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Abstract

Objective—The objectives of this study were to determine the impact of in vivo reactive oxygen 

species (ROS) on microvascular endothelial function in obese human subjects and to determine the 

efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality.

Approach and Results—Young, sedentary men and women were divided into lean (BMI 18–

25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel 

microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and 

superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. 

Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. 

A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial 

function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered 

(normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in 

obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects 

and microvascular endothelial function in these subjects was restored to levels similar to lean 

subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox 

were increased in obese relative to lean subjects, where p22phox and p67phox expression was 

attenuated by exercise training in obese subjects.
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Conclusions—This study implicates Nox as a source of excessive ROS production in skeletal 

muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial 

dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for 

alleviating these maladies.
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INTRODUCTION

Worldwide obesity rates have risen to pandemic levels, as the number of overweight and 

obese individuals has recently been estimated at 2.1 billion.1 Obesity has become a major 

cause of mortality,2 while obesity greatly increases the relative risk of death from 

cardiovascular disease (CVD).3 Impaired endothelium-dependent vasodilation is a key early 

step in atherosclerotic progression and is predictive of future cardiovascular risk.4 Such 

impairments to microvascular resistance vessels lead to decreased capillary recruitment and 

have been shown to be exacerbated with increasing adiposity.5,6 Microvascular dysfunction 

is thought to contribute to the development of hypertension due to increased peripheral 

vascular resistance7 and progression of insulin resistance by limiting nutrient and/or insulin 

delivery to skeletal muscle,8 both pathologies which could further compound CVD risk. 

Thus, obesity may promote microvascular dysfunction and the ensuing elevated 

cardiovascular risk.

Oxidative stress is a systemic feature of obesity that is well-documented in clinical and 

experimental studies. Excessive reactive oxygen species (ROS) production can result in 

apoptosis and increased cellular permeability, which may promote inflammation, endothelial 

dysfunction, and vascular remodeling.9 NADPH oxidase (Nox), in particular, is considered a 

prominent source of vascular-derived ROS and is known to promote endothelial dysfunction 

and play a pathophysiological role in hypertension, atherosclerosis, and diabetic 

microvascular complications.10 Recently, we developed and validated a novel microdialysis 

technique to measure in vivo production of the ROS hydrogen peroxide (H2O2) and 

superoxide.11 We developed this technique because direct measurement of oxidative stress in 

humans is extremely difficult, with investigators typically relying on indirect byproducts of 

lipid peroxidation in plasma or urine,12 or from in vitro measurements of ROS production 

from excised tissue.13

Aerobic exercise training has been found to promote far-reaching health benefits in multiple 

organ systems that extend well beyond reducing the traditional CVD risk factors.14 Aerobic 

interval training (AIT), in particular, has been shown to induce improvements in aerobic 

capacity, endothelial function, and insulin signaling in patients with the metabolic 

syndrome.15 Although exercise has been shown to induce ROS generation during exercise in 

an intensity- and duration-dependent manner, the overall net effect of chronic exercise 

training tends to promote a reduced oxidative burden.14 Previous studies suggest that aerobic 

exercise training reduces oxidative stress and reverses endothelial dysfunction through an 

attenuation of Nox activity.16,17 Given the important pathological role of Nox-derived ROS, 
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we sought to investigate the role of Nox in microvascular endothelial dysfunction in skeletal 

muscle of obese individuals, and to determine whether aerobic exercise training mitigates 

this dysfunction by modulating Nox or ROS scavenging. To accomplish these goals, we 

coupled our newly developed ROS measurement technique with our previously established 

microdialysis methodology of monitoring microvascular blood flow18,19 to simultaneously 

measure in vivo ROS levels and microvascular endothelial function in skeletal muscle of 

human subjects.

MATERIALS AND METHODS

Materials and Methods are available in the online-only Data Supplement.

RESULTS

Subject characteristics

Subject characteristics are listed in Table 1. Body fat percentage was increased in the 

intermediate relative to the lean group (P<0.001), and the obese relative to the intermediate 

group (P=0.005). There were no group differences for fasting serum glucose levels; however, 

higher fasting insulin levels in the obese group (P=0.007) resulted in a higher HOMA-IR 

(P=0.014) compared to the lean group. Triglyceride levels appear higher in the intermediate 

than the obese group, though this trend did not reach statistical significance (P=0.265).

Subject characteristics before and after the exercise intervention are listed in Supplemental 

Table II. None of the groups lost weight, nor were there any changes in body fat percentage 

or fasting glucose or insulin levels. AIT did not alter blood lipid profiles in the intermediate 

or obese groups, although training significantly reduced total (P=0.013), and LDL (P=0.007) 

cholesterol levels in the lean group. AIT increased VO2peak in the intermediate (P=0.001) 

and obese (P<0.001) groups, though the increase in the lean group did not reach statistical 

significance (P=0.092).

Vascular Injury Markers

Pre-training serum markers of vascular injury are presented in Table 2. Serum concentrations 

of CRP (P=0.003), VCAM-1 (P=0.021), ICAM-1 (P=0.044), E-Selectin (P<0.001), and 

SAA (P=0.004) were higher in the obese relative to the lean group, with sICAM-3 higher in 

the obese relative to the intermediate group (P=0.015). There were no significant differences 

between the intermediate and lean groups for any of the vascular injury markers. There were 

no AIT-induced changes for any vascular injury marker in any group (Supplemental Table 

III).

In vivo ROS

Endogenous H2O2 was elevated in the obese group compared to both the lean and 

intermediate groups (P<0.001; Figure 1). There were no significant differences across 

groups for ROS measured in the apocynin perfused probe; however apocynin significantly 

attenuated H2O2 only in the obese group (P<0.001). The increase in ROS signal upon 

addition of SOD to the perfusate, indicative of superoxide, was elevated in the obese group 
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compared to both the lean (P=0.004) and intermediate (P=0.038) groups. The increased 

levels of H2O2 and superoxide in the obese group were independent of sex and race of the 

participants in each group.

Microvascular Endothelial Function

Resting microvascular nutritive blood flow was not different between any groups, nor was it 

significantly altered by apocynin perfusion (Figure 2A). Microvascular endothelial function, 

tested by ACh-stimulated blood flow, was attenuated in the obese relative to the lean 

(P=0.016) and intermediate (P=0.044) groups (Figure 2B), which was not dependent upon 

the race or sex distribution of subjects in each group. Apocynin co-perfusion augmented 

ACh-stimulated blood flow only in the obese group (P=0.041). Endothelium-independent 

vasodilatory function was tested by SNP-stimulated blood flow, which was not significantly 

different amongst any groups (Figure 2C).

Exercise Training Effects on ROS

Eight weeks of AIT decreased endogenous H2O2 in the obese group (P=0.033), while the 

lean and intermediate groups were unchanged (Figure 3A). However, the increase in total 

ROS signal upon SOD perfusion was not significantly changed by AIT in any group. 

Subtracting ROS concentrations measured in the apocynin perfused probe from that of the 

control probe revealed decreased Nox-mediated H2O2 following AIT in the obese group 

(P=0.019; Figure 3B). ROS detected in the apocynin perfused probe revealed no AIT-

mediated changes in Nox-independent ROS (Figure 3C).

Exercise Training Effects on Microvascular Endothelial Function

Eight weeks of AIT did not alter resting nutritive skeletal muscle blood flow in any group 

(Figure 4A), nor did it affect nutritive blood flow under apocynin perfusion (Figure 4B). AIT 

augmented microvascular endothelial function in the obese (P=0.033), but had no effect on 

the lean or intermediate groups (Figure 4C). There were no AIT-induced changes in 

apocynin co-perfused ACh-stimulated blood flow in any group (Figure 4D). There were no 

AIT-mediated changes in endothelium-independent vasodilatory function in any group 

(Figure 4E).

Nox Subunit and Xanthine Oxidase Expression and Nox activity

Representative images for Western blots ran against the Nox subunits gp91phox, p22phox, 

p47phox, p67phox and xanthine oxidase (XO) in skeletal muscle samples from a subset of 

lean and obese subjects are presented in Figure 5A. Densitometry analysis revealed a trend 

(p=0.06) for increased gp91phox (Figure 5B) expression, and significant (P<0.05) increases 

in expression for p22phox (Figure 5C), p47phox (Figure 5D), and p67phox (Figure 5E) in 

obese relative to lean subjects. AIT significantly depressed p22phox and p67phox expression 

in obese subjects, although no AIT-induced changes were observed for gp91phox or p47phox 

expression. There were no obesity- or AIT-induced changes observed in XO expression 

(Figure 5F). Nox activity was significantly elevated in sedentary obese vs. lean skeletal 

muscle samples, where AIT induced increased Nox activity in the lean tissue, but suppressed 

Nox activity in obese tissue (Figure 5G).
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DISCUSSION

In the present study, we utilized a novel microdialysis technique to demonstrate that in vivo 
superoxide and H2O2 production are increased in skeletal muscle of obese relative to lean or 

overweight/mildly obese individuals. In addition, microvascular endothelial dysfunction was 

evident in these obese individuals relative to both of the other groups. A role for Nox in 

obesity associated oxidative stress and microvascular endothelial dysfunction was confirmed 

by three independent experiments, in that ROS production and endothelial dysfunction were 

attenuated by apocynin perfusion, that immunoblot analysis demonstrated increased 

expression of Nox subunits gp91phox, p22phox, p47phox, and p67phox in obese skeletal 

muscle, and that Nox activity was increased in obese skeletal muscle samples. Finally, we 

demonstrated that eight weeks of AIT attenuated H2O2 levels and reversed microvascular 

endothelial dysfunction in obese individuals, which coincided with decreased expression of 

two of the four Nox subunits investigated, and decreased ex vivo Nox activity.

Superoxide is a very short lived, highly reactive molecule with well documented detrimental 

effects on vascular function driven by oxidative damage to lipids, proteins, and DNA, 

apoptosis, increased endothelial cell permeability, and quenching of NO bioavailability in 

the formation of peroxynitrite.9,10 H2O2, in contrast, is less reactive and thus more stable 

and more readily permeates membranes. H2O2 is critical for redox-based signal transduction 

with several properties that may influence vascular function. H2O2 activates several 

signaling cascades which modulate vascular function, including angiogenesis, endothelial 

barrier dysfunction and apoptosis, and induction of inflammatory proteins.20 Of particular 

interest, acute H2O2 exposure has been found to impair endothelium-dependent dilation of 

porcine coronary arterioles via induction of arginase activity.21 Hellsten et al.22 have 

previously utilized a microdialysis approach based on cytochrome c reduction to 

demonstrate that superoxide levels are increased by exercise in human skeletal muscle. 

However, the present study is the first to directly measure both H2O2 and superoxide levels 

in vivo in human skeletal muscle, and to demonstrate that both ROS are elevated in obese 

subjects.

A recent study by Walther et al.23 demonstrated impaired brachial artery endothelial 

function and cutaneous microvascular endothelial function in obese subjects with the 

metabolic syndrome. The present study extends these findings to the lower limb skeletal 

muscle microvasculature and adds an important role for the degree of obesity, as subjects 

with a BMI of 28–32.5 were free of microvascular endothelial dysfunction as opposed to 

subjects with a BMI of 33–40 in which microvascular endothelial dysfunction was evident. 

Recent large scale population-based studies have concluded that non-invasive assessment of 

vascular function in conduit vessels adds little predictive value to CVD risk above the 

traditional CVD risk factors, whereas infusion of ACh into the resistance vasculature and 

assessment of vascular function in the resistance vessels improves CVD risk prediction 

beyond the Framingham risk score.24–26 These studies highlight the applicability of 

stimulating endothelium-dependent dilation in the resistance vasculature for assessment of 

cardiovascular health. Additionally, two previous studies6,27 demonstrate that brachial artery 

endothelial function is augmented upon infusion of the antioxidant ascorbic acid in obese 

individuals, further demonstrating the detrimental nature of acute ROS production in the 
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obese human vasculature. A stated limitation of one of these studies was that local, 

physiologically relevant levels of ROS were not detectable with the methods used in the 

study.27 The present study adds to these findings by detecting elevated in vivo H2O2 and 

superoxide concentrations in the obese cohort, as well as by demonstrating improved 

endothelial function in the resistance vasculature in this cohort by drastically attenuating 

ROS levels by apocynin perfusion, further implicating Nox as both a source of increased 

ROS and deterrent of vascular function in the resistance vasculature in the obese subjects. 

These findings are further corroborated by the increased skeletal muscle p22phox, p47phox, 

and p67phox content and ex vivo Nox activity in the obese subjects.

The finding that SNP-stimulated blood flow was not different between any of the groups 

indicates that the impairment of ACh-stimulated blood flow in the obese was indeed due to 

impaired endothelium-dependent vasodilation rather than impairment of soluble guanylate 

cyclase-mediated smooth muscle relaxation. Furthermore, the finding that impaired ACh-

stimulated blood flow in the obese was reversed upon apocynin perfusion implicates a role 

for Nox-mediated ROS in skeletal muscle microvascular endothelial dysfunction in human 

obesity. The observation that resting microvascular blood flow was not different between 

groups or altered by apocynin suggests that regulation of resting microvascular blood flow is 

also controlled by factors in addition to ROS and NO. Nonetheless, Nox-mediated ROS 

appear to be significantly impacting NO production in the obese group, which can have 

important ramifications regarding CVD development. Nox is a likely important source of 

vascular ROS in human obesity, as expression of Nox subunits are elevated in venous 

endothelial cells obtained from obese human subjects.28 Furthermore, Nox has previously 

been implicated in human vascular disease, as Nox activity and subunit expression have 

been found to be elevated in excised arterial segments from Type II diabetic patients and 

coronary artery disease patients.29, 30 In addition, apocynin perfusion through microdialysis 

probes has previously been found to blunt local angiotensin II-mediated vasoconstriction in 

the human cutaneous microvasculature,31 and to restore local cutaneous vascular 

conductance in chronic kidney disease patients.32 Thus, the findings in the present study that 

apocynin delivery via microdialysis augments local microvascular function are not without 

precedent. Conversely, apocynin incubation has been shown to have no effect on flow-

induced dilation in coronary resistance arteries from cardiopulmonary bypass patients.33 The 

finding that Nox-mediated ROS and microvascular endothelial function were essentially 

unchanged in the overweight/mildly obese intermediate BMI group relative to the lean group 

was unexpected and interesting. This intermediate group demonstrated normal levels of 

VCAM-1, ICAM-1, and sICAM-3, which were all elevated in the obese group. The 

discrepancy in these inflammatory and atherogenic molecules between the obese and 

overweight/mildly obese subjects could have long-term consequences of accelerated 

development of more severe vascular pathologies in the obese. However, that acute apocynin 

perfusion completely abrogated ROS levels and restored ACh-stimulated blood flow 

implicates a more profound role for Nox in driving the microvascular endothelial 

dysfunction observed in this obese group. It is important to note that these obese individuals 

were young and free of overt disease. As such, it is quite possible that more factors than 

ROS may be involved in regulating microvascular function in more severe disease states. 

These data also implicate an important role for the degree of obesity, as no functional 
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abnormalities were observed in the overweight/mildly obese intermediate BMI group. 

Nonetheless, this study demonstrates a critical, acute role for Nox-mediated ROS in 

regulating skeletal muscle microvascular endothelial function in obese individuals.

A recent meta-analysis concluded that a large proportion of the protective effects of exercise 

on the vasculature occur independent of changes in the traditional CVD risk factors and are 

more likely explained by direct effects of exercise on the arterial wall or cellular 

environment.34 In the present study, we observed significant decreases in both total and 

Nox-mediated H2O2 in the obese skeletal muscle extracellular environment post-training. 

Despite no AIT-induced changes in the traditional cardiovascular risk factors, we observed 

augmented microvascular endothelial function in the obese group, while apocynin no longer 

affected endothelial function post-training. These AIT-induced changes were unique to the 

obese group, as neither the lean nor intermediate groups demonstrated any changes in 

interstitial ROS levels or microvascular function post-training. Previous studies suggest that 

exercise-induced improvements in endothelial function are inversely proportional to pre-

training functionality.34 Given that the lean and intermediate groups demonstrated large pre-

training vasodilatory responses to acetylcholine, failure to improve further was unsurprising. 

However, exercise-induced reversal of endothelial dysfunction through attenuation of Nox-

derived ROS has been implicated in several contexts.16,35–37 Exercise training has been 

shown to decrease Nox activity or subunit expression in coronary arteries of diet-induced 

obese rodents36,37 and carotid arteries of aged rodents35, while apocynin improves 

endothelial function in sedentary, but not exercise trained vessels in these studies. 

Importantly, CAD patients that performed four weeks of aerobic exercise training prior to 

bypass surgery demonstrated reduced Nox activity and increased vasodilatory function in 

internal mammary artery segments relative to patients that remained sedentary prior to 

surgery.16 These findings demonstrate an ability of Nox activity to be beneficially altered in 

severely diseased human arteries by relatively short-term exercise training.16 The present 

study adds to these findings by demonstrating an ability of exercise training to act in a 

restorative manner and reverse endothelial dysfunction in the lower limb microvasculature of 

obese individuals, even those without overt vascular or metabolic disease.

The decrement in interstitial apocynin-inhibitable H2O2 induced by AIT in the obese is 

supported by AIT-induced decreases in p22phox and p67phox protein content and ex vivo Nox 

activity in skeletal muscle tissue in a subset of these subjects. Aside from Nox, there are 

several factors that could potentially influence interstitial ROS levels. It is quite possible that 

exercise training induces an upregulation in the H2O2 detoxification pathways in the obese, 

such as the glutathione and thioredoxin systems, catalase, and the Nrf2/Keap1 phase II 

antioxidant system.38 As H2O2 has a longer half-life and is much more membrane 

permeable than superoxide, it is very plausible that some of the H2O2 detected via 

microdialysis is mitochondria derived. In this context, it is also likely that exercise training 

in the obese subjects promotes a reduction in mitochondrial derived ROS emission, which 

could manifest as reduced interstitial H2O2. We have previously demonstrated that AIT 

attenuates mitochondrial H2O2 emission in red gastrocnemius of high-fat, high sucrose-fed 

rats through an upregulation of the thioredoxin system.39 In addition, Gram et al.13 recently 

demonstrated that exercise training attenuates mitochondrial H2O2 emission in skeletal 

muscle biopsy samples from subjects that had previously undergone leg immobilization. 
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Importantly, excessive mitochondrial derived ROS has been found to promote endothelial 

dysfunction.40,41 There also remains a possibility that Nox-derived ROS stimulates 

mitochondrial ROS production.42 Mitochondrial ROS production from Nox overexpressing 

transgenic mice fed a high-fat diet is increased threefold over wild type mice fed the same 

high-fat diet.43 Thus, it remains possible that apocynin perfusion attenuates mitochondrial 

ROS production through inhibition of ROS-induced ROS release. In addition, synergy 

between Nox- and XO-derived ROS has been demonstrated, whereby Nox inhibition 

prevents XO activation.44 Both mitochondrial ROS and XO activity have been shown to be 

increased in non-diabetic obese subjects relative to lean counterparts.45,46 Regardless of the 

enzymatic source of ROS, we observed a decrease in skeletal muscle H2O2 and apocynin 

inhibitable H2O2 following exercise training in the obese group, which coincided with 

improved microvascular endothelial function in these individuals.

Apocynin was the only Nox inhibitor used in this study, thus all inferences made on the 

microvascular effects of Nox are derived from the influence of apocynin. Apocynin is 

reported to inhibit the assembly of p47phox and p67phox within the membrane complex, and 

inhibit activation of NADPH oxidase isoforms that require subunit translocation.47 However, 

apocynin has been reported to be both an antioxidant48 and a pro-oxidant.49 Thus, we cannot 

be certain that the effects of apocynin were mediated specifically through Nox inhibition. 

All of the ROS measurements from the apocynin perfused probe were converted from 

fluorescence units to [H2O2] based off of an H2O2 standard curve constructed in the 

apocynin containing perfusate. Thus, any possible H2O2 scavenging effect of apocynin or 

any possible interference of apocynin on the amplex ultrared assay would be accounted for 

by the standard curve. The marked inhibition of ROS by apocynin strongly suggests that 

apocynin does not have a pro-oxidant effect in this system. Despite the potential limitations 

of apocynin, it is by far the most commonly used Nox inhibitor available31,32,35,37,40, and at 

the concentrations employed by use in these studies, it is unrealistic to expect that any 

potential antioxidant effect of this compound could explain the effects observed here. A few 

subjects from each group dropped out of the exercise program prior to completion, thus data 

was not attained from these subjects for post-training measures. In addition, the muscle 

biopsy was an optional procedure to which only five subjects per group consented. Despite 

the small sample size, the marked elevation in Nox activity and expression of Nox subunits 

in the obese subjects conferred clear differences that were statistically significant. 

Furthermore, the obese subjects failed to lose weight in response to exercise training. There 

were no improvements in traditional cardiometabolic risk factors or inflammatory markers 

following exercise training, although there is evidence to suggest that weight loss is 

necessary for a reduction in fasting glucose, triglyceride, or cholesterol levels.50,51 High-

intensity exercise has been shown to induce an acute pro-inflammatory state, which may last 

for up to 72 hours following intense exercise.52 Thus, any long-term anti-inflammatory 

effects of the exercise program could be masked by blood sampling 48 hours following the 

final exercise bout. It is noteworthy that exercise training altered the ROS levels, Nox 

activity and expression levels, and microvascular endothelial function without improvements 

in any of these inflammatory or traditional risk factors, which highlights the beneficial 

effects of exercise in the obese population, which extend well beyond these markers.
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In conclusion, we demonstrate for the first time that in vivo ROS are elevated in skeletal 

muscle of obese human subjects. This study is the first utilization of the newly developed 

microdialysis approach to measure in vivo H2O2 and superoxide,11 and is the first 

demonstration of increased in vivo ROS in human skeletal muscle under a pathological 

condition. Perfusion of apocynin normalized ROS levels and reversed microvascular 

endothelial dysfunction in obese subjects, providing a mechanistic link between ROS and 

microvascular function in the in vivo setting. Additionally, AIT was proven effective at 

attenuating in vivo H2O2 and reversing microvascular endothelial dysfunction in the obese 

cohort, providing further evidence that AIT is a practical, clinically relevant means to 

alleviate these obesity associated maladies. Furthermore, these obese subjects were young 

with normal blood chemistries of the traditional clinically evaluated cardiometabolic risk 

factors, though were likely in an early state of CVD pathogenesis as evidenced by 

microvascular endothelial dysfunction. This study implicates Nox-mediated ROS as a 

potential target to prevent further CVD progression in obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ACh Acetylcholine

AIT Aerobic Interval Training

Apo Apocynin

CRP C-Reactive Protein

CVD Cardiovascular Disease

H2O2 Hydrogen Peroxide

HRP Horseradish Peroxidase

ICAM-1 Intracellular Adhesion Moledule-1

Nox NADPH Oxidase

ROS Reactive Oxygen Species

SNP Sodium Nitroprusside

SAA Serum Amyloid A
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sICAM-3 Soluble Intracellular Adhesion Molecule-3

SOD Superoxide Dismutase

VCAM-1 Vascular Cell Adhesion Molecule-1

XO Xanthine Oxidase
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HIGHLIGHTS

• A novel technique to directly measure in vivo H2O2 and superoxide 

revealed increased levels of both ROS in obese human subjects relative 

to lean and overweight/mildly obese subjects.

• Microvascular endothelial function was impaired in obese relative to 

lean and overweight/mildly obese subjects.

• NADPH oxidase inhibition normalized H2O2 and superoxide levels and 

reversed endothelial dysfunction in the obese subjects.

• Eight weeks of aerobic exercise training decreased H2O2 levels and 

improved microvascular endothelial function in the obese subjects.

• Skeletal muscle NADPH oxidase subunit expression and activity were 

increased in obese subjects, both of which were decreased with 

exercise training.
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Figure 1. In vivo NADPH oxidase-mediated ROS in skeletal muscle of lean, overweight/mildly 
obese (Int), and obese subjects
ROS was measured without superoxide dismutase (−SOD) in the perfusate, indicative of 

H2O2 produced endogenously. ROS detected with SOD added (+SOD) to the perfusate is 

indicative of endogenous superoxide in addition to H2O2. ROS were also measured in the 

absence (−Apo) and presence of apocynin (+Apo), an NADPH oxidase inhibitor. Values are 

mean±SEM for n = 13–15 subjects in each group. *P<0.05 vs. lean group. †P<0.05 vs. Int 

group. ‡Significant effect of apocynin (P<0.05). §Effect of SOD in obese significantly 

(P<0.05) greater than lean and Int groups.
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Figure 2. Association between obesity and NADPH oxidase mediated skeletal muscle 
microvascular endothelial function
(A) Basal microvascular blood flow was assessed in the absence (control) and presence 

(Apo) of apocynin in lean, overweight/mildly obese (Int), and obese subjects. (B) 

Microvascular endothelial function was assessed as the change in blood flow from baseline 

(Δ Blood Flow) upon addition of acetylcholine (ACh) to the perfusate. (C) Microvascular 

endothelium-independent blood flow was assessed by change in blood flow from baseline (Δ 

Blood Flow) upon addition of sodium nitroprusside (SNP) to the perfusate. Values are mean

±SEM for n = 13–15 subjects per group. *P<0.05 vs. lean group. †P<0.05 vs. Int 

group. ‡P<0.05 vs. ACh only condition.
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Figure 3. Effect of exercise training on NADPH oxidase-mediated ROS production
ROS were measured before (Pre) and after (Post) eight weeks of aerobic exercise training in 

lean, overweight/mildly obese (Int), and obese individuals. (A) ROS was measured without 

superoxide dismutase (−SOD) in the perfusate, indicative of H2O2 produced endogenously. 

ROS detected with SOD added (+SOD) to the perfusate is indicative of endogenous 

superoxide in addition to H2O2. (B) NADPH oxidase (NOX) mediated ROS were 

determined by calculation of the ROS that was inhibited by the NOX inhibitor apocynin 

(Apo). NOX-independent ROS were calculated as the fraction of ROS not inhibited by Apo. 

Values are mean±SEM for n = 9–12 subjects in each group. *P<0.05 vs. pre-training.
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Figure 4. Exercise training effects on skeletal muscle microvascular endothelial function
Microvascular blood flow was assessed before (Pre) and after (Post) eight weeks of aerobic 

exercise training in lean, overweight/mildly obese (Int), and obese subjects. (A) Basal blood 

flow. (B) Blood flow with apocynin perfusion. (C) Microvascular endothelial function, 

assessed by change in blood flow from basal (Δ Blood Flow) in response to acetylcholine 

perfusion. (D) Effect of NADPH oxidase on microvascular endothelial function, assessed by 

change in blood flow upon acetylcholine addition to the apocynin perfused probe. (E) 

Microvascular endothelium-independent blood flow was assessed by change in blood flow 

from baseline upon addition of sodium nitroprusside (SNP) to the perfusate. Values are 

mean±SEM for n = 9–12 subjects per group. *P<0.05 vs. pre-training.
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Figure 5. Protein expression of NADPH oxidase subunits, xanthine oxidase, and NADPH oxidase 
activity in lean and obese skeletal muscle
(A) Representative Western blot images for NADPH oxidase subunits gp91phox, p22phox, 

p47phox, p67phox, and xanthine oxidase from skeletal muscle obtained from lean and obese 

subjects before (Pre) and after (Post) eight weeks of aerobic exercise training. Images of α-

tubulin are provided for a loading control. Densitometry analyses for (B) gp91phox, (C) 

p22phox, (D) p47phox, (E) p67phox, (F) xanthine oxidase expression normalized to α-tubulin. 

(G) NADPH-stimulated H2O2 generation was measured as an index of NADPH oxidase 

activity. Values are mean±SEM for n=5 subjects per group. *P<0.05 vs. lean group. †P<0.05 

vs. pre-training.
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Table 1

Pre-training subject characteristics and metabolic parameters.

Lean Intermediate Obese

Age (y) 23.8±1.0 29.0±2.0* 25.0±1.2

Sex (M/F) 5/9 7/6 3/12

Race (AA/C) 2/12 4/9 7/8

Height (m) 1.70±0.03 1.73±0.03 1.68±0.02

Weight (kg) 63.3±3.5 91.3±3.4* 103.7±3.4*†

BMI (kg/m2) 21.6±0.6 30.1±0.4* 36.6±0.7*†

Body Fat % 25.2±2.3 36.2±1.8* 46.0±1.2*†

Glucose (mg/dl) 86.1±2.4 91.7±1.9 89.7±1.8

Insulin (μIU/ml) 7.1±0.8 14.1±3.5 18.7±2.9*

HOMA-IR 1.54±0.20 3.30±0.93 4.23±0.71*

Triglycerides (mg/dl) 86.2±5.8 116±22.2 85.0±11.0

Cholesterol (mg/dl) 160±8.1 161±6.1 154±8.6

HDL-C (mg/dl) 57.3±3.7 42.8±3.8* 46.3±2.7

LDL-C (mg/dl) 85.4±6.2 94.7±7.2 91.1±9.0

VO2peak (ml/kg/min) 35.3±1.9 30.3±1.6 22.9±1.0*†

*
P<0.05 vs. Lean,

†
P<0.05 vs. Intermediate.
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Table 2

Pre-training markers of vascular injury.

Lean Intermediate Obese

CRP (ng/ml) 5.89±2.04 19.9±6.71 33.4±6.02*

VCAM-1 (ng/ml) 1.07±0.08 1.10±0.13 1.56±0.15*†

ICAM-1 (ng/ml) 0.62±0.05 0.79±0.19 1.04±0.11*

sICAM-3 (ng/ml) 0.64±0.05 0.61±0.07 0.88±0.06†

E-Selectin (ng/ml) 5.69±2.10 13.0±2.93 20.0±2.06*

P-Selectin (ng/ml) 64.7±9.2 62.7±8.5 66.4±6.0

Thrombomodulin (ng/ml) 3.77±0.46 3.36±0.41 3.47±0.15

SAA (ng/ml) 12.4±3.8 16.0±4.6 36.0±5.8*†

*
P<0.05 vs. Lean,

†
P<0.05 vs. Intermediate.
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