inactivated supernatant collected from WT and 

Tlr8−/− BMDCs were incubated with rat monoclonal anti-IFNα antibody (1:50) over night at 

4°C, on a rocker to create immune complex formation. In a separate tube, Dynabeads 

Protein G (Life Technologies) were washed in buffer (TBS + 0.05% Tween-20, 0.5M NaCl) 

and added to the supernatant containing IFNα antibodies for 1 hr at RT. The beads were then 

magnetically separated from the remaining supernatant, washed, and secondary anti-rat-

antibody conjugated to AlexaFluor® 555 (1:1000) was added. After incubation for 2 hr at 

RT, the beads were detached from the immune complexes with an elution buffer (0.1M 

glycine, pH 2.0) and neutralized in Tris-HCL (pH 9.0) buffer. The MFI of the beads was 

analyzed by flow cytometry, as above.

Apoptosis Assay—Apoptosis was measured using a modified annexin V and propidium 

iodide (PI) apoptosis assay (47). Briefly, Neuro-2a cells were collected and resuspended in 

annexin V binding buffer followed by staining with annexin V conjugated to Alexa Fluor® 

488 (Molecular Probes) and PI (Sigma). Cells were then washed with annexin V binding 

buffer and fixed in a 1% PFA for 10 minutes on ice and then were incubated in RNase A (50 

μg/ml, Sigma) for 15 minutes at 37°C, washed twice in PBS, and analyzed by flow 

cytometry.

Statistical analyses

Data were compared with either a Student’s t-test or two-way analysis of variance with 

Bonferroni post-hoc analysis. Survival curves were analyzed using a Kaplan-Meier analysis. 

All statistical analyses were performed by using GraphPad Prism software (version 6.0).
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Results

TLR8 signaling in mice facilitates WNV infection

Our previous report demonstrated that TLR7 signaling protects mice from lethal WNV 

infection (4) and Tlr7 expression is up-regulated in TLR8 deficient (Tlr8−/−) mice (24). To 

investigate the potential role of TLR8 during WNV infection in mice, we challenged Tlr8−/− 

and WT mice intraperitoneally (i.p.) with 2000 plaque forming units (PFU) of WNV and 

monitored mice twice daily for morbidity and mortality for up to 21 days. The Kaplan-Meier 

survival analysis shows that 52% of Tlr8−/− and 26% of WT mice survived of lethal WNV 

infection (Fig. 1A), indicating that TLR8 signaling facilities WNV infection in mice. To 

further confirm this observation, we measured viral burden in the blood and brains of WNV-

infected mice by quantitative polymerase chain reaction (qPCR). Consistent with the 

survival data, the qPCR results show the lower expression of WNV-E transcripts in blood of 

Tlr8−/− mice compared to WT controls at day 4 and the brain at days 4 and 6 post-infection 

(p.i.) (Fig. 1B-D). These results indicate that TLR8 signaling in mice plays a negative role in 

WNV immunity by facilitating WNV replication. Type I interferons (IFN) play essential 

roles in viral clearance and control of WNV burden in mice (48, 49). Therefore we assessed 

the expression of type I IFNs in blood samples collected from WNV-infected Tlr8−/− and 

WT mice at day 1 to day 4 p.i. by qPCR. The results showed that Tlr8−/− mice have 

increased expression of Ifn-α at days 1 to 4, and Ifn-β at days 1 and 2, compared to WT 

controls following WNV infection (Fig. 1E and F). In addition, IFN regulatory factor-7 

(Irf-7) and IFN stimulated gene-56 (Isg-56) measured in blood of WNV-infected Tlr8−/− 

mice showed an increasing trend in gene expression (Fig. 1G and H). In summary, these 

results indicate that TLR8 facilitates WNV infection in mice possibly due to the down-

regulation of type I IFN-dependent antiviral response.

TLR8 in mice negatively regulate TLR7-mediated WNV immunity

Since naïve Tlr8−/− mice express higher levels of Tlr7 (24), we measured the expression of 

TLR7 in blood leukocytes collected from WNV-infected WT and Tlr8−/− mice by flow 

cytometry at day 1 post-WNV infection. The results indicate an increased expression of 

TLR7 in leukocytes of WNV-infected Tlr8−/− mice compared to WT controls (Fig. 2A). To 

further investigate the potential role of TLR8 in regulating the expression of Tlr7 during 

WNV infection, we infected bone marrow derived dendritic cells (BMDCs) from Tlr8−/− and 

WT mice with WNV (multiplicity of infection, MOI = 5) in vitro and measured the 

expression of Tlr7 by qPCR. In line with the in vivo results, the qPCR results showed a 

higher basal expression level of Tlr7 in BMDCs from Tlr8−/− mice compared to WT 

controls, which was further amplified following WNV infection, indicating overexpressed 

Tlr7 in the absence of TLR8 (Fig. 2B). Consistent with this, we also confirmed TLR7 

expression on BMDCs from Tlr8−/− mice was further increased following WNV infection at 

the protein level by flow cytometry (supplemental (s)Fig. 1A). To assess the antiviral 

function of Tlr7 overexpression, we stimulated BMDCs from Tlr8−/− and WT mice with the 

TLR7-specific ligand CL264 (5 μg/ml) and measured the expression of type I IFN by qPCR. 

We found higher levels of Ifn-α (Fig. 2C) and Ifn-β (sFig. 1B) expression in BMDCs 

generated from Tlr8−/− mice compared to WT controls at multiple time points, suggesting 

that overexpression of TLR7 in Tlr8−/− mice may induce stronger antiviral immunity. To 
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confirm this, we infected BMDCs from Tlr8−/− and WT mice with WNV (MOI = 5) or an 

alphavirus, chikungunya virus (CHIKV, MOI = 5), and assessed the transcript levels of Ifn-α 
and Ifn-β at 24 hr post-infection (p.i.) by qPCR. The results show higher expression of Ifn-α 
(Fig. 2D) and Ifn-β (sFig. 1C) in BMDCs generated from Tlr8−/− mice than WT controls in 

response to both type of infections, WNV or CHIKV, suggesting a response not only specific 

to WNV. In addition, intracellular and secreted IFN-α was also shown to be increased in 

Tlr8−/− BMDCs as compared to WT controls following WNV infection in a flow cytomertic 

assay (Fig. 2E and F). Moreover, we measured gene expression of signaling proteins 

involved in the type I IFN response, and found that WNV infection significantly induced the 

expression of both Irf-7 and Isg-56 in Tlr8−/− BMDCs compared to WT controls at 24 hr p.i. 

with WNV (Fig. 2G and 2H). To further confirm higher expression of type I IFN in the 

absence of TLR8, we measured bioactive type I IFN in cell culture supernatant of WNV-

infected Tlr8−/− and WT BMDCs, as previously described (41). The IFN bioassay further 

confirmed that BMDCs generated from Tlr8−/− mice produced more IFN than those from 

WT controls during WNV infection (Fig. 2I). Since BMDCs generated from Tlr8−/− mice 

have increased antiviral immunity, we expected these cells to be more efficient in controlling 

WNV infection. Indeed, we found that BMDCs from Tlr8−/− mice are more resistant to 

WNV infection in vitro compared to those from WT mice, as measured by reduced WNV 

antigen expression (Fig. 2 J and K, and sFig. 1D and E). In summary, these results show that 

TLR8 signaling in mice down-regulates the expression of Tlr7, which results in reduced 

antiviral immune response against WNV infection.

TLR8 negatively regulates antiviral immunity within the murine central nervous system 
(CNS)

WNV can cause severe CNS infection and can lead to injury and death of neurons in both 

mice and humans. Since we observed reduced viral burden in the brains of WNV-infected 

Tlr8−/− mice and increased expression of Tlr7 and other antiviral genes in Tlr8−/− BMDCs 

infected in vitro with WNV, we asked whether TLR8 also regulates antiviral immunity in the 

brains of WNV-infected mice. On day 4 post-WNV infection (2000 PFU/mouse, i.p.), 

Tlr8−/− and WT mice were euthanized, perfused with ice-cold PBS, and whole brains were 

collected for qPCR and western blotting analyses of TLR7 and other antiviral molecules. 

Consistent with the results from BMDC, uninfected Tlr8−/− mice exhibited increased basal 

expression of Tlr7 in brains compared to WT controls, which was further increased 

following WNV infection (Fig. 3A). These results suggest that increased Tlr7 expression in 

brains of Tlr8−/− mice may result in better capability to recognize and respond to 

neuroinvasive WNV. To further test this, we measured the expression of Irf-7, Ifn-α and Ifn-
β in brain tissues collected from WNV-infected Tlr8−/− and WT mice by qPCR, and the 

results indicated slightly higher expression of Irf-7 (Fig. 3B) and a trend for increased 

expression of Ifn-α (Fig. 3C), while the expression of Ifn-β remained unaltered (data not 

shown). Since type I IFNs were not robustly increased in the brains of Tlr8−/− mice, but viral 

burden was significantly reduced (Fig. 1C and D), we sought to examine if Tlr8−/− mice 

overexpress other antiviral genes. To test this, we examined the expression of Isg-56, Isg-54, 

and Isg-49. Interestingly, the expression of Isg-56 was increased (Fig. 3D) in Tlr8−/− mice 

brains following WNV infection was enhanced, while the expression of Isg-54 and Isg-49 
were not significantly altered (data not shown). In addition, we also confirmed higher 
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expression TLR7, ISG-56, IRF-7 and STAT-1 in brain lysates of WNV-infected Tlr8−/− mice 

at protein levels by an immunoblotting assay (Fig. 3E). Together, these results confirm that 

Tlr8−/− mice express higher level of TLR7 in brain tissue, which may lead to strong antiviral 

responses via increased expression of ISG-56, IRF-7 and STAT-1.

We next analyzed the expression of Tlr7 and antiviral genes in primary mixed neuronal 

cultures isolated from WNV infected (MOI = 1, 24 hr) WT and Tlr8−/− mice whole brain 

homogenates in vitro. The qPCR analysis indicate that Tlr7, Irf-7, and Ifn-α were all 

increased following WNV infection in Tlr8−/− neurons compared to WT controls (Fig. 3F-

H), suggesting that the TLR7-mediated IFN signaling pathway may increase neuronal 

resistance against WNV infection in Tlr8−/− mice. We further assessed if the expression of 

IFN-stimulated genes were also altered in WNV-infected Tlr8−/− neurons by qPCR. 

Consistent with in vivo brain tissue results (Fig. 3D), we found increased expression of 

Isg-56 (Fig. 3I), along with increased Isg-54 and Isg-49 in the Tlr8−/− neurons infected in 
vitro with WNV compared to WT controls (data not shown). In line with increased antiviral 

immunity, immunofluorescence microscopy show reduced WNV antigen and increased 

ISG-56 expression in WNV-infected Tlr8−/− neurons compared to WT controls (Fig. 3J and 

K). In summary, these results indicate that TLR8 inhibits antiviral immunity against WNV 

infection leading to enhance viral replication within the CNS.

TLR8 expression results in increased WNV-induced apoptosis that is CNS region-specific

One of the major cell death pathways that occur in WNV neuroinvasive disease is apoptosis, 

in particular via the induction of the apoptotic mediated gene, Bcl-2 associated X protein 

(Bax) (50, 51). To examine the degree of WNV-mediated cellular apoptosis in Tlr8−/− and 

WT brain tissue, whole brains were isolated at day 6 p.i. and were analyzed by a TUNEL 

assay. The TUNEL assay showed that Tlr8−/− mice had significantly reduced cell death of 

WNV-permissive Purkinje neurons of the cerebellum (52-57) compared to WT controls (Fig. 

4A), with no observable differences in any other regions of the brain. Interestingly, we found 

that the gene expression of Bax (Fig. 4B), along with antiviral genes Isg-56 and suppressor 

of cytokine signaling (Socs-1) were significantly altered only in the spinal cords and 

cerebellar regions of Tlr8−/− mice at day 4 p.i. (data not shown), suggesting that antiviral 

immunity confined viral-induced apoptosis within these regions of the brain. In line with 

this, previous reports have suggested that the expression (56) and neuroprotective role of 

ISG-56 does indeed localize to these specific region of CNS (34). WT and Tlr8−/− neurons 

infected with WNV (MOI = 1) for 24 hr in vitro were also analyzed for Bax expression by 

qPCR, indicating reduced neuronal Bax-dependent apoptosis occurs in Tlr8−/− mice 

following WNV infection (Fig. 4C). These results indicate that TLR8 signaling counteracts 

antiviral immunity, possibly by down-regulation of Isg-56 expression, favoring WNV-

induced neuronal death.

Since higher expression of ISG-56 in brains of Tlr8−/− mice following WNV infection is 

associated with the reduced Bax expression, we tested if the Bax-mediated apoptosis is 

dependent on Isg-56 expression. For this, we used siRNAs to knockdown Isg-56 in mouse 

Neuro-2a cells, and assessed Bax expression and apoptosis following WNV infection in 
vitro. Isg-56-specific siRNAs were transfected into Neuro-2a cells for 24 hr and the cells 
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were further infected with WNV (MOI = 5) for an additional 48 hr. The efficiency of 

siRNAs to knockdown Isg-56 expression was confirmed by qPCR in WNV-infected 

Neuro-2a cells (Fig. 4D). Interestingly, knockdown of Isg-56 leads to increased replication 

of WNV (Fig. 4E) and the expression of Bax (Fig. 4F), suggesting that WNV replication 

may be inhibited by ISG-56 expression. To test if apoptosis is the direct consequence of 

increased Bax expression in siRNA-Isg-56-transfected Neuro-2a cells, we stained WNV-

infected Neuro-2a cells with annexin-V and measured apoptosis by flow cytometry. The 

results confirmed that knocking down Isg-56 expression increased apoptosis of WNV-

infected Neuro-2a cells (Fig. 4G and H). Collectively, these data indicate that ISG-56 is an 

essential antiviral molecule that controls WNV-induced neuronal apoptosis.

TLR8 regulates SOCS-1 signaling, which controls Isg-56 and Tlr7 expression

Socs-1 has been shown to be induced by WNV (29) and its expression inhibits antiviral 

responses, such as type I IFNs (58). We found that the expression of Socs-1 was 

significantly reduced in brain tissue and neurons in Tlr8−/− mice following WNV infection 

(Fig. 5A and B), suggesting that TLR8 regulates Socs-1 expression during WNV infection. 

To test if TLR8 directly regulates SOCS-1 function, we performed an immunoprecipitation 

(IP) assay in Neuro-2a cells in the presence of various TLR7, and suspected mouse TLR8 

ligands (22). Interestingly, we found that SOCS-1 co-precipitates with TLR8, but not TLR7 

(Fig. 5C), even in the presence of TLR7 and TLR8 ligation. These results suggest that TLR8 

may directly control SOCS-1 function within neurons in mice. To test if Isg-56 is regulated 

by Socs-1, we transfected a mouse macrophage cell line (RAW 264.7) with siRNA targeting 

Socs-1 for 24 hr and infected these cells for an additional 24 hr with WNV (MOI = 0.1), 

followed by qPCR analysis. We found that Socs-1 was slightly reduced following siRNA 

transfection in WNV-infected mouse RAW 264.7 cells (Fig. 5D) that was coupled to 

increased Isg-56 (Fig. 5E) and Tlr7 (Fig. 5F) expression. These results indicate that SOCS-1 

signaling down-regulates Tlr7 and Isg-56 expression in mice. Since SOCS-1 associates with 

TLR8 directly (Fig. 5C) in mice, SOCS-1 may couple with TLR8 to inhibit the expression of 

Tlr7 and subsequently its downstream signaling molecules, such as Isg-56, facilitating WNV 

infection in mice (Fig. 6).

Discussion

Human and mouse Tlr7 and Tlr8 share a high degree of structural and phylogenetic 

similarity, and are located only 70 kb apart on the same X chromosome (17, 24). 

Functionally, both human and mouse TLR7, and human TLR8 recognize viral ssRNA 

motifs. However, mouse TLR8 does not recognize viral ssRNA, which led to the belief that 

TLR8 may be non-functional in mouse in terms of sensing viral ssRNAs (16). It has since 

been suggested that mouse TLR8 recognizes DNA motifs of vaccinia virus (21) which 

however, was contradicted by another report (20). It has also been suggested that mouse 

TLR8 can recognize a combination of imidazoquinoline and poly-T oligodeoxynucleotides 

(22), however the natural ligand for mTLR8 still remains unknown. Our research group and 

others have demonstrated that mice deficient in TLR8 (Tlr8−/−) overexpress Tlr7 and 

manifest systemic autoimmunity due to development of a subset of B cells that produce anti-

small nuclear ribonucleoproteins (snRNPs), anti-ribonucleoproteins (RNPs), and anti-DNA 
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antibodies (24-26, 59). On the other hand, transgenic mice that overexpress human TLR8 

result in down-regulated mouse Tlr7 expression (15). Based on these reports, it can be 

speculated that TLR8 in mice might have multiple functions to regulate immunity other than 

serving as a PRR. We previously reported that TLR7 plays an important role in the 

recognition and mitigation of WNV infection in mice (4). However, the role of mouse TLR8 

during WNV pathogenesis has not been previously studied.

Defective Tlr7 and type I Ifn genes are contributing factors to not only WNV susceptibility, 

but to enhanced WNV-induced disease (4, 60, 61). In the current report, we found that TLR8 

deficiency in mice induced a strong antiviral immune response, which facilitated efficient 

control of viral burden and increased survival of mice after lethal WNV challenge. In line 

with previous reports that showed TLR8 negatively regulated TLR7 expression in mouse 

dendritic cells (24, 25), Tlr8−/− mice had increased gene expression of Tlr7 in multiple 

tissues compared to WT controls, which was further amplified following WNV infection. 

While the mechanism by which increased Tlr7 expression in the absence of viral infection 

was not further explored in this study, it has been suggested that deficiency in TLR signaling 

could be compensated for by other PRRs (62). Due to their close loci proximity and 

redundancy in pattern recognition (17, 63), TLR7 signaling may over-compensate for a loss 

of TLR8, as the reciprocal has been identified in TLR7 deficiency (64). Yet, in the context of 

viral infection, it may be possible that TLR8 directly or indirectly represses Tlr7 
transcription in mice. Based on the evidence that TLR8 co-precipitates with SOCS-1, and 

knockdown of Socs-1 by siRNA leads to increased Tlr7 transcription in WNV-infected RAW 

264.7 cells, we may conclude that TLR8 couples to SOCS-1 to suppress the expression of 

Tlr7 and its downstream signaling during WNV infection in mice. However, we cannot 

exclude the possibility that expression of Tlr7 may be also indirectly enhanced by type I IFN 

responses induced by other PRRs, such as RIG-I and MDA5, in response to WNV infection 

(9). While we only measured inactive IRF-7 expression, active IRF-7-p has been described 

to act as a master transcription factor for IFNα (65, 66), which regulates the induction of 

Isg-56 and Tlr7 and thus, requires further study (67, 68). Furthermore, there was an overall 

increase in expression levels of TLR7, IRF-7, and ISG-56 in Tlr8−/− mice, in particular 

within primary neurons; therefore, involvement of multiple regulatory pathways may 

contribute to hyperactive antiviral immunity to control viral infection. In line with this, it has 

been described that functional polymorphisms in the human Tlr8 gene may predispose 

individuals to differential viral susceptibility (14, 69-72). For instance, TLR8C-A haplotypes 

are associated with dengue fever susceptibility, while TLR8G-G haplotypes are associated 

with dengue hemorrhagic fever susceptibility (71) and truncated Tlr8 protects against HIV, 

as rapid decay of Tlr8 mRNA results in induced TNF-α signaling (70). Therefore, TLR8 

may function to suppress antiviral immunity through negative regulation of TLR7 signaling.

ISG-56 (IFIT-1), along with other IFIT family members including ISG-54 (IFIT-2) and 

ISG-49 (IFIT-3) protect neurons from WNV infection (33, 34, 73). These molecules are 

enhanced by type I IFNs during viral infection (9, 56) and function by binding to the 5’-PPP 

end of viral RNA, mRNA, or to the translation initiation factor eIF-3, to inhibit the initiation 

of viral/host protein translation (33, 67, 74). WNV-infected Tlr8−/− mice expressed higher 

levels of type I IFNs and Isg-56 in various tissues compared to WT controls. Moreover, 

increased expression of Isg-54 (IFIT-2) and Isg-49 (IFIT-3) were also observed in WNV-
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infected Tlr8−/− mice neurons, suggesting a vast array of enhanced antiviral immunity. 

Consistent with the previous report that IFITs are vital antiviral proteins that work in concert 

to control viral infection within the CNS (75), we further verified the importance of Isg-56 
during WNV infection in Tlr8−/− mice by knocking down its expression, which resulted in 

an increased WNV-induced neuronal apoptosis mediated by Bax, highlighting an important 

role for ISG-56 during WNV-induced neuronal death.

Tissue and cellular tropism of WNV is regulated by antiviral gene localization (56, 76) and 

IFIT molecules play a crucial role in controlling viral spread within neurons (33). 

Additionally, the cerebellum and choroid plexus express Isg-56 following WNV infection 

(33), and IFNβ treatment induces a higher expression of Isg-56 in cerebellar cells (56). In 

line with this, we observed a significant increase of Isg-56 only within the spinal cord and 

cerebellar regions of Tlr8−/− mice brains, together with reduced morbidity, suggesting 

neuropathogenesis of WNV may be limited by antiviral control only within these regions of 

the CNS. Overexpression of Tlr7 in the CNS has been linked to the induction of IL-6 

dependent dendrite retraction (64) and leads to cell death by induction of a CNS-specific 

TIR adaptor protein called Sterile alpha and HEAT/Armadillo motif (SARM) (77). Yet in the 

presence of WNV infection, SARM is necessary to reduce WNV burden and prevent cell 

death, as Sarm−/− mice are susceptible to WNV infection (78). In addition, TLR7 agonists, 

imiquimod and ssRNA, have been described to induce neuronal cell death (79). However, 

there are no phenotypic or behavioral defects observed in naïve Tlr8−/− mice, and increased 

percent of survival and reduced TUNEL signals observed within Tlr8−/− mice brains 

following lethal WNV challenge, suggest that increased TLR7 does not cause any apparent 

neuronal damage in our experimental conditions. Furthermore, the expression of TLR7 

observed in the brains of Tlr8−/− mice is relatively mild, which suggests that only 

dramatically increased expression/signaling by TLR7 may lead to neuronal damage.

Suppressor of cytokine signaling (SOCS)-1, a negative regulator of IFN signaling, can be 

induced following viral challenge (29, 80-82). SOCS-1 suppresses a multitude of signaling 

molecules, such as the Mal adaptor protein in TLR4 signaling (83), IRAK-4 (84), TRAF6 

(85), type I IFNs (30, 58), JAKs (86) and transcriptional promoters including STAT-1 (58, 

87), IRF7 (88) and p53 (89). Importantly, Socs-1 knockdown in Japanese encephalitis virus 

(JEV)-infected macrophages resulted in reduced viral load and increased ISGs, suggesting 

that SOCS-1 may directly regulate expression of ISGs (90). Since Tlr8−/− mice had a 

hyperactive IFN response and reduced Socs-1, we hypothesized that TLR8 signaling may 

regulate Socs-1 expression. It has been reported that TLR7/8 signaling induces the 

expression of Socs-1 in HEK293 cells, yet these studies did not rule out if this signaling is 

dependent on TLR7 or TLR8 alone, or an effect of combined TLR7 and TLR8 ligation (91). 

In our report, we demonstrated that SOCS-1 partnered with TLR8, but not TLR7, suggesting 

SOCS-1 utilizes TLR8 as an adaptor molecule for its regulation. This interaction is possible 

as there are 13 phospho-tyrosine residues located on the cytoplasmic domain of TLR8, but 

not on TLR7 (92), which provides ample docking sites for the SH2 regions of SOCS-1 to 

bind to TLR8. SOCS proteins function to directly associate and inhibit adaptor proteins and 

their signaling pathways via protein degradation (83). However, we observed a stable 

interaction between TLR8 and SOCS-1 24 hr post stimulation in Neuro-2a cells, suggesting 

a non-canonical role for TLR8 SOCS-1 regulation that requires further investigation.
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In conclusion, TLR8 couples with SOCS-1 to exacerbate neuroinvasive WNV infection in 

mice, by negative regulation of TLR7-mediated antiviral immunity in mice. The 

identification of a novel role for SOCS-1 in TLR8-mediated immune regulation may have 

broad implications in understanding antiviral immunity in both mice and humans. Although 

human TLR8 regulation of TLR7 with SOCS-1 was not studied in this manuscript, the 

therapeutic potential of inhibiting the TLR8 pathway may provide an alternative antiviral 

strategy to combat WNV infection in humans, which requires further investigation.
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Figure 1. Tlr8−/− mice are resistant to lethal WNV infection
WT and Tlr8−/− mice were infected with 2000 PFU/mouse of WNV and monitored twice 

daily for mortality and morbidity for up to 21 days. (A) Survival analysis of WT and Tlr8−/− 

mice by Kaplan-Meier analysis. The ratio of WNV-envelope (E) to β-actin in blood (B) and 

brain samples at day 4 (C) and day 6 (D) p.i., collected from euthanized mice was 

determined by qPCR. The absolute gene copy ratio of Ifn-α (E), Ifn-β (F), Irf-7 (G) and 

Isg-56 (H) to β-actin were measured in blood samples by qPCR at indicated days p.i. (n = 

5-8 per group). The survival data were analyzed using a Kaplan-Meier log-rank test (* 
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denotes p < 0.05). Gene expression data were analyzed using a two-tailed, Student’s t-test (* 

denotes p < 0.05 ± 1 SEM). All reported experiments were performed twice.
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Figure 2. TLR8 signaling negatively regulates TLR7-mediated antiviral immunity
(A) Flow cytometric histograms and mean fluorescent intensity (MFI) analysis of TLR7 

expression in blood collected from WNV-infected WT (grey outline), Tlr8−/− (black outline), 

and secondary only IgG isotype control (grey filled) mice (n = 6-8 per group) at day 1 p.i.. 

QPCR analysis for gene expression of (B) Tlr7, (D) Ifn-α, (G) Irf-7, and (H) Isg-56 in WT 

and Tlr8−/− mice BMDCs infected in vitro with WNV or CHIKV (MOI = 5) for 24 hr. 

BMDCs from WT and Tlr8−/− mice were stimulated in vitro with the TLR7 ligand CL264 (5 

μg/ml) for indicated time points and gene expression of Ifn-α (C) was measured by qPCR. 
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Flow cytometic analysis of IFN-α expression in BMDCs infected with WNV (MOI = 5) for 

24 hr (E) and IFN-α production in the media (F) of WT and Tlr8−/− BMDCs infected with 

WNV (MOI = 5) for 24 hr. (I) IFN production in the culture media of WNV-infected WT 

and Tlr8−/− BMDCs were measured by an IFN-bioassay. (J) Immunocytochemistry images 

of BMDCs infected with WNV for 24 hr (400 × magnification, inset 900 × magnification). 

(K) Flow cytometric analysis of WNV-Envelope protein in BMDCs infected with WNV 

(MOI = 5) for 24hr. WT (grey outline), Tlr8−/− (black outline), and secondary only IgG2b 

isotype control (grey filled) mice. The gene expression profile of Figure 1B is represented as 

a mean unitless ratio of gene of interest to β-actin ± 1 SEM, while all remaining qPCR 

profiles were normalized to β-actin and were plotted as relative fold change (RFC). All 

qPCR assays were performed three times and were analyzed using a two-tailed, Student’s t-
test (* denotes p < 0.05 ± 1 SEM, n = 3 per group). The IFN-bioassay and the flow 

cytometric analysis in blood was performed once, and the flow cytometric analysis in 

BMDCs (n = 3 per group) was performed twice, and analyzed using a two-tailed, Student’s 

t-test (* denotes p < 0.05 ± 1 SEM).
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Figure 3. Tlr8−/− mice have increased antiviral immunity in CNS tissue
Gene expression analysis of Tlr7 (A), Irf-7 (B), Ifn-α (C), Isg-56 (D) to β-actin in whole 

brains from WNV-infected WT and Tlr8−/− mice at day 4 p.i. by qPCR (n = 6-8 per group). 

(E) Immunoblotting analysis of TLR7 (140 kDa), total STAT-1 (94/87 kDa) ISG-56 (56 

kDa), total IRF-7 (51 kDa), and β-Tubulin (55 kDa) from whole brain lysates of WNV-

infected WT and Tlr8−/− mice at day 4 p.i. (n = 6-8 per group). Primary mixed neuronal 

cultures isolated from WT and Tlr8−/− mice (6–12 month old, n = 3 per group) were cultured 

to maturity in vitro and infected with WNV (MOI = 1) for 24 hr. Gene expression of Tlr7 
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(F), Irf-7 (G), Ifn-α (H), Isg-56 (I), and WNV-E (J) to β-actin were measured by qPCR. (K) 
WNV-infected neurons probed with anti-WNV-E (green) or anti-ISG-56 (red) antibodies 

were imaged using a confocal LSR 510 microscope at 100 × magnification. All qPCR assays 

were analyzed by a two-tailed Student’s t-test (* denotes p < 0.05, and ns denotes non 

significant, ± 1 SEM). qPCR assays were performed three times and the immunoblotting 

assays were performed two times.
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Figure 4. Reduced apoptosis in WNV-infected Tlr8−/− mice is localized to CNS-specific regions
(A) WT and Tlr8−/− mice brains were isolated at day 6 p.i. and imaged to detect cellular 

apoptosis in midsagittal brain sections. TUNEL labeling (green, white arrow) and DAPI 

(blue, dashed white arrow) were merged indicating reduced TUNEL immunofluorescence 

was observed in Tlr8−/− Purkinjie neurons of the cerebellum compared to WT controls (n = 

4 per group). Gene expression profile of Bax (B) to β-actin in different brain regions: 

Cerebellum, Cortex (Ctx), Midbrain (Mid), Olfactory Bulb (OB), and spinal cords (SC) from 

WNV-infected WT and Tlr8−/− mice (n = 9-22 per group) at day 4 p.i. were analyzed by 
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qPCR. Primary mixed neuronal cultures isolated from WT and Tlr8−/− mice (6 to 12 month 

old, n = 3 per group) were cultured to maturity in vitro and infected with WNV (MOI = 1) 

for 24 hr. Gene expression of Bax (C) to β-actin was analyzed by qPCR. Gene expression of 

Isg-56 (D), WNV-E (E) and Bax (F) were measured by qPCR in Neuro-2a cells transfected 

with siRNA targeting Isg-56 (10 nM) for 24 hr, followed by infection with WNV (MOI = 5) 

for an additional 48 hr. (G and H) Neuro-2a cells were transfected with siRNA targeting 

Isg-56 or with a scrambled siRNA control and infected with WNV, as above. Cells were 

stained with annexin V and PI followed by flow cytometric analysis (n = 3 per group). Brain 

sections were imaged using a confocal LSR 510 microscope at 63 × magnification. All 

qPCR and flow cytometric analyses were performed three times and analyzed using a two-

tailed Student’s t-test (* denotes p < 0.05, ± 1 SEM).
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Figure 5. TLR8 signaling regulates Socs-1 expression
Gene expression of Socs-1 (A) to β-actin (n = 6-8 per group) was analyzed in whole brains 

from WNV-infected WT and Tlr8−/− mice at day 4 p.i. by qPCR. Primary mixed neuronal 

cultures isolated from WT and Tlr8−/− mice (6 – 12 month old, n = 3 per group) were 

cultured to maturity in vitro and infected with WNV (MOI = 1) for 24 hr and gene 

expression of Socs-1 (B) to β-actin was measured by qPCR. (C) Co-immunoprecipitation of 

TLR7 or TLR8 with SOCS-1 was performed in Neuro-2a cells stimulated with PolydT (10 

μM), CL075 (10 μM) or both agonists for 24 hr by using anti-TLR7 or anti-TLR8 antibodies 

coated magnetic beads and Western blot analysis of SOCS-1. RAW 264.7 cells were 

transfected with siRNA targeting Socs-1 followed by infection with WNV (MOI = 0.1) for 

24hr and gene expression analysis of Socs-1 (D), Isg-56 (E) and Tlr7 (F) to β-actin was 

measured by qPCR. All qPCR assays were performed two independent times and analyzed 
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using a two-tailed, Student’s t-test (* denotes p < 0.05, ± 1 SEM). Immunoprecipitation 

experiments were performed two times.
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Figure 6. TLR8 signaling regulates SOCS-1 expression, leading to increased inhibition of 
antiviral immunity following WNV infection
Representative image of wild-type and Tlr8−/− mice cells that are infected with WNV and 

the proposed mechanism of signaling. In wild-type cells infected with WNV, TLR8 

signaling results in increased SOCS-1, which negatively regulates antiviral immunity via 

direct STAT-1 inhibition (58) or possibly through ISG-56 inhibition, which results in 

increased viral load, triggering the p53-Bax-dependant apoptosis pathway (50, 51). 

Conversely, in TLR8 deficient cells (Tlr8−/−) SOCS-1 is not adequately induced, therefore 

antiviral immunity is minimally inhibited, resulting in increased Isg-56, Irf7, and Tlr7 
expression, which ultimately amplifies the TLR7 signaling pathway, while successfully 

controlling viral load and reducing virus-induced apoptosis. The non-canonical function of 

SOCS-1 directly binding to TLR8 and not TLR7, in both mock and TLR7 and TLR8 

stimulated cells, is yet to be further elucidated.
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