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Abstract

Objective—To develop an algorithm for the automatic quantitative description and detection of 

spikes in the intracranial EEG and quantify the relationship between prominent spikes and the 

seizure onset zone.

Methods—An algorithm was developed for the quantification of time–frequency properties of 

spikes (upslope, instantaneous energy, downslope) and their statistical representation in a 

univariate generalized extreme value distribution. Its performance was evaluated in comparison to 

expert detection of spikes in intracranial EEG recordings from 10 patients. It was subsequently 

used in 18 patients to detect prominent spikes and quantify their spatial relationship to the seizure 

onset area.

Results—The algorithm displayed an average sensitivity of 63.4% with a false detection rate of 

3.2 per minute for the detection of individual spikes and an average sensitivity of 88.6% with a 

false detection rate of 1.4% for the detection of intracranial EEG contacts containing the most 

prominent spikes. Prominent spikes occurred closer to the seizure onset area than less prominent 

spikes but they overlapped with it only in a minority of cases (3/18).

Conclusions—Automatic detection and quantification of the morphology of spikes increases 

their utility to localize the seizure onset area. Prominent spikes tend to originate mostly from 

contacts located in the close vicinity of the seizure onset area rather than from within it.

Significance—Quantitative analysis of time–frequency characteristics and spatial distribution of 

intracranial spikes provides complementary information that may be useful for the localization of 

the seizure-onset zone.
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1. Introduction

Automatic spike detection has been a longstanding issue (Gotman and Gloor, 1976) (and see 

the extensive review by Wilson and Emerson (2002)). However, algorithms developed 

specifically for intracranial EEG have focused on the detection of spikes and the calculation 

of their frequency (Dümpelmann and Elger, 1999; Valenti et al., 2006; Brown et al., 2007; 

Barkmeier et al., 2012). Spike frequency and the global spatial distribution of spikes are only 

partially informative of the localization of the seizure onset zone (Hufnagel et al., 2000; 

Asano et al., 2003; Goncharova et al., 2009; Marsh et al., 2010) and other attributes of 

spikes may provide crucial additional information (Hufnagel et al., 2000; Asano et al., 

2003).

Intracranial spikes exhibit considerable variability in their morphology at the inter-

individual, intra-individual and even intra-electrode levels. The quantitative analysis of their 

morphology may assist in the surgical planning and possibly improve surgical outcomes, 

although data on the relationship between spike amplitude and the seizure onset zone are 

contradictory (Hufnagel et al., 2000; Asano et al., 2003, 2008). The clinical implementation 

of these methods is currently limited by the lack of automated algorithms for the quantitative 

analysis of spike characteristics, requiring quantitative analysis to be performed manually, 

which is time consuming.

We thus aimed to develop an algorithm that would quantify the morphology of spikes so that 

their detection and the analysis of their temporal and spatial distribution could be performed 

based on the quantitative measure of inherent spike characteristics. In a first step, we aimed 

to validate the accuracy of the algorithm by comparing it to detections made by expert EEG 

readers. We then aimed to demonstrate its ability to focus the detections to spikes of 

increasing prominence. In a third step, we applied this algorithm to detect spikes of 

increasing prominence and study the relationship between the prominence of spikes and 

their spatial distribution relative to the seizure onset zone.

2. Methods

2.1. Selection of patients and intracranial EEG segments

This study was approved by the Yale University Human Investigation Committee. 

Intracranial EEG recordings obtained from 18 adult patients undergoing routine epilepsy 

surgical evaluation for epilepsy surgery at the Yale-New Haven Hospital between September 

2004 and April 2005 were included (see Table 1 for clinical details). One hour of icEEG 

recording was selected during an artifact-free period of daytime (from noon to 4 pm) 

obtained from days 2 to 5 of the monitoring. The recordings were removed from clinical 

seizures by at least 6 h.

2.2. Intracranial EEG recordings

Intracranial EEG was recorded with commercially available 128-channel long-term icEEG 

monitoring equipment (Natus/Bio-logic Systems Incorporated, San Carlos, CA). The icEEG 

was sampled at 256 Hz and archived for subsequent review and analysis. The icEEG was 
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recorded with reference to a peg electrode implanted in the diploic space of the skull at a 

distance from the icEEG electrodes.

Macroelectrode contacts (Ad-Tech Medical Instrument Corp., Racine, WI) were used in this 

study. The icEEG electrode placements typically included several subdural strip electrodes 

with 8–12 contacts and a grid electrode of dimension 8 × 8 contacts. Some patients also 

received depth electrodes.

Subdural electrodes and depth electrodes were as described previously. (Goncharova et al., 

2009) Briefly, intracranial electrode contacts were located from a postimplantation 

computed tomography (CT) image. The postimplantation CT was then coregistered, first, 

with a postimplantation magnetic resonance (MR) image using a linear coregistration 

procedure, and then with a preimplantation MR image using both a linear and nonlinear 

coregistration procedure.

2.3. Development of the automated detector and validation of its performance

The automated detection algorithm was developed in MATLAB (The MathWorks, Natick, 

MA, USA) and is summarized in Fig. 1.

The approach employed sought to express detection candidate spikes with a single numerical 

value that reflects its likelihood of being an exemplar spike. In the absence of a consensus 

definition of intracranial spikes, we decided to base our detection on the time–frequency 

description of a spike. In the time–frequency plane, a spike corresponds to an edge with 

power at frequencies greater than 14 Hz (Zaveri et al., 1992). Mindful that a full time–

frequency analysis of the multichannel icEEG is computationally intensive, we sought 

surrogates for this time–frequency description of the spike.

In the initial step of the algorithm, the icEEG is band-pass filtered between 10 and 70 Hz 

using a zero-phase lag Butterworth filter of order 8. This frequency band has been shown to 

contain most of the icEEG power of a spike (Zaveri et al., 1992).

Then the Teager energy is computed for each sample point using a 8 ms (−4 to +4 ms; or 

more precisely a 7.8 ms window defined by the interval between 3 consecutive sample 

points) window. Teager energy, also known as the Teager-Kaiser energy operator, is a 

computationally efficient measure that approximates the instantaneous energy of an 

oscillating signal (Kaiser, 1990). For simple harmonic motions (sine waves), it is quadratic 

function of both the instantaneous amplitude and the instantaneous frequency of the signal. 

It is thus well suited to capture the transient burst of energy caused by sharp transients such 

as spikes, which are characterized by both a sudden increase in amplitude and frequency. It 

has been applied successfully in various fields, including the detection of high frequency 

oscillations (Nelson et al., 2006) and seizures (Zaveri et al., 1993). A preliminary study 

suggested that it might hold value for spike detection (Mukhopadhyay and Ray, 1998).

A detector based on Teager energy only would however display a low specificity, as any 

transient increase in EEG power would be interpreted as a spike. We thus incorporated two 

additional parameters, an upslope (U) and a downslope (D) measures, and a temporal 

relationship between the three measures. The quantification of the upslope is easily derived 
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from the first derivative of the filtered EEG. The computed time series (Ut−8) is shifted 

forward in time by 8 ms (or more precisely the interval between 3 sample points or −7.8 ms) 

so U at t = −8 ms is aligned with the Teager energy (Et) value at t = 0 ms. Similarly, a copy 

of the first derivative time series is inverted and shifted backward in time by 12 ms (or more 

precisely the interval between 4 sample points or 11.7 ms, given our sampling rate of 256 

Hz) so the downslope (Dt+12) at t = +12 ms is aligned with the T value at t = 0 ms and the U 
value at t = −8 ms.

The choice of the window for Teager energy, and of the time shifts for the upslope and 

downslope was in part dictated by our sampling rate (256 Hz). Higher sampling rates may 

allow better temporal resolution and the choice of more precise time values. These values 

should take into account that spikes may be as short as 20 ms, thus the interval between 

upslope and downslope should be lower than this value and the window used to calculate the 

Teager energy should remain shorter than the upslope–downslope interval.

Each sample point in each channel of the initial EEG recording is defined by its 

instantaneous energy (Et), a preceding upslope (Ut−8 ms) and a following downslope (Dt+12) 

(Supplementary Fig. S1). These three univariate time series (E, U and D) are computed for 

each channel and then treated as a single multivariate time series where each channel/time 

sample is defined by a three-dimensional vector [Et,Ut−8,Dt+12]. We anticipated that points 

corresponding to spike peaks would exhibit a combination of high E, U and D.

This multivariate distribution is next reduced to a univariate distribution by computing for 

each channel and time sample the Mahalanobis distance of the vector [Et, Ut−8, Dt+12] to the 

center of the distribution [μ(E), μ(U), μ(D)], where μ indicates the mean of each distribution. 

The Mahalanobis distance (Mt) is a scale free measure of distance from a point to the center 

of a multivariate distribution. It is computed using the covariance matrix of the variables and 

takes into account the correlation between variables. It can take a null (center of the 

distribution) or any finite positive value. Higher values of M indicate a greater distance from 

the center of the distribution and a lower probability that the point belongs to the 

distribution. Thus time points with simultaneously high values of E, U and D (that 

correspond to spike peaks) exhibit the greatest M values while most values of Mt (that 

correspond to the inter-spike background) are close to zero.

The Mahalanobis distance, M, assumes a highly skewed non-Gaussian distribution and a 

generalized extreme value distribution is more appropriate to compute the parameters of the 

probability density function of Mt. Within this distribution, spikes are considered outliers 

and exhibit an Mt value higher than a threshold value that can be derived from the 

probability density function for any pre-determined statistical thresholds (α values). For the 

purpose of the study, we heuristically tested nine thresholds ranging from 0.05 (usual 

threshold value for outlier definition) to 10−5 (last threshold value for which a spike was 

detected in our sample), but any intermediate statistical threshold can be used. Our 

assumption was that the prominence of a spike would be directly related to its Mt value and 

its detection threshold, with more prominent spikes having higher Mt values, thus combining 

sharper upslope and downslope and higher instantaneous peak energy.
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In the final step of the detection, local maxima with an Mt value higher than the specified 

threshold are detected. The detector uses an algorithm that compares every Mt value higher 

than the threshold to all surrounding Mt values in the channel of interest and its neighbors 

within a sphere of radius 5 cm and within a temporal window of 200 ms (±100 ms) duration. 

To identify all contacts within a 5 cm distance of a contact of interest, inter-electrode 

Euclidian distances are calculated from the tri-dimensional coordinates of each electrode 

contact. Each “spike event” consists in the occurrence of spikes in multiple contacts but the 

algorithm identifies only one local spatio-temporal maximum (with the largest Mt value) 

within this 200 ms window, corresponding to the most noticeable discharge, and its time and 

channel of occurrence were indexed. This window accounts for the possible occurrence of 

polyphasic spikes, which would be detected only once, but was kept short enough so that 

two closely successive spikes were not considered to be the same event. The possibility that 

two spikes of equal Mt value occurred in two different contacts was also considered unlikely. 

Examples of detection are presented in Supplementary Fig. S2.

2.4. Selection of icEEG epochs for validation

We randomly selected ten recordings (including from five patients with mesial temporal lobe 

epilepsy) out of the 18 recordings available to validate the ability of the algorithm to detect 

most prominent spikes. For each patient, five electrode contacts defined during the clinical 

review of the recordings as containing spikes and five uninvolved contacts were selected. 

Ten contiguous minutes of icEEG recording were selected for this analysis.

2.5. Marking of individual spikes and contacts by expert readers

We developed a graphical user interface in MATLAB to simultaneously display the 10 

channels of icEEG at 10 s per screen. Expert readers (NG, MRA and PF) were asked to 

mark any waveform they would consider to be a spike for clinical purposes. Each reviewer 

was free to use her/his own criterion of shape, amplitude and duration. In case a spike was 

visible in multiple channels, reviewers were asked to mark only the channel where the spike 

was the most noticeable. The time and channel location of these markings were saved 

independently for each patient and each expert.

2.6. Comparison of automated detection and expert readers and statistical analysis

Expert agreement was defined as instances where two experts out of three marked the same 

event, within a 100 ms tolerance window. This window accounts for the expected 

imprecision of the manual marking by the expert and marking of polyphasic spikes. It was 

kept short enough so that two closely successive spikes were not considered to be the same 

event. The number of spikes and inter-rater percent agreement for each patient are detailed 

in Supplementary Table S1. Comparisons were made both for the detection of individual 

spikes and the identification of electrode contacts where the most prominent spikes 

occurred, for each of the 9 statistical thresholds.

We defined:

– true positive (TP) detections when the automatic detections coincided with the 

reference detections,
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– false positive (FP) detections when automatic detections did not correspond to 

the reference detections, and

– false negative (FN) detections when reference detections were not identified by 

the automatic detector.

True negative (TN) detections were not considered. TN mainly consist of the background 

against which spikes are detected and thus represent the large majority of the recording. In 

this regard, we follow the opinion of others that, given their high frequency, they would bias 

the statistical analysis toward falsely optimistic (high) specificity (Black et al., 2000; Brown 

et al., 2007).

We thus defined:

– Sensitivity as the ratio TP/(TP + FN).

– False detection rate as the ratio FP/(TP + FP).

Both were calculated for individual spikes and for individual electrode contacts, and for each 

defined statistical threshold.

In addition, we defined accuracy of spike detection as the ratio TP/(TP + FP + FN), in order 

to more readily compare performance with other published intracranial EEG spike detection 

algorithms. We also defined a false detection rate per minute by dividing the false spike 

detection rate by the duration of the recording in minutes. This was performed to provide an 

estimate of the time burden of having to review false detections. As suggested by others, 

more than six false detections per minute would nullify the usefulness of any algorithm, 

because in this case the user would have to review at least as many 10-s EEG epochs as she 

or he would have without using the detector (Wilson and Emerson, 2002). Given the 

variability in spike count between patients, these statistics were calculated for each 

individual patient and then averaged, in order not to overweigh the contribution of records 

with high spike counts to the average.

2.7. Quantification of the relationship between the most prominent spikes and the seizure 
onset zone

Each patient recording (one-hour epoch) was divided in six 10-min segments for the 

analysis, which was performed as described above, with three thresholds (0.01, 0.005 and 

0.001). These thresholds were chosen on the basis of the comparison of the automated 

detector to experts because they encompassed most of the sensitivity range of the automated 

detector for individual spike detection (13.4%, 55.2% and 68.7%, respectively; Fig. 2A and 

C).

The number of electrode contacts was 118 in all but one patient, who had 113 contacts. The 

entire set of contacts was used.

The contacts that were part of the seizure onset zone were identified by two independent 

clinical neurophysiologists and further confirmed in a consensus conference. The pattern of 

seizure onset was categorized as low voltage fast activity, repetitive spiking and/or rhythmic 

delta activity.
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We quantified the spatial relationship between contacts with prominent spikes and the 

seizure onset zone in three ways.

First, we calculated the average spike frequency of the five contacts displaying the greatest 

number of prominent spikes in each of the following regions: inferior temporal, lateral 

temporal, frontal, parietal, and occipital. As the mesial temporal region is covered by fewer 

contacts than the other regions, the average spike frequency in that region was calculated 

over the three contacts that displayed the greatest number of prominent spikes. For each 

patient, we defined concordance between spiking rate and the seizure onset zone if the 

region containing the highest spike count was also the region comprising the seizure onset 

zone. An average concordance was calculated across patients and for the three thresholds.

We also calculated a weighted average distance to give more weight to channels with a 

higher count of prominent spikes. For each contact comprising prominent spikes, the 

minimal Euclidian distance between this contact and the closest seizure onset contact was 

calculated and then multiplied by the number of spikes detected in the one-hour epoch in 

this contact. This was repeated for every channel containing prominent spikes. These 

weighted distances were summed and their sum was divided by the total number of 

prominent spikes detected to give the weighted average distance.

Finally, an overlap between the contacts containing prominent spikes and the seizure onset 

zone was defined if there was at least one contact in common between the group of contacts 

containing prominent spikes and the seizure onset zone.

These metrics were calculated for each threshold and compared across thresholds using the 

Fisher exact test (for the concordance between the region with the highest average spiking 

rate and the region comprising the seizure onset zone, and the overlap between the contacts 

containing prominent spikes and the seizure onset zone) or the Kruskal–Wallis test (for the 

weighted average distance).

3. Results

3.1. Inter-rater agreement of spike and active electrode contact marking

In a first step, we validated the accuracy of the algorithm against a set of spikes identified by 

expert EEG readers. The number of spikes marked by at least one, and any combination of 

two expert readers are detailed in Supplementary Table S1. Depending on the patient, 

between 20.2% and 57.6% of all marked spikes were marked by at least two experts. 

Between 66.7% and 100% of all channels marked as containing spikes were marked by at 

least two experts. With the exception of one channel, all these channels belonged to the 

group of channels that were classified as containing interictal spikes during clinical review.

3.2. Performance of the automated spike detector

The automated detector had an average (±SD) sensitivity of 78.2 ± 16.6% and a false 

detection rate of 31.0 ± 9.1% at its highest sensitivity threshold (alpha value of 0.05) for the 

detection of individual spikes (Fig. 2A).
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Optimal threshold for each patient as the threshold associated with the best sensitivity while 

keeping the false detection rate below six false detections per minute (Supplementary Table 

S1). Using this threshold, which ranged from 0.005 to 0.05, sensitivity ranged from 42.0% to 

75.6% (average ± SD of 63.4 ± 11.2%) and accuracy ranged from 21.3% to 66.3% (average 

± SD of 48.3 ± 16.2%).

We next hypothesized that by increasing the detection threshold the algorithm would detect a 

lower number of spikes but that these detections would correspond to more prominent 

spikes. There was indeed a direct relationship between the statistical threshold at which a 

transient was detected and its morphology (Fig. 2C): more extreme outliers, detected with a 

more stringent threshold (i.e., corresponding to higher Mt values and lower p-values), were 

more prominent spikes than less extreme outliers.

3.3. Performance of the automated detector for active electrode contacts

At its highest sensitivity threshold (alpha value of 0.05), 98.0 ± 7.9% (average ± SD) of the 

electrode contacts containing the most prominent spikes were detected (Fig. 2B). In fact, all 

but one contact, in patient 4, were detected. The false contact detection rate was 14.4 

± 16.0% (average ± SD). An intermediate threshold (alpha value of 0.001) yielded an 

average sensitivity (±SD) of 88.6 ± 15.4% with an average false detection rate (±SD) of 1.4 

± 4.5% (Fig. 2B).

An optimal threshold was defined for each patient, which was associated with the best 

sensitivity while keeping the false contact detection rate to zero (Supplementary Table S2). 

Using this threshold, which ranged from 0.0005 to 0.05, sensitivity ranged from 75.0% to 

100% (average ± SD of 98.0 ± 7.9%). The associated sensitivity for individual spikes ranged 

from 12.5% to 71.2% with a false spike detection rate ranging from 0.1 to 1.9 per minute 

(Supplementary Table S2).

Using the arbitrary threshold of 0.001, which corresponded to optimal specificity for contact 

detection, only 13.4 ± 2.8% (average ± SD) of individual spikes, albeit the most prominent, 

would have been detected (Fig. 2C).

3.4. Comparison of the location of most prominent spikes and the seizure onset zone

Finally, we investigated if the distance to the seizure onset zone influenced the time–

frequency characteristics of spikes in 18 patients with localization-related epilepsy.

The median number of contacts with spikes and the median spike frequency per contact and 

per patient are summarized in Table 2. As expected, the number of contacts containing 

spikes and the number of spikes detected decreased with more stringent thresholds.

We then studied the spatial distribution of spikes with respect to the seizure onset zone as a 

function of their prominence. Examples of this distribution for three thresholds are shown in 

Fig. 3.

Fig. 4A summarizes the concordance between the region with the highest number of spikes 

and the region comprising the seizure onset zone. This concordance improved with a higher 
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threshold (i.e., when only more prominent spikes were considered). Similarly, the weighted 

average distance between contacts containing the prominent spikes and the seizure onset 

zone was lower when more prominent spikes were considered (Fig. 4B). However, these 

more prominent spikes were less likely to occur within the seizure onset zone as indicated 

by the significantly lower overlap observed when only more prominent spikes were 

considered: in only 50% of the cases did the group of contacts containing the most 

prominent spikes overlap with the seizure onset zone, whereas they overlapped in almost all 

cases using the least stringent threshold (Fig. 4C). In only three instances were the contacts 

containing the most prominent spikes confined within the seizure onset zone (Fig. 4B). The 

weighted average distance was 0–2 cm, 2–4 cm and >4 cm in 5, 5 and 5 cases, respectively.

4. Discussion

We have developed a new algorithm for the automated detection of spikes and active 

intracranial EEG contacts based on their intrinsic time–frequency characteristics. The 

algorithm defines a spike as a local combined maximum of instantaneous (Teager) energy, 

upslope and downslope within a fixed spatial and temporal window. The prominence of a 

spike is reflected by a single statistical metric (Mahalanobis distance) that combines these 

three characteristics and allows the detection, categorization, and analysis of spikes based on 

their intrinsic time–frequency characteristics: highest values indicate more prominent spikes 

with a sharper morphology and a higher amplitude (Fig. 2C). We have shown that the 

algorithm could achieve good sensitivity for spike detection (Fig. 2A). The detector also 

achieved excellent performance (98% sensitivity and 3% false positive rate) for the detection 

of electrode contacts containing spikes (Fig. 2B).

Finally, we have shown that the prominence of a spike correlates with its location relative to 

the seizure onset zone: more prominent spikes are located close to the seizure onset zone as 

quantified by the concordance at the regional level and the weighted average distance from 

spikes to the seizure onset zone. In half of the cases, however, the most prominent spikes do 

not occur within the seizure onset zone (Fig. 3).

Automated spike detection has been the goal of numerous studies for almost four decades 

(Gotman and Gloor, 1976; Wilson and Emerson, 2002). Only a few, however, addressed the 

specific problem of spike detection in icEEG (Dümpelmann and Elger, 1999; Valenti et al., 

2006; Brown et al., 2007; Barkmeier et al., 2012) of which three have reported on the 

accuracy of such detectors in detail (Dümpelmann and Elger, 1999; Brown et al., 2007; 

Barkmeier et al., 2012). Although comparison of algorithms tested on different data sets 

should be approached with caution, our method compares favorably to these prior attempts 

(Dümpelmann and Elger, 1999; Brown et al., 2007) (Barkmeier et al., 2012).

Our statistical approach directly translates essential time–frequency descriptors of a spike 

(upslope, peak energy and downslope) (Gotman and Gloor, 1976; Emerson et al., 1995; 

Adjouadi et al., 2005) into a single scale-free value that expresses the degree to which a 

sample point distinguishes itself from the background. The selection of different thresholds 

for this single parameter results in the detection of spikes ranging from those that are 

exemplar to those that are less so (Fig. 2C). The use of the Mahalanobis distance (as 
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opposed to Euclidian distance) in this regard is justified because it is scale-free (it does not 

require normalization of each univariate distribution), it takes into account correlations 

between individual variables, and it is sensitive to multivariate outliers (De Maesschalck et 

al., 2000).

Our algorithm also takes advantage of the properties of the generalized extreme value 

distribution. This type of distribution is widely used to model phenomena where extreme 

and rare events arise. Examples of applications can be found in finance, meteorology, 

hydrology and biosignal processing (Roberts, 2000). These extreme values are strong 

outliers and, if not accounted for, can have a significant impact on central tendency (mean) 

and dispersion parameters (variance, standard deviation) and penalize detection based on 

normalization of the data.

Previous attempts of quantitative analysis of spikes in long-term icEEG recordings are few. 

They have focused on the analysis of spike frequency (Hufnagel et al., 2000; Asano et al., 

2003, 2008; Marsh et al., 2010), amplitude (Hufnagel et al., 2000; Asano et al., 2003), 

latency (Hufnagel et al., 2000; Asano et al., 2003) and propagation (Hufnagel et al., 2000). 

Of note, three of these studies involved children with cortical dysplasia (Asano et al., 2003, 

2008; Marsh et al., 2010). Our population consisted of adults patients with diverse pathology 

and is closer to the mixed population included in the fourth study (Hufnagel et al., 2000). 

Two studies reported a close relationship between leading spikes, spikes of highest 

amplitude and the seizure onset zone: the leading spikes and spikes of highest amplitude 

occurred within 2 cm of the seizure onset zone in 84% and 75% of the cases, respectively 

(Hufnagel et al., 2000) and within the seizure onset zone in 98% and 77% of the cases, 

respectively (Asano et al., 2003). These analyses were performed manually, which limits 

their clinical applicability. The data regarding spike frequency is more contradictory with the 

contacts with the highest spike count correlating with the seizure onset zone in slightly more 

than half of the cases in two studies (Hufnagel et al., 2000; Marsh et al., 2010) and almost 

all cases in the third (Asano et al., 2003).

Our data support the view that prominent spikes, or spikes of higher amplitude, originate 

from a region at the border of the seizure onset zone, which sometimes, but not always 

overlap with it.

We have recently shown that although the spatial distribution of spike rates is strongly 

associated with the location of the seizure onset zone, the region with the highest spike rate 

coincides with this zone in half of the patients only (Goncharova et al., 2013). This previous 

analysis did not take into account the time–frequency characteristics of spikes. Our new 

findings indicate that spikes with different time–frequency characteristics exhibit different 

spatial relationships to the seizure onset zone and further suggest that the quantitative 

analysis of morphological, spatial and frequency characteristics of spikes may provide 

complementary information for the identification of the seizure onset zone. Ideally, this 

analysis should be combined to the analysis of spike propagation patterns (Lai et al., 2007), 

of the distribution of other biomarkers of the seizure onset zone, such as high-frequency 

oscillations (Jacobs et al., 2010; Blanco et al., 2011; Wang et al., 2013).
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We note the following limitations to our work. In its current form, the algorithm requires 

human intervention to determine its optimal threshold. We believe that this is not a major 

drawback as the determination of this optimal threshold can be performed in a stepwise 

manner and the user receives an output for each decrement in the threshold. The user can 

also consider groups of spikes based on their detection threshold and/or each channel 

independently.

The EEG data we used were acquired using standard icEEG electrodes, which have an inter-

contact distance of 1 cm (center-to-center). It is thus possible that, due to this limited spatial 

resolution, we underestimated the degree of overlap between the seizure onset zone and the 

prominent spikes. This limitation was also present in previous studies (Hufnagel et al., 2000; 

Asano et al., 2003; Marsh et al., 2010) and does not affect our conclusion that prominent 

spikes occur mostly at the border of the seizure onset zone.

A sampling rate of 256 Hz is likely to cause distortion of fast EEG transients including 

spikes. A higher sampling rate should improve the time–frequency analysis of spikes and 

alter both the detection and quantification.

The representation of spikes in the algorithm was based only on three parameters (the energy 

of its peak, its upslope and its downslope) bound within a spatio-temporal frame. It has been 

proposed that the accurate description of a spike requires a more complex set of parameters 

to approach perfect behavior of an automated detector (Wilson and Emerson, 2002). 

Additional features, which remain to be identified but could include the presence of 

superimposed high-frequency oscillations (Wang et al., 2013), could be added to the current 

algorithm. This should prove relatively simple as the multivariate statistical approach we 

utilize and the Mahalanobis distance lend themselves to the incorporation of additional 

variables. Finally, given the greater accuracy of the algorithm to detect active contacts, a 

two-step approach could be envisioned. Active contacts would be detected first with a 

stringent threshold. In a second time, individual spikes would be detected within selected 

contacts, using a more relaxed threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Individual interictal spikes can be described by their time–frequency 

characteristics.

• An automated algorithm can detect and rank spikes by order of 

prominence.

• Most prominent spikes are accurately identify the lobe of the seizure 

onset.

• They occur within 2 cm of the seizure onset zone in half of the cases.

Gaspard et al. Page 14

Clin Neurophysiol. Author manuscript; available in PMC 2016 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Summary of the algorithm. Please refer to the text (Section 2) for details.
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Fig. 2. 
Sensitivity, false positive rate and morphology of interictal spikes detected with different 

detection thresholds. Receiver operating curves for the detection of spikes (A) and active 

contacts (B). Sensitivity is displayed as average ± SD as a function of the false positive rate. 

Points correspond to the following statistical thresholds: 0.05, 0.025, 0.01, 0.005, 0.0025, 

0.001, 0.0005, 0.00025, and 0.0001. The 0.01, 0.005 and 0.001 thresholds are indicated. At 

0.001, 88 ± 15.4% of contacts were detected while only the 13.4 ± 2.8% most prominent 

spikes were detected. This suggests that most active contacts can be detected after detection 

of the most prominent spikes, which correspond to a small fraction of all spikes. These 

curves were established with the data from 10 patients, with 10 channels per patient and a 

total of 2454 detections, which were marked by at least two independent experts. (C) 

Examples of detections arranged by probability of detection. Each graph represents the 

average of 20 detections with a probability value within the indicated threshold interval 

(from top to bottom: p < 0.0001; 0.0001 < p < 0.0005; 0.0005 < p < 0.001; 0.001 < p < 

0.005; 0.005 < p < 0.01; 0.01 < p < 0.025). Detections corresponding to the most stringent 

threshold (A) are the most prominent spikes. The change in a single parameter allows the 

detection of spikes ranging from the most (top) to least (bottom) exemplar spike 
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characteristics. In this patient, detection of spikes with a detection threshold < 0.0001 (first 

panel) would have allowed the detection of all channels containing the most prominent 

spikes.
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Fig. 3. 
Examples of spatial distribution of detected spikes based on their prominence. (A–C) 39 

year-old woman with left mesial temporal lobe epilepsy associated with hippocampal 

sclerosis. Spikes detected with a 0.01 threshold (A; blue dots) are located in the left inferior 

and mesial temporal lobes, as well as in the right mesial temporal lobe and the left inferior 

frontal lobe, and overlap partly with the seizure onset zone (red circles) in the mesial 

temporal lobe. By increasing the detection threshold (decreasing alpha values to 0.005 (B) 

and 0.001 (C)), more prominent spikes are detected (please refer to Fig. 2C); the spatial 

distribution of these spikes is more restricted and in this case confined to the seizure onset 

zone for the most prominent spikes (C). (D–F) 34-year old woman with left neocortical 

temporo-parietal epilepsy. Spikes detected with a 0.01 threshold (C; blue dots) are located in 

the left inferior and lateral temporal lobes, as well as in the left inferior parietal lobe, and 

overlap partly with the seizure onset zone (red circles) in the temporo-parietal junction. By 
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increasing the detection threshold (decreasing alpha values to 0.005 (E) and 0.001 (F)), more 

prominent spikes are detected (please refer to Fig. 2C); the spatial distribution of these 

spikes is more restricted and in this case limited to an area at the border of the the seizure 

onset zone for the most prominent spikes (F). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Relationship between spikes and the seizure onset zone. The most prominent spikes are 

detected close to but not always in the seizure onset zone. (A) The concordance between the 

region (defined as mesial temporal, inferior temporal, lateral temporal, frontal, parietal or 

occipital) containing the highest number of prominent spikes and the region comprising the 

seizure onset zone increases with the detection of only the most prominent spikes. Error bars 

indicate ±1 standard error of proportion (p < 0.001; one-tailed Fisher exact test). (B) The 

average distance between contacts containing spikes, weighted for the number of spikes 

Gaspard et al. Page 20

Clin Neurophysiol. Author manuscript; available in PMC 2016 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detected by contact, and the seizure onset zone as a function of the prominence of detected 

spikes: more prominent spikes (detected with more stringent thresholds from 0.01 to 0.001) 

are closer to the seizure onset zone, as shown by the decreasing average distance. Dashed 

lines indicate individual cases and the bold line is the group mean; error bars indicate ±1 

standard deviation. (p = 0.043; Kruskal–Wallis test). (C) The probability of overlap between 

the seizure onset zone and the contacts containing the prominent spikes decreases when only 

the most prominent spikes are detected. Error bars indicate ±1 standard error of proportion 

(p < 0.001; one-tailed Fisher exact test).
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Table 2

Detection of spike and contacts at different sensitivity thresholds.

Thresholds 0.01 0.005 0.001

Number of contacts in the SOZ (median [range]) 3 [1–11]

Number of contacts with prominent spikes (median [range]) 22 [7–104] 12 [1–101] 2 [1–36]

Average prominent spike frequency per contact per hour (median [range]) 53.0 [7.7–352.5] 29.4 [6–313] 13.5 [5–165]

Prominent spike frequency per hour per patient (median [range]) 1374 [53–21,852] 564 [6–12,966] 42 [5–2868]

Abbreviation: SOZ = seizure onset zone.
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