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Abstract The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively

charged membrane lipids (mainly phosphatidylserine (PtdSer) and phosphoinositides (PtdIns)) but

the molecular details of this process are not fully understood. Using quantitative thermodynamic,

kinetic and structural methods, we show that synaptotagmin-1 (from Rattus norvegicus and

expressed in Escherichia coli) binds to PtdIns(4,5)P2 via a polybasic lysine patch in the C2B domain,

which may promote the priming or docking of synaptic vesicles. Ca2+ neutralizes the negative

charges of the Ca2+-binding sites, resulting in the penetration of synaptotagmin-1 into the

membrane, via binding of PtdSer, and an increase in the affinity of the polybasic lysine patch to

phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). These Ca2+-induced events decrease the

dissociation rate of synaptotagmin-1 membrane binding while the association rate remains

unchanged. We conclude that both membrane penetration and the increased residence time of

synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion.

DOI: 10.7554/eLife.15886.001

Introduction
Synaptic transmission in the nervous system is mediated by the regulated release of neurotransmit-

ters from presynaptic nerve terminals. Before triggering, neurotransmitters are stored in synaptic

vesicles. Upon arrival of an action potential, voltage-gated Ca2+-channels open, leading to a rise in

cytoplasmic Ca2+ concentration, which triggers the fusion of synaptic vesicles with the presynaptic

plasma membrane. The primary Ca2+ sensor for synchronous neuronal exocytosis is synaptotagmin-1

(syt-1), a resident protein of synaptic vesicles that consists of a short luminal domain, a transmem-

brane a-helix and two cytoplasmic C2 domains, referred to as C2A and C2B. C2 domains were first

identified in protein kinase C (PKC), and have since been detected in many diverse proteins (Corba-

lan-Garcia and Gomez-Fernandez, 2014). The C2 domains of syt-1 are composed of structurally

conserved eight-stranded anti-parallel b-sandwiches of ~130 residues. These domains contain Ca2+-

binding loops at one end of the b-sandwich motif. Upon Ca2+ binding, the electrostatic surface

potential of the C2 domains is altered. As a result, Coulombic attraction develops towards the head

groups of anionic phospholipids, leading to binding of the C2 domains to the membrane associated

with completion of the Ca2+ coordination sphere. Moreover, a conserved polybasic lysine patch

located on the C2B domain also binds to anionic lipid in the absence of Ca2+, being particularly

attracted to multivalent phosphoinositides (PtdIns) (Jahn and Fasshauer, 2012;
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Südhof, 2013; Chapman, 2008; Brose et al., 1992; Corbalan-Garcia and Gómez-Fernández, 2014;

Südhof, 2012).

Membrane binding of syt-1 has been widely studied (Kuo et al., 2009; Wang et al., 2003;

van den Bogaart et al., 2012; Vrljic et al., 2011; Kuo et al., 2011; Radhakrishnan et al., 2009;

Li et al., 2006; Bai et al., 2004, 2002; Schiavo et al., 1996), mostly using a cytoplasmic fragment

including both C2 domains (termed the syt-1 C2AB fragment). However, the mechanism of syt-1

binding to the membrane remains a matter of controversy. For example, recent studies have

reported that a double Lys-to-Ala mutation in the polybasic lysine patch (termed the KAKA mutant)

does not alter the binding of the syt-1 C2AB fragment to vesicles containing phosphatidylserine

(PtdSer) and/or phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) (Radhakrishnan et al., 2009).

By contrast, the same mutant was reported in other studies to decrease the binding of the C2AB

fragment to vesicles (Vrljic et al., 2011), even in the absence of PtdIns (Li et al., 2006), or to almost

completely abolish the binding to soluble PtdIns(4,5)P2, in either the absence or the presence of

Ca2+ (van den Bogaart et al., 2012). On the other hand, several studies suggest that not only the

tandem C2AB fragment (Vrljic et al., 2011) but also the individual C2B (van den Bogaart et al.,

2012) and C2A domains (Guillen et al., 2013; Zhang et al., 1998) might bind to PtdIns predomi-

nantly through the Ca2+-binding loops in the presence of Ca2+, and as a consequence, might com-

pete with PtdSer to complete the coordination sphere of bound Ca2+ (Honigmann et al., 2013).

To resolve these discrepancies, and to shed light on the binding mechanism of syt-1 to its main

lipid effectors, PtdSer and PtdIns, we examined the kinetics of syt-1 binding to vesicles containing

different amounts of PtdSer and PtdIns(4,5)P2. We also used isothermal titration calorimetry (ITC) to

measure the affinities of the C2AB fragment towards the head groups of PtdSer and PtdIns. More-

over, we performed nuclear magnetic resonance (NMR) experiments to determine the residues that

are affected by binding to PtdSer and PtdIns(4,5)P2, and electron paramagnetic resonance (EPR)

eLife digest The human nervous system contains billions of neurons that communicate with

each other across junctions called synapses. When a neuron is activated, the levels of calcium ions

inside the cell rise. This causes molecules called neurotransmitters to be released from the neuron at

a synapse to make contact with the second neuron. The neurotransmitters are stored inside cells

within compartments known as synaptic vesicles and are released when these vesicles fuse with the

membrane surrounding the cell.

Proteins called SNAREs regulate the membrane fusion process. These proteins assemble into

bundles that help to drive vesicle and cell membranes together. Another protein called

synaptotagmin-1 sticks out from the vesicle membrane and senses the levels of calcium ions in the

cell to trigger membrane fusion at the right time. Synaptotagmin-1 has two regions that can bind to

calcium ions, known as the C2 domains. When calcium ion levels rise, these domains insert into the

cell membrane by binding to two fat molecules in the membrane called phosphatidylserine (PtdSer)

and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). Synaptotagmin-1 also interacts with the

SNARE proteins, but it is not known whether synaptotagmin-1 triggers fusion by binding directly to

SNAREs, or by the way it inserts into the cell membrane.

Pérez-Lara et al. used several biophysical methods to investigate how synaptotagmin-1 binds to

PtdSer and PtdInsP2. The experiments show that these molecules bind to different regions of

synaptotagmin-1 and work together to attach the protein to the cell membrane and insert the C2

domains. Calcium ions increase the affinity of synaptotagmin-1 binding to the cell membrane by

making it harder for synaptotagmin-1 to separate from the membrane, rather than by increasing its

ability to bind to it. Further experiments show that synaptotagmin-1 prefers to bind to membranes

that contain PtdInsP2 over binding to the SNARE proteins.

Together, the findings of Pérez-Lara et al. suggest that calcium ions may trigger the release of

neurotransmitters by trapping synaptotagmin-1 at the cell membrane rather than by directly

affecting how it interacts with SNARE proteins. Further work will be needed to establish exactly how

the SNARE proteins, PtdInsP2 and synaptotagmin-1 interact.

DOI: 10.7554/eLife.15886.002
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experiments to examine the orientation of the C2AB fragment with respect to the membrane sur-

face. Our results demonstrate that PtdSer and PtdIns(4,5)P2 act in a synergistic manner to enhance

the penetration depth of syt-1 and to reduce the dissociation rate from the membrane. Furthermore,

our data provide strong evidence that PtdIns binds to the polybasic lysine patch on the C2B domain

and does not compete with PtdSer for sites in the Ca2+-binding loops. Importantly, enhanced bind-

ing to the membrane in the presence of Ca2+ is exclusively due to a decrease in the dissociation rate

(koff), whereas the association rate (kon) remains unchanged. Although synergistic, the binding of

the syt-1 C2AB fragment is dramatically different for PtdSer- and PtdIns(4,5)P2-containing mem-

branes, suggesting that the modes of binding to these two lipids are distinct in nature.

Results

PtdSer and PtdIns(4,5)P2 play a synergistic role in membrane binding of
synaptotagmin-1
In the first series of experiments, we carried out stopped-flow experiments in order to investigate

the binding kinetics of the soluble domain of syt-1 (termed the C2AB fragment) to vesicles contain-

ing different molar ratios of PtdSer and PtdIns(4,5)P2. We monitored Förster resonance energy trans-

fer (FRET) between the tryptophan residues of the C2AB fragment and dansyl-labeled phospholipids

that were incorporated into the liposomes. The time course of the fluorescence traces was fitted to

a mono-exponential function in order to determine the observed rate constant (kobs) Figure 1a. The

measured kobs values were plotted as a function of vesicle concentration and fitted to a linear equa-

tion, in which the slope yields kon, the y intercept yields koff and the Kd was calculated by koff/kon
(Hui et al., 2005) (Figure 1b).

In our approach, we used a low protein concentration to avoid binding of the C2AB fragment to

opposing membranes in the presence of Ca2+ (resulting in vesicle clustering) (Vennekate et al.,

2012) and other cooperative effects (Figure 1c). Our conditions allowed us to measure reliably the

binding kinetics and affinity of the C2AB fragment to liposomes containing various molar ratios of

PtdSer (0, 10 and 20%) and PtdIns(4,5)P2 (0, 2.5 and 5%).

As expected, no binding was observable in the absence of PtdSer and PtdIns(4,5)P2 and, unfortu-

nately, the fluorescence traces for binding to vesicles containing 10% PtdSer or 2.5% PtdIns(4,5)P2

could not be reliably fitted because of the low signal-to-noise ratio under our experimental condi-

tions. However, vesicles containing both PtdSer and PtdIns(4,5)P2 yielded a lower apparent dissocia-

tion constant (Kd) than vesicles containing either PtdSer or PtdIns(4,5)P2 alone, even when the

vesicles had similar charge density (Figure 1d). Surprisingly, no significant difference was observed

in the bimolecular association rate constant (kon) in almost all the tested lipid mixtures (Figure 1e),

In other words, the decrease in affinity is solely due to a drop in the unimolecular dissociation rate

constant (koff) (Figure 1f). Thus, under these experimental conditions, the association rate for bind-

ing of the C2AB fragment to the vesicles is diffusion-limited and the binding equilibrium is controlled

by the off-rate.

The results described above suggest that the C2AB fragment binds to PtdSer in a different man-

ner than to PtdIns(4,5)P2. To determine whether the orientation of the C2AB fragment differs when

bound to membranes containing either PtdSer or PtdIns(4,5)P2 in the presence of Ca2+, we per-

formed EPR experiments using spin-labeled variants of the protein. Insertion of the spin-labeled side

chain R1 (see Figure 2a) into the hydrophobic core of the membrane alters the rotamer sampling

and motion of the spin label. As consequence, the EPR spectra from membrane-embedded spin

labels are significantly broadened when the C2AB fragment is fully bound to vesicles (Figure 2a).

In addition, using progressive power saturation (Freed et al., 2011; Frazier et al., 2003), we deter-

mined the membrane insertion depth of labels attached to the Ca2+-binding loops of the C2A

domain (residues 173 and 234), the Ca2+-binding loops of the C2B domain (residues 304 and 368)

and the polybasic lysine patch (residue 329). When bound to bilayers containing 5% PtdIns(4,5)P2,

labels in the Ca2+-binding loops exhibit more motional averaging than they do when bound to

vesicles composed of either 20% PtdSer (Figure 2a) or 10% PtdSer + 2.5% PtdIns(4,5)P2 (data not

shown). This suggests a shallower membrane penetration for R1 when bound to bilayers composed

of only PtdIns(4,5)P2 rather than PtdIns(4,5)P2 and PtdSer, in agreement with previous results of

experiments based on continuous wave power saturation. As previously reported (Herrick et al.,
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2006; Kuo et al., 2009), R1 sidechains at sites 173, 234, 368 and 304 penetrate the membrane in

the presence of PtdSer regardless of whether PtdIns(4,5)P2 is present, but failed to deeply penetrate

the membrane in vesicles containing only PtdIns(4,5)P2. As shown in Table 1, the insertion depth of

the Ca2+-binding loops was 4–6 Ångstroms (Å) shallower in membranes composed of PtdIns(4,5)P2

than in membranes containing PtdSer. By contrast, a label in the polybasic patch, 329R1, was closer

to the membrane in PtdIns(4,5)P2-containing vesicles than in PtdSer-containing vesicles, indicating

that there is a difference in orientation. Using the power saturation data in Table 1, the orientations

of C2B domain in the presence of membranes containing either PtdSer or PtdIns(4,5)P2 were deter-

mined (see Materials and methods) and are shown in Figure 2b.The presence of PtdIns(4,5)P2 is

found to promote a tilt of the C2B domain, which is consistent with its interaction with the polybasic

face. It should be kept in mind that the depth measurements are averaged values and that these

models represent an average of what must be a dynamic system. Together with the stopped-flow

Figure 1. PtdIns(4,5)P2 and PtdSer act cooperatively in the membrane binding of the C2AB fragment. (a) Representative time courses of dansyl

emission for rapid mixing of 0.25 mM syt-1 C2AB fragment (final concentration) with increasing concentrations of large unilamellar vesicles (final

liposome concentrations ranging between 0.3 nM and 3 nM) containing PtdChol:PtdSer (80:20, molar ratio), measured at 25˚C. The apparent rate

constant kobs was determined by fitting the traces to a monoexponential function (solid black lines). (b) The dependence of kobs on the vesicle

concentration: data from two different sets of liposomes used for the stopped-flow experiment shown in (a). The non-zero y-intercept of the linear

regression curve yields koff and the slope yields kon. (c) Representative absorbance time course (n = 2) for rapid mixing of C2AB fragment (0.25 mM, final

concentration) and vesicles (~2.5 nM). Absorbance was monitored at 450 nm for vesicles containing PtdChol/PtdSer/PtdIns(4,5)P2 (75:20:5, molar ratio).

No aggregation of vesicles was observed in our conditions, even when lipid mixtures with the highest affinity to C2AB fragment were used. (Inset) A

scale-up of the traces showing that there is no vesicle aggregation in our conditions in concordance to the results of Vennekate et al. (2012). (d) Kd

values, calculated as the ratio of koff/kon, (e) kon and (f) koff of C2AB fragment binding to liposomes containing different concentrations of PtdSer and

PtdIns(4,5)P2. All values were calculated from stopped-flow experiments carried out by rapid mixing of C2AB fragment with vesicles containing different

amounts of PtdSer and/or PtdIns(4,5)P2, and 100 mM free Ca2+ at 25˚C (n = 5–10). Higher affinities (lower Kd) were observed in the presence of both

PtdSer and PtdIns(4,5)P2, solely resulting from a decrease in koff. Columns with the same color indicate values that were not significantly different from

each other. Black boxes indicate either lack of binding or low binding that was too noisy for a reliable quantitative analysis.

DOI: 10.7554/eLife.15886.003
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measurements described above, these data indicate that PtdSer and PtdIns(4,5)P2 play a synergistic

role in the binding of syt-1 to the membrane. When both PtdSer and PtdIns(4,5)P2 are present, the

Ca2+-binding loops of syt-1 penetrate deeper into the bilayer than they do when the membrane con-

tains PtdIns(4,5)P2 alone, leading to a tighter binding of the C2AB fragment to the membrane, which

is reflected by a decrease in the dissociation rate.

PtdInsP2 binding to the C2B domain polybasic patch
To further characterize the binding of the C2AB fragment to PtdIns(4,5)P2 and PtdSer, we performed

isothermal titration calorimetry (ITC) experiments in the presence of Ca2+ using the head groups of

PtdSer and PtdIns(4,5)P2, O-phospho-L-serine (O-PSer) and inositol-1,4,5-triphosphate (InsP3),

respectively, as ligands for our titration instead of vesicles. Our rationale was that by using the head

group of the phospholipid, we could determine the role of each specific phospholipid in the binding

of the C2AB fragment to the membrane, avoiding the interferences of other phospholipids and

unspecific electrostatic and hydrophobic interactions between the protein and the membrane. In our

experiments, only small changes in the binding enthalpy were observed upon injection of O-PSer

into a solution containing the C2AB fragment, precluding a quantitative assessment of the thermo-

dynamics of binding. This did not change even when we used a short-chain analogue of PtdSer (1,2-

hexanoyl-sn-glycero-3-phospho-L-serine, C6-PtdSer) instead of O-PSer. By contrast, binding of InsP3

Figure 2. Orientation of the C2 domains bound to membranes containing either PtdSer or PtdIns(4,5)P2. (a) EPR spectra from sites 173, 234, 304, 329

and 368 in solution or bound to bilayers containing PtdChol/PtdSer (80:20, molar ratio) or PtdChol/PtdInsP2 (95:5, molar ratio). The broader spectra

reflect diminished amplitudes and rates of R1 label motion when the C2AB fragment is bound to vesicles containing PtdChol/PtdIns(4,5)P2 (95:5, molar

ratio) or PtdChol/PtdSer (80:20, molar ratio) (n = 2–3). R1 is the spin-labeled side chain produced by derivatizing cysteine with the MTSL spin label. (b)

Docking orientation of the C2B domain (PDB ID: 1K5W [Fernandez et al., 2001]) at the membrane interface, polybasic patch in blue. In this figure, the

result from Xplor-NIH (Materials and methods) was aligned with a membrane simulation generated by CHARMM-GUI (Jo et al., 2008) for a bilayer with

PtdChol:PtdInsP2 or PtdChol:PtdSer at a molar ratio of 97:3 or 80:20, respectively. PtdIns(4,5)P2 (pink sticks) was manually docked to the C2B domain.

Blue sticks correspond to residues 321–326 and red sticks correspond to R1-labeled residues used in EPR experiments.

DOI: 10.7554/eLife.15886.004
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to the C2AB fragment was highly exothermic, showing a stoichiometry of 1:1 and an affinity of

14 ± 2 mM (Figure 3a).

To gain insight into the binding sites, we examined the average weighted chemical shift changes

in a 1H-15N HSQC NMR spectrum of 15N-labeled C2AB fragment upon addition of either InsP3 or

O-PSer in the presence of Ca2+. In agreement with the lack of enthalpy changes, addition of O-PSer

to the C2AB fragment did not induce significant changes in the chemical shifts (Figure 3—figure

supplement 1a). By contrast, the addition of InsP3 induced chemical shift changes primarily in the

polybasic lysine patch of the C2B domain, with the highest chemical shifts observable for residues

K325, K326 and K327, confirming previous reports which established the polybasic lysine patch of

the C2B domain as the primary binding site of PtdIns(4,5)P2 (Vrljic et al., 2011; Li et al., 2006;

Bai et al., 2004; van den Bogaart et al., 2012) (Figure 3b,c and Figure 3—figure supplement 1b).

In addition to the polybasic lysine patch, residues located in the Ca2+-binding sites of the C2A and

C2B domains exhibited significant but smaller chemical shift changes (Figure 3b,c).

To determine whether the Ca2+-binding sites contribute to the overall binding affinity of InsP3,

we measured InsP3 binding by ITC to C2AB-fragment mutants in which Ca2+-binding was inactivated

either in the C2A domain (C2aB: D178A, D230A, D232A) or in the C2B domain (C2Ab: D309A,

D363A, D365A) or both (C2ab: D178A, D230A, D232A, D309A, D363A, D365A)

(Radhakrishnan et al., 2009). The experiments were carried out in the presence and absence of

Ca2+ (Figure 4a,b), with the wild-type C2AB fragment as control. In the absence of Ca2+, the bind-

ing affinity of the wild-type protein was significantly lower than in the presence of Ca2+. This reduc-

tion is mediated by the Ca2+-binding site of the C2B domain: it was abolished in the C2Ab and

C2ab mutants but not in the C2aB mutant (Figure 4d). Apparently, the negatively charged side

chains in the Ca2+-binding site reduce the affinity of the negatively charged InsP3 through unfavor-

able Coulombic interactions. Neutralizing these charges by Ca2+-binding or, alternatively, by their

deletion by mutagenesis are equally effective in preventing the thermodynamic penalty resulting

from repulsive interactions. In line with that proposition, the lower affinities were mainly due to a

decrease in binding enthalpy rather than to reduced entropy (Figure 4—figure supplement 1;

Table 1. Depth parameters and approximate positions of spin labels attached to the C2AB fragment.

Mutant Lipid composition Depth parameter (F) Approx. distance to phosphate plane (Å)*

M173R1 20% PtdSer +1.20 ± 0.10 +8.8

5% PtdIns(4,5)P2 �0.01 ± 0.20 +5.5

10% PtdSer + 2.5% PtdIns(4,5)P2 +0.66 ± 0.10 +7.4

F234R1 20% PtdSer �0.10 ± 0.10 +5.2

5% PtdIns(4,5)P2 �1.50 ± 0.03 –0.6

10% PtdSer + 2.5% PtdIns(4,5)P2 +0.00 ± 0.10 +5.5

V304R1 20% PtdSer �0.39 ± 0.20 +4.3

5% PtdIns(4,5)P2 �1.30 ± 0.10 +0.6

10% PtdSer + 2.5% PtdIns(4,5)P2 �0.23 ± 0.10 +4.8

T329R1 20% PtdSer �2.00 ± 0.14 –5.4

5% PtdIns(4,5)P2 �0.80 ± 0.14 +2.8

10% PtdSer + 2.5% PtdIns(4,5)P2 �2.10 ± 0.12 –7.3

G368R1 20% PtdSer +0.60 ± 0.10 +7.2

5% PtdIns(4,5)P2 �0.64 ± 0.05 +3.6

10% PtdSer + 2.5% PtdIns(4,5)P2 +0.18 ± 0.10 +6.0

*Positive distances lie on the hydrocarbon side of a plane defined by the lipid phosphates; negative distances reside on the aqueous side. Distances

were estimated using a calibration curve empirically determined as described previously (Herrick et al., 2006). Depth parameters are typically averages

of two to four measurements and the error represents either standard deviations or errors propagated from the error in the measurement of DP½.

These measurements were carried out at lipid concentrations high enough so that C2AB fragment is effectively completely membrane bound in the

presence of 1 mM Ca2+.

DOI: 10.7554/eLife.15886.005
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Figure 4—figure supplement 2), as one would expect for a primarily electrostatic effect. Neverthe-

less, no change of the binding stoichiometry was observed in any of the different conditions and

mutants tested (Figure 4c). Next, we repeated the ITC titrations using the isolated C2A and C2B

domains of syt-1. As expected, the C2B domain bound InsP3 in a manner similar to the C2AB frag-

ment. By contrast, binding of InsP3 to the C2A domain yielded only small enthalpy changes, confirm-

ing that C2B is indeed the domain responsible for InsP3 binding (Figure 4e).

Recently, it has been reported that, in the absence of Ca2+, syt-1 binds preferentially to the

SNARE complex rather than to membranes containing PtdIns(4,5)P2 (Brewer et al., 2015). To test

this hypothesis, we measured InsP3 binding to the isolated C2B domain in the presence of SNARE

complex and in the absence of Ca2+ (to avoid precipitation of protein [Dai et al., 2007]) by ITC. The

presence or absence of SNARE-complex made no difference to InsP3 binding to the isolated C2B

domain (Figure 4f), in agreement with previous observations from our group (Park et al., 2015)

. This evidence suggests that, under physiological conditions, the C2AB fragment binds preferen-

tially to PtdIns(4,5)P2. A recent study has reported three distinct syt–SNARE interfaces involving

both C2A and C2B domains (Zhou et al., 2015). Therefore, we next repeated the experiment

Figure 3. PtdIns(4,5)P2 binds preferentially to the polybasic patch of the C2B domain. (a) Binding of the C2AB fragment to phospholipid head groups

measured by isothermal titration calorimetry (ITC). Titration of ~50 mM C2AB fragment (50 mM HEPES, pH 7.4, 150 mM NaCl and 1 mM CaCl2) with

InsP3 (inositol-1,4,5-triphosphate) (n = 3), O-phosphoserine (O-PSer) (n = 2) and 1,2-hexanoyl-sn-glycero-3-phospho-L-serine (C6-PtdSer) (n = 2), in the

presence of saturating Ca2+ at 25˚C. Only small heats were observed upon addition of C6-PtdSer and O-PSer, while InsP3 binds specifically (Kd = 14 ± 2

mM) with a stoichiometry of 1:1. (b) Averaged-weighted chemical shifts (4HN, N) in 15N-1H correlated HSQC NMR spectra of syt-1 in the presence of

InsP3 and Ca2+. Chemical shift changes are widely distributed in the polybasic region of C2B domain. Small chemical shift are also seen in the calcium-

binding loops of the C2B and C2A domains. Measurements were made under normal ionic strength (150 mM NaCl, 50 mM MES, pH = 6.3, and 3 mM

Ca2+) at a frequency of 600 MHz for protons. (c) Chemical shifts are color coded and mapped onto the structures of C2B and C2A domains according

to the color bar (n = 2–3).

DOI: 10.7554/eLife.15886.006

The following figure supplement is available for figure 3:

Figure supplement 1. Chemical shift of 1H-15N HSQC of C2B domain in the presence of InsP3 or O-PSer.

DOI: 10.7554/eLife.15886.007
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Figure 4. Ca2+ increases the affinity of PtdIns(4,5)P2 to the polybasic patch by means of shielding the negative charges of the Ca2+-binding site in the

C2B domain. (a,b) Representative ITC titrations (n = 3–6) of ~50 mM of the wild-type C2AB fragment, mutant proteins in which either one or both Ca2+

binding sites are mutated, and the KAKA mutant in which some of the charges in the polybasic patch are removed. Titrations were carried out with

InsP3 as shown in Figure 3a in (a) the presence or (b) the absence of Ca2+. Lines represent the fitting of the different titrations. (c) Number of binding

sites determined from the fits of the ITC experiments of the different C2 domains shown in (a) and (b). All C2 domains show one binding site for InsP3
in the presence or absence of Ca2+. In absence of Ca2+, binding of InsP3 to the KAKA mutant was completely abolished. (d) Dissociation constants (Kd)

calculated from the experiments shown in (a) and (b). In the presence of Ca2+, only the KAKA mutant shows a significant decrease in the binding to

Figure 4 continued on next page
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described above using the C2AB fragment and lower protein concentration, ~15 mM instead of ~50

mM, to reduce the chances of protein aggregation. Interestingly, the presence of the SNARE com-

plex resulted in a moderate decrease in affinity of InsP3 to the C2AB fragment, in contrast to above

results using the C2B domain (Figure 4g,i). To clarify this discrepancy, we decided to examine the

syt–SNARE interaction using ITC. Our results show that the SNARE complex binds the C2AB frag-

ment with higher affinity than it does the C2B domain, and that K326 and K327 play an important

role in this binding (Figure 4h,i), in agreement with recent findings (Brewer et al., 2015;

Wang et al., 2016).

Previous studies have shown that the mutation of these two Lys residues in the polybasic lysine

patch to Ala (K326A and K327A, KAKA mutant) abolishes syt-1 binding to PtdIns(4,5)P2 (van den

Bogaart et al., 2012). Using ITC, we studied the binding of InsP3 to the KAKA mutant in the pres-

ence and absence of Ca2+. In the absence of Ca2+, binding to InsP3 was abolished (Figure 4b), as

previously reported (van den Bogaart et al., 2012). However, in the presence of Ca2+, the KAKA

mutant was able to bind to InsP3, but with lower affinity than the wild-type C2AB fragment

(Figure 4a,d). To further investigate the binding of the KAKA mutant to the membrane in the

absence of Ca2+, we performed stopped-flow experiments in the absence of Ca2+. No binding was

detectable using FRET, probably because of the low concentration of protein used in our pseudo-

first-order conditions, which did not provide enough signal for detection (data not shown). To over-

come this limitation, we carried out a vesicle sedimentation assay to measure the fraction of protein

bound to sucrose-loaded vesicles under true equilibrium conditions. Using sedimentation, the KAKA

mutant was found to bind with reduced affinity to either PtdSer- or PtdIns(4,5)P2-containing bilayers

in the presence of Ca2+ (Figure 5a,b,c and Table 2). Remarkably, the KAKA mutation produced only

a small effect on the binding to PtdSer-containing bilayers (Figure 5a), but dramatically reduced the

membrane affinity of C2AB fragment to 2% PtdIns(4,5)P2 bilayers (Figure 5b). In these membranes,

the KAKA mutant altered the membrane-binding free energy of C2AB fragment by 7.5 kJ/mole. In

the absence of Ca2+, the KAKA mutant failed to bind to PtdSer- or PtdIns(4,5)P2-containing bilayers

(Figure 5d,e). However, this variant did bind to membranes composed of both PtdSer and PtdIns

(4,5)P2 (Figure 5f), indicating a synergistic activity of PtdSer and PtdIns(4,5)P2 towards syt-1 C2AB

fragment binding.

The affinity between the C2AB fragment and membranes containing both PtdSer and PtdIns(4,5)

P2 (Table 3) in the absence of Ca2+ indicates that at an accessible lipid concentration of 20 mM, 50%

of the protein is bound. However, in full-length syt-1, the C2 domains are tethered near the mem-

brane interface and thus experience a very high local lipid concentration. Assuming the domains lie

within 4 nm of the interface, the effective membrane concentration seen by the C2 domains will be

well over four orders of magnitude higher than 20 mM. This represents a shift in the binding free

energy to favor membrane association by about 25 kJ/mole, may be even higher when considering

that syntaxin and PtdIns(4,5)P2 form clusters that increase the local concentration of PtdIns(4,5)P2 in

the plasma membrane (Honigmann et al., 2013; van den Bogaart et al., 2011). Of course, the local

Figure 4 continued

InsP3. In the absence of Ca2+, mutations in the C2B Ca2+-binding site rescue the binding to InsP3, where as the KAKA mutant shows weak unspecific

binding. (e) Titration of ~50 mM C2A domain (in the presence of Ca2+) and C2B domain (in the presence or absence of Ca2+) with InsP3 (n = 2)

compared to that of the C2AB fragment in same conditions (see legend). The C2B domain is responsible for InsP3 binding to syt-1. (f) Titration of ~50

mM C2B domain–SNARE-complex (1:1, molar ratio) with InsP3 in the absence of Ca2+ (n = 2). The C2B domain binds preferentially to InsP3 in

physiological conditions. (g) Titration of ~15 mM C2AB domain/SNARE-complex (1:1, molar ratio) with InsP3 in the absence of Ca2+ (n = 2). We set the

number sites to one for the fitting due to the uncertainty resulting from the low concentrations used. (h) Titration of SNARE-complex ~15 mM with

different syt-1 fragments in the absence of Ca2+ (n = 2). The Kd values from (g) and (h) should be interpreted with caution because the low

concentration used for the titrations resulted in a high uncertainty on the fitting. (i) Representative raw data for titration from (g) and (h). Interestingly,

titration of the C2AB–SNARE complex presented an endothermic profile, whereas titration of InsP3 presented an exothermic profile.

DOI: 10.7554/eLife.15886.008

The following figure supplements are available for figure 4:

Figure supplement 1. Thermodinamic binding parameters of the different C2AB fragments.

DOI: 10.7554/eLife.15886.009

Figure supplement 2. Representative titrations (n � 3) of ~50 mM of the C2AB fragment used in Figure 4a,b in the presence or absence of Ca2+.

DOI: 10.7554/eLife.15886.010
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concentration of SNARE proteins is also high, so that significant competition with PtdIns(4,5)P2 for

syt-1 binding cannot be excluded. We conclude that the affinity of C2AB fragment to membranes

containing PtdIns(4,5)P2 and PtdSer is significant even in the absence of Ca2+ (Table 3).

Taken together, our results demonstrate that PtdIns(4,5)P2 primarily binds to the polybasic lysine

patch of the C2B domain, which includes two Lys residues (K326 and K327), rather than to the Ca2+-

binding sites of C2B domain. As discussed below, the relative affinity of the C2AB fragment for

PtdIns(4,5)P2 versus its affinity for the SNAREs suggests that PI(4,5)P2 is the likely target of the

Figure 5. Equilibrium binding of the C2AB fragment and polybasic mutants to PtdChol, PtdSer and PtdIns(4,5)P2 bilayers. (a,b,c) Ca
2+-dependent and

(d,e,f) Ca2+-independent partitioning of C2AB fragment into (a,d) PtdChol/PtdSer, (b,e) PtdChol/ PtdIns(4,5)P2 and (c,f) PtdChol/PtdSer/ PtdIns(4,5)P2
bilayers. (d,e) No binding of the KAKA mutant was observed in the presence of PtdSer or PtdIns(4,5)P2 alone in absence of calcium . At equivalent

charge densities, removal of lysine residues within the polybasic face reduced the membrane affinity in vesicles containing PtdSer and PtdIns (4,5)P2 (c)

more than it did in vesicles containing either (a) PtdSer or(b) PtdIns (4,5)P2 in the presence of calcium. The lines represent fits to the data using Eq [1]

(Materials and methods). Reciprocal molar partition coefficients obtained from data are listed in Tables 2 and 3 (n = 2–3).

DOI: 10.7554/eLife.15886.011

Table 2. Reciprocal molar partition coefficients, K, for the Ca2+-dependent membrane affinity of syt-1 C2 domains.

Lipid composition Syt1-C2AB WT Syt1-C2AB K326A Syt1-C2AB K326A/K327A

7 mol % PtdSer 1.0 (±0.1) x 103 3.4 (±0.4) x 102

2 mol % PtdIns (4,5)P2 2.2 (±0.2) x 104 5.1 (±0.5) x 103 1.1 (±0.1) x 103

5 mol % PtdSer + 0.5 mol % PtdIns(4,5)P2 5.0 (±0.7) x 104 2.2 (±0.3) x 104 1.0 (±0.1) x 104

Values of K are expressed in units of M-1. The errors represent the uncertainly obtained from the nonlinear regression used in fitting the data to K. The

reciprocal of K corresponds to the accessible molar lipid concentration at which 50% of the protein is membrane bound (n = 2–3).

DOI: 10.7554/eLife.15886.012
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polybasic patch of the C2B domain, in agreement with recent reports (Wang, 2016; Park et al.,

2015). Furthermore, Ca2+ increases C2B’s affinity for PtdIns(4,5)P2, probably by neutralizing the neg-

atively charged side chain at the Ca2+-binding site of the C2B domain, allowing a tighter binding of

the polybasic patch to PtdIns(4,5)P2.

Phosphoinosites and Ca2+ decrease the dissociation rate of
synaptotagmin-1
Although we focus on PtdIns(4,5)P2 because it is the most abundant phosphoinositide in the plasma

membrane (Ueda, 2014), it has been reported that syt-1 also binds to other phosphorylated phos-

phatidylinositols (PtdInsPx) (Vrljic et al., 2011; Wang et al., 2011). Phosphatidylinositol phosphates

are lipids that only differ from each other in the number of phosphate groups and/or the phospho

site of the inositol ring, with different species being specifically associated with different intracellular

membranes (Chasserot-Golaz et al., 2010). To gain insight into the binding of syt-1 to different

phosphatidylinositols, we measured the binding kinetics of the C2AB fragment to vesicles containing

55% phosphatidylcholine (PtdChol), 22% phosphatidylethanolamine (PtdEth), 11% phosphatidylser-

ine (PtdSer), 11% cholesterol (Chol) and 1% of different phosphatidylinositols (PtdInsPx). Phosphory-

lated phosphatidylinositides increased the apparent affinities (Figure 6a), with the bimolecular

association (kon) and the unimolecular dissociation rate (koff) constants being enhanced and reduced,

respectively (Figure 6b,c). The 5–10-fold decrease in koff and Kd (koff/kon) was progressively higher in

the presence of bisphosphorylated phosphatidylinositols (PtdInsP2) and triphosphorylated phospha-

tidylinositols (PtdInsP3) than in the presence of monophosphorylated phosphatidylinositols (PtdInsP)

(Figure 6a,c). While PtdInsP2 or PtdInsP3 increased the association rate constant moderately by 2–3-

fold, PtdInsP or phosphatidylinositols (PtdIns) had no measurable effect on the binding kinetics

(Figure 6b). Thus, these results suggest that syt-1 does not discriminate between the different

tested phosphorylated phosphatidylinositol stereoisomers, and that the increase in affinity is mainly

due to the higher charge density of the different PtdInsPx species. Our findings are in contrast to

those of a recent study that came to a different conclusion based on a lipid overlay and a binding

sensor assay (Vrljic et al., 2011). To further examine these conflicting results, we measured the bind-

ing of the head groups of different phosphatidylinositol phosphates to the C2B domain of syt-1

using ITC (Figure 6d). Surprisingly, Ins(1,3,5)P3 showed lower affinity than the other tested stereo-

isomers (Figure 6e) because of a less favorable binding enthalpy (Figure 6—figure supplement 1).

Finally, we studied the binding kinetics of the C2AB fragment to vesicles containing PtdChol:

PtdSer:PtdEth:Chol:PtdIns(4,5)P2 (55:22:11:11:1 molar ratio) at four different Ca2+concentrations (50,

100, 500 and 1000 mM). We were unable to detect binding at Ca2+ concentrations lower than 50

mM. Nevertheless, for all other tested concentrations, the estimated bimolecular association rate

constants (kon) showed minor differences (Figure 6g), meaning that the increase in the Ca2+-

concentration did not drive the C2AB fragment to the membrane faster, at least not in this concen-

tration regime. In contrast, the dissociation rate constant (koff) showed a substantial decrease at

concentrations over 50 mM (Figure 6h) with no further decrease at Ca2+ > 100 mM. Because of this,

the dissociation constant (Kd), followed a similar trend to the unimolecular dissociation rate constant

(koff) (Figure 6f,h).

Table 3. Reciprocal molar partition coefficients, K, for the Ca2+-independent membrane affinity of

syt1 C2 domains.

Lipid composition Syt1–C2AB WT Syt1–C2AB K326A/K327A

25 mol % PtdSer 2.7 (±0.3) x 102 not detected

2 mol % PtdIns(4,5)P2 1.1 (±0.2) x 103 not detected

10 mol % PtdSer + 2 mol % PtdIns(4,5)P2 4.7 (±0.9) x 104 2.7 (±0.3) x 102

Values of K are expressed in units of M-1. The errors represent the uncertainly obtained from the nonlinear regres-

sion procedure used in fitting the data to K. The reciprocal of K corresponds to the accessible molar lipid concen-

tration at which 50% of the protein is membrane bound (n = 2–3).

DOI: 10.7554/eLife.15886.013
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In summary, these results suggest that the association rate of the C2AB fragment is largely Ca2+-

independent. The increased membrane affinity of the C2AB fragment in the presence of Ca2+ is due

to a decreased dissociation rate from the membrane. As a result, Ca2+ lengthens the

period during which syt-1 remains bound once membrane binding has occurred.

Discussion
In the present study, we used well-defined kinetic (stopped-flow) and structural (EPR and NMR)

methods to better understand how the C2AB fragment of the vesicular Ca2+ sensor synaptotagmin

1 (syt-1) binds to membranes. Three main conclusions can be derived from our data. First, PtdSer

and PtdIns(4,5)P2 act synergistically to promote deeper penetration of the Ca2+-binding site of the

C2B domain into the membrane. Second, Ca2+ increases the affinity of syt-1 for PtdIns(4,5)P2, which

binds preferentially to the polybasic lysine patch of the C2B domain, and Ca2+ acts by neutralizing

Figure 6. Ca2+ and phosphoinositides increase the membrane affinity of syt-1 by decreasing the dissociation rate of the syt-1–membrane complex. (a)

Kd, (b) kon and (c) koff calculated from stopped-flow experiments carried out by rapid mixing, as in Figure 1, of C2AB fragment with vesicles containing

PtdChol/PtdSer/PtdEth/Chol/PtdInsPX (55:11:22:11:1 molar ratio), where X = 0–3 phosphate groups, in 20 mM HEPES (pH 7.4), 150 mM KCl, 1 mM

EGTA and 1.1 mM CaCl2 (100 mM free Ca2+) at 37˚C (n = 5–10). An increased number of phospho groups of phosphoinositides increases the affinity by

decreasing the dissociation rate (koff). A minor increase in kon was detected in the case of PtdInsP2–3. (d) Thermodynamic characterization of the binding

of C2B domain to head groups of physiological phosphoinositides by ITC. Titration of ~50 mM C2B domain (50 mM HEPES (pH 7.4), 150 mM NaCl and

1 mM CaCl2) with main stereoisomers of InsP3–4 at 25˚C (n = 2).(e) Dissociation constants (Kd) calculated for experiments from d. (f) Kd, (g) kon and (h)

koff calculated from stopped-flow experiments carried out at different Ca2+concentrations with vesicles containing PtdChol/PtdSer/PtdEth/Chol/PtdIns

(4,5)P2 (55:11:22:11:1 molar ratio) at 37˚C (n = 5–10). Ca2+ decreases the rate of dissociation drastically (h) and thereby increases the affinity (f). No

significant difference was observed for the rate of association (kon) (g).

DOI: 10.7554/eLife.15886.014

The following figure supplement is available for figure 6:

Figure supplement 1. ITC parameters of the C2B domain binding to different isomers of InsP3.

DOI: 10.7554/eLife.15886.015
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the negative charge of the Ca2+-binding site. Third, Ca2+ and phosphoinositides increase the affinity

of syt-1 to membrane exclusively by reducing its dissociation rate.

It is well established that syt-1 binds to anionic phospholipids (mainly phosphatidylserine and

phosphoinositides) via distinct regions, and that these interactions facilitate penetration of the syt-1

C2 domains into the membrane. However, neither the contribution of the individual lipids nor the

conformational arrangement of the bound C2B domain was understood in molecular detail

(Kuo et al., 2009; van den Bogaart et al., 2012; Kuo et al., 2011; Radhakrishnan et al., 2009;

Li et al., 2006; Bai et al., 2002; Schiavo et al., 1996; Araç et al., 2006; Davletov and Sudhof,

1993; Bai and Chapman, 2004; Bai et al., 2004). Our results now show that PtdSer and PtdIns(4,5)

P2 act cooperatively by binding preferentially to different binding regions that influence each other.

In the absence of Ca2+, binding is mediated primarily by the interaction between the polybasic lysine

patch and PtdIns(4,5)P2, in which K326 and K327 play an important role as reported previously

(van den Bogaart et al., 2012; Bai et al., 2004; Araç et al., 2006; Li et al., 2006).

In the absence of Ca2+, the interaction of syt-1 with the bilayer is limited to an interfacial absorp-

tion of the C2B domain via its polybasic region, where membrane insertion of C2B Ca2+-binding

loops is prevented by charge repulsion between the negatively charged Ca2+-binding site and the

negatively charged membrane interface (Bai et al., 2004; Kuo et al., 2009). Intriguingly, the nega-

tively charged binding site of the C2B domain also reduces the affinity of this domain for PtdIns(4,5)

P2 by electrostatic repulsion (see model in Figure 7, left). In the presence of Ca2+, several effects

operate synergistically to increase membrane affinity. First, Ca2+ binding polarizes the Ca2+-binding

loops of the C2B domain and PtdSer completes the coordination sphere of the bound Ca2+, allowing

syt-1 to penetrate into the membrane. Second, the neutralization of charge at the Ca2+ binding site

of the C2B domain reduces electrostatic repulsion at the polybasic region and promotes the associa-

tion of PtdIns(4,5)P2 (Figure 7, right). This cross-talk between the two sites explains the conflicting

conclusions regarding the role of the Ca2+-binding sites and the polybasic lysine patch in binding to

anionic membrane lipids. The Ca2+-binding sites preferentially bind to PtdSer, for which they form a

defined binding pocket (Honigmann et al., 2013) but not to phosphoinositides, in contrast to previ-

ous suggestions (Vrljic et al., 2011; Zhang et al., 1998; van den Bogaart et al., 2012). Calcium

increases the affinity of syt-1 towards PtdIns(4,5)P2 simply by neutralizing negative charge at the

Ca2+-binding site. It should be noted that by using InsP3, the soluble head group of PtdIns(4,5)P2,

there is no membrane interface in this experiment and no charge repulsion between the C2AB frag-

ment and liposomes containing PtdIns(4,5)P2. This fact could explain the non-specific interactions

with the Ca2+-binding sites (Figure 3b,c) and the weak effect of the presence of the SNARE complex

on InsP3–C2AB fragment binding (Figure 4g,i).

The question then arises of how the binding between the C2AB domain and the SNARE complex

fits into the picture. In particular, we need to clarify whether there is synergism or competition

between syt binding to SNAREs and syt binding to acidic membrane lipids during the triggering of

exocytosis. Clearly, the polybasic patch of the C2B domain is involved in SNARE binding with high

affinity as shown earlier (Brewer et al., 2015; Zhou et al., 2013) and as confirmed by our ITC data.

Moreover, mutations that impair syt–SNARE binding also alter syt-membrane binding; in addition,

they alter the triggering of exocytosis when the corresponding mutants are introduced into neurons

(Brewer et al., 2015; Wang et al., 2016). However, the available evidence suggests that the polyba-

sic region preferentially interacts with PtdIns(4,5)P2 rather than with SNAREs under normal ionic con-

ditions (Park et al., 2015; Wang et al., 2016). For example, pulse EPR and fluorescence cross-

correlation spectroscopy indicate that the Syt–PtdIns(4,5)P2 interaction persists under conditions

that eliminate the syt–SNARE interaction (Park et al., 2015), and the data presented here in

Figure 4g,i show that InsP3 binding to the C2AB fragment is only slightly affected by the presence

of the SNAREs. Nevertheless, the syt–SNARE interaction is conformationally heterogeneous and

quite dynamic, and sites other than the polybasic patch may interact with the SNAREs in the pres-

ence of PtdIns(4,5)P2. This may result in a more complex interplay between PtdIns(4,5)P2, SNARE

proteins and syt-1 under physiological conditions (Wang et al., 2016; Zhou et al., 2015; Park et al.,

2015; Brewer et al., 2015).

Despite the clear evidence for high-affinity syt–SNARE binding in the test tube, we favor the view

that syt-phospholipid binding is the main component in the triggering mechanism of syt-1, with the

SNARE binding either being physiologically irrelevant or being synergistic at best. For instance, all

models trying to picture synaptotagmin complexes with partially zippered SNARE complexes face
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serious spatial challenges when trying to fit them into a 3D-model between the vesicle and plasma

membrane, particularly when considering that both Munc18 and Munc13 (Ma et al., 2013) (or even

the larger CAPS proteins [Daily et al., 2010]) are thought to be bound to such activated SNARE

complexes. Moreover, synaptotagmins or other C2 domain proteins are not required for the basic

and evolutionarily conserved SNARE engine. They do not participate in other intracellular fusion

reactions and are lacking altogether in more primitive eukaryotic cells such as yeast (Craxton, 2010).

Moreover, the canonical function of Ca2+-binding C2 domains appears to be binding to acidic mem-

brane lipids (Corbalan-Garcia and Gomez-Fernandez, 2014), see also http://scop.mrc-lmb.cam.ac.

uk/scop/. This is true for soluble proteins whose Ca2+-dependent translocation to plasma mem-

branes is mediated by C2 domains (classical examples include protein kinase C and phospholipase

A), and also for transmembrane proteins owning multiple tandem C2 domains, such as ferlins and

Figure 7. Model of the membrane-binding mechanism of syt-1. In the absence of Ca2+, syt-1 is attached to the presynaptic membrane interface. Syt-1

binds to PtdIns(4,5)P2 through its C2B polybasic patch (Bai et al., 2004; Kuo et al., 2009) in transient encounters, but the negative charges of the

Ca2+-binding pockets prevent penetration of the C2 domains into the presynaptic membrane because of the electrostatic repulsion between them,

leading to a high rate of dissociation. Upon Ca2+ influx, Ca2+ binding neutralizes the negative charge of the Ca2+-binding sites. As a consequence,

phosphatidylserine completes the sphere of coordination of Ca2+ and allows the insertion of the hydrophobic residues at the tips of the C2 domains.

Simultaneously, the polybasic patch enhances its affinity to phosphoinositides, leading to deeper penetration of the C2B Ca2+-binding site into the

bilayer. Together, these events decrease the rate of dissociation of syt-1 from the membrane and enhance its penetration into the core of the

presynaptic membrane, which eventually leads to SNARE-mediated membrane fusion. Nuclear magnetic resonance structures of the C2A domain (PDB

1BYN [Shao et al., 1998]) and C2B domain (1K5W [Fernandez et al., 2001]) of syt-1 and a molecular dynamic membrane simulation were rendered

using PyMOL Molecular Graphics System (Schrödinger,LLC, http://www.pymol.org). The membrane used in this illustration was generated using the

Membrane Builder input generator module in CHARMM-GUI (Jo et al., 2008) for a bilayer with PtdChol:PhdSer:PtdEth:Chol:PtdInsP2 at a molar ratio of

55:11:22:11:1.

DOI: 10.7554/eLife.15886.016
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extended-synaptotagmins (see e.g Idevall-Hagren et al. (2015); Fernandez-Busnadiego et al.

(2015); Pangršič et al. (2012)).

In summary, a picture is emerging in which syt-1 continuously probes the membrane with high fre-

quency both in the Ca2+-bound and -unbound state. Binding of Ca2+ increases the dwell time of syt-

1 on the membrane by allowing more intimate contact with the bilayer rather than by promoting an

enhanced synaptotagmin–membrane association. The model that we propose in Figure 7 is in accor-

dance with data from functional experiments carried out in intact synapses. For instance, mutations

in the C2B domain polybasic lysine patch reduce the amplitude of the fast component of EPSC in

excitatory neurons (Li et al., 2006). Moreover, InsP6 (which binds to the syt-1 polybasic lysine patch

[Joung et al., 2012]) suppresses autaptic EPSCs via the C2B domain of syt-1 (Yang et al., 2012) and

weakens the Ca2+-dependent binding of syt-1 to membranes (Lu et al., 2002). Thus, the docking/

priming function of the polybasic lysine patch facilitates release but is not essential since the Ca2+-

binding sites remain intact and still allow for binding to PtdSer and membrane insertion. Indeed,

increasing PtdSer concentrations increase the frequency of fusion events in PC12 cells (Zhang et al.,

2009). Furthermore, mutated proteins in which the hydrophobicity of the Ca2+-binding loops of syt-

1 C2 domains were increased enhanced both Ca2+-dependent membrane binding and neurotrans-

mitter release in autaptic hippocampal cultures (Rhee et al., 2005). Additionally, a recent report

determining the ultrastructure of the mouse hippocampal organotypic culture revealed a reduction

of synaptic vesicles within 0–5 nm of the active zone in syt-1 KO synapses. This report supports our

model, in which syt-1 continuously probes the plasma membrane in the latest steps of the docking/

priming process (Imig et al., 2014).

Despite all of this detailed knowledge, we still do not know how the synaptotagmin–membrane

interaction triggers neurotransmitter release. While, as discussed above, the role of SNARE binding

is controversial (Bacaj et al., 2015; Zhou et al., 2015; Brewer et al., 2015; Park et al., 2015), it is

largely accepted that Ca2+-enhanced binding to acidic membrane lipids is crucial for

triggering exocytosis. Our data suggest that two features of the syt-1–membrane interaction play a

crucial role: (i) the membrane insertion of the Ca2+-binding loops rather than an exclusively electro-

static membrane adsorption, and (ii) an increased dwell time of the protein on the membrane surface

resulting from an elevated kinetic stability of the syt-1–membrane complex. In particular, the latter

finding was unexpected. It is conceivable that the increased dwell time brings the membranes closer

together and thus triggers the firing of SNARE complexes. It is also conceivable that the deeper

insertion into the membrane destabilizes the bilayer at the prefusion contact site and thus helps to

overcome the energy barrier towards fusion. Hopefully, our findings will trigger novel approaches

towards elucidating the molecular mechanism of the still enigmatic triggering event in neuronal

exocytosis.

Materials and methods

Liposomes
For stopped-flow measurements, lipid were purchased from Avanti Polar Lipids, except for dansyl-

labeled phosphatidylethanolamine (dansyl-DHPE), which was purchased from Invitrogen. Lipids were

mixed in appropriate amounts and dried under a stream of nitrogen, and traces of organic solvent

were removed under vacuum for at least 3 hr. Lipid mixtures were resuspended in 20 mM HEPES,

150 mM KCl, 1.1 mM CaCl2 and 1 mM EGTA (for 100 mM free Ca2+concentration calculated using

http://maxchelator.stanford.edu) at pH 7.4. Large unilamellar vesicles of around ~100 nm were pre-

pared by extrusion as described earlier (Arbuzova et al., 1997). Total phospholipid concentration

was determined using the total phosphate determination method (Böttcher et al., 1961). For vesicle

sedimentation assay and EPR measurements, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidycholine

(POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyserine (POPS), and L-a-phosphatidylinositol-

4,5-bisphosphate (ammonium salt) (PtdIns(4,5)P2) were purchased from Avanti Polar Lipids (Alabas-

ter, AL), to make large unilamellar vesicles (LUVs) of 100 mM concentration at the following molar

ratios: PtdChol/PtdSer (3:1 and 4:1, molar ratio), PtdChol/PtdIns(4,5)P2 (98:2 and 95:5, molar ratio),

PtdChol/PtdSer/PtdIns(4,5)P2 (87.5:10:2.5, molar ratio). The lipids were prepared as described previ-

ously (Kuo et al., 2011). The dried lipid film was re-suspended in either sucrose buffer (176 mM

sucrose, 1 mM MOPS, pH 7.0) or Ca2+ buffer (1 mM CaCl2, 1 mM MOPS, 100 mM KCl, pH 7.0), and
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vesicles were formed using freeze-thaw cycles and extrusion as previously described (Kuo et al.,

2011). To produce sucrose-loaded LUVs, another wash step with Ca2+ buffer was used to remove

the external sucrose solution followed by ultracentrifugation at 160,000 � g for 1 hr.

Protein constructs and purification
All synaptotagmin-1 proteins were derived from Rattus norvegicus and expressed as pET28a con-

structs, namely the isolated C2A domain (aa 97–273), the C2B domain (aa 262–421), the C2AB frag-

ment of synaptotagmin-1 (aa 97–421) and Ca2+-binding mutants of the soluble domain: C2a*B

(D178A, D230A, and D232A), C2Ab* (D309A, D363A, and D365A), and C2a*b* (D178A, D230A,

D232A, D309A, D363A, and D365A), have been described before (Stein et al., 2007). The KAKA

mutant (K326A, K327A) has also been described earlier (Radhakrishnan et al., 2009). SNARE pro-

teins were composed of syntaxin 1A (residues 188–259), SNAP-25 (residues 1–206) and synaptobre-

vin (residues 1–96).

Proteins were expressed in Escherichia coli strain BL21 (DE3) and purified using Ni2+-nitrilotriace-

tic acid beads (Qiagen GmbH) followed by ion exchange and gel filtration chromatography on the

ÄKTA system (GE Healthcare) as described earlier (Radhakrishnan et al., 2009; Fasshauer et al.,

2002). SNARE-complex assembly was performed as previously described (Fasshauer et al., 2002)

by mixing the SNARE proteins and incubating them overnight at 4˚C. SNARE-complex was purified

by ion exchange and gel filtration chromatography, followed by concentration with a 30 kDa cut-off

concentrator (Sartorius Stedim Biotech GmbH, Göttingen, Germany).

For EPR, NMR and vesicle sedimentation assay, DNA for rat syt-1 (P21707) was obtained from Dr.

Carl Creutz (Pharmacology Department, University of Virginia). In the pGEX-KG, vector encoding

amino acid residues 96–421 and 249–421 (syt-1 C2B) (Damer and Creutz, 1994; Kuo et al.,

2009) were used to produce constructs 136–260 (syt-1 C2A) and 136–421 (syt1 C2AB) by ligation

into the plasmid vector pGEX-KG following the coding region for GST as described previously

(Bhowmik et al., 2008). The single native cysteine residue at position 277 was mutated to alanine

and single and double alanine mutants (K326A and K326A/K327A) were produced in the C2AB con-

struct (136–421) by QuickChange site-directed mutagenesis (Agilent, Santa Clara, CA). Single cyste-

ine substitutions were also produced to create C2AB mutants of M173C, V304C, L323C, K327C and

T329C. All mutagenesis was confirmed by DNA sequencing.

The expression and purification of syt-1 C2A, C2B, and C2AB constructs were carried out as pre-

viously published (Kuo et al., 2009; Herrick et al., 2009). The wild-type and mutant plasmids were

expressed in BL21 (DE3) pLysS cells (Invitrogen, Grand Island, NY), and grown in LB media. The pro-

tein was purified using a GST affinity column followed by a second purification step using ion

exchange chromatography. An SP column was used for the C2AB fragment and C2B domain, and a

Q column was used for the C2A domain to remove any remaining contaminants, such as nucleic

acids. Syt-1 C2AB prepared in this manner is correctly folded as indicated by CD (Herrick et al.,

2006) and NMR. This C2AB fragment is also found to bind membranes in a Ca2+-dependent man-

ner. SDS Page indicated that the proteins were pure with appropriate molecular weights of 17.4 for

C2A domain, 20.8 for C2B domain, and 34.5 for C2AB fragment. The UV absorbance at 278 nm was

used to insure that protein fractions were free of nucleic acid contaminant. The protein concentra-

tions were determined using a Bradford Protein Assay (Thermo Fisher Scientific, Rockford, IL).

Isothermal titration calorimetry (ITC)
ITC experiments were carried out as previously described (Joung et al., 2012). Titration of ~50 mM

protein (see figure legend) with different ligands were performed at 25˚C in 50 mM HEPES (pH 7.4)

and 150 mM NaCl, in the presence or absence of 1 mM CaCl2. Buffer without calcium was prepared

as reported (Radhakrishnan et al., 2009) and checked with rhod-5N (Invitrogen). To obtain the

effective heat of binding, results of the titration were corrected using buffer-protein and ligand-

buffer controls. Finally, the NITPIC (Keller et al., 2012) and the Origin9 software (Origin Labs Inc.)

were used to analyze these data.

1,2-hexanoyl-sn-glycero-3-phospho-L-serine (C6-PtdSer) was titrated under critical micellar con-

centration (CMC) to avoid the formation of C6-PtdSer micelles (http://www.avantilipids.com) that

interfere in the titration.
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Kinetic fluorescence experiments
Kinetic experiments were carried out on an Applied Photophysics SX.20 stopped-flow spectropho-

tometer (Applied Photophysics, Surrey, UK) in 20 mM HEPES (pH 7.4), 150 mM KCl, and 1 mM

EGTA and different free Ca2+concentrations (calculated using http://maxchelator.stanford.edu), as

described previously (Hui et al., 2005). FRET was used to monitor the time course of the C2AB frag-

ment vesicle binding. The excitation wavelength was set at 280 nm and a 470 nm cut-off filter was

used to collect the dansyl emission for the different vesicle concentrations tested. The resulting time

courses were fit to a single-exponential function:

FðtÞ ¼ F0 þAobs
�
e
ð�kobs�tÞ

where F(t) equals the observed fluorescence at time t, F0 is a fluorescence offset representing the

final fluorescence, Aobs equals the amplitude, and kobs is the observed rate constant. Observed rate

constants were plotted as a function of lipid vesicle concentration (v), calculated assuming 90,000

phospholipid molecules per vesicle (Arbuzova et al., 1997), and fitted with the equation:

kobs ¼ kon½v�þ koff

where kon represents the apparent association constant, and koff the apparent dissociation rate

constant. The ratio of koff to kon provides the calculated apparent vesicle dissociation constant (Kd).

Vesicle sedimentation assay
An ultracentrifugation technique (Buser and Mclaughlin, 1998) was used to measure the equilibrium

membrane binding of C2AB and C2AB mutants to membranes of varied lipid composition. For

experiments where tryptophan emission was used to detect C2AB, final protein concentrations of

0.2–0.35 mM were used with sucrose-loaded LUVs at lipid concentrations ranging from

0.02 mM to 15 mM. The vesicles and C2AB were incubated at room temperature for 10 min, fol-

lowed by centrifugation at 160,000 � g for 1 hr to pellet the LUVs. The concentration of C2AB in the

supernatant was determined and used to calculate the fraction of membrane-bound protein (fb). A

phosphate assay (Ames, 1966) was used to determine the final lipid concentrations. BODIPY-malei-

mide labeled C2AB was used in cases were binding affinities were high, in order to maintain suffi-

ciently low protein-to-lipid ratios (Buser and Mclaughlin, 1998). For PtdChol: PtdSer LUVs, accurate

binding affinities were achieved at lipid to protein molar ratios of 140:1 or higher. For each experi-

mental condition, at least two measurements of the fraction of bound protein, fb, were made to

determine a reciprocal molar partition coefficient, K. This partition coefficient represents the accessi-

ble lipid concentration, [L], where half the protein is bound and is given by:

fb ¼
K½L�

1þK½L�
(1)

The value of K (M-1) and the standard errors were determined from the data using the fitting func-

tion in OriginPro 7.5 (Origin Lab, Northampton, MA).

Proton-nitrogen HSQC NMR
C2A and C2B were expressed in BL21 (DE3) pLysS cells, and grown in minimal media where 15NH4Cl

(Cambridge Isotopes, Andover, MA) was the sole nitrogen source. The purification followed the

same protocol mentioned above. The final protein at a concentration of 0.4–0.8 mM in NMR buffer

(3 mM CaCl2, 150 mM NaCl, 50 mM MES, pH 6.3) was used for two-dimensional 1 hr 15N HSQC

experiments (Ubach et al., 2001). The ligands (o-phosphoserine or InsP3) were titrated into C2A or

C2B at concentrations ranging from 0.05 mM to 4 mM. The final NMR protein samples contained

10% D2O and were placed in Shigemi tubes (Sigma-Aldrich, St. Louis, MO). The experiments were

conducted in Bruker 600 MHz NMR spectrometer at temperature 27˚C, and DDS (4,4-dimethyl-4-

silapentane-1-sulfonic acid) in NMR buffer was used as a chemical shift standard. The NMR data

were processed in NMRPipe (Delaglio et al., 1995) and the residue assignments were matched in

Sparky (Goddard and Kneller, 2008) from the PDB NMR resonance assignments of C2A (PDB

1BYN) and C2B (PDB 1K5W) (Fernandez et al., 2001; Shao et al., 1997; Shao et al., 1998).
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EPR measurements
The C2AB mutants, M173C, V304C, L323C, K327C, T329C, were purified and spin labeled using

MTSL (1-oxy-2,2,5,6-tetramethylpyrroline-3-methyl; Santa Cruz Biotech, Dallas, TX). Each sample was

spin labeled at a 1:1:10 mole ratio of protein:DTT:MTSL, and the mixture was passed through a

HiPrep 26/10 desalting column (GE Healthcare, Pittsburgh, PA) to remove any free spin labels. The

spin-labeled protein was concentrated to 50–200 uM using an Amicon centrifugal concentrator

(EMD Millipore, Billerica, MA).

EPR spectra and power saturation measurements were performed on an X-band Bruker EMX

spectrometer using a room temperature ER 4123D dielectric resonator. Samples in the Ca2+-free

condition contained 5 mM EGTA. The samples with LUVs had a final lipid concentration of 25 mM

with a lipid-to-protein ratio of at least 200:1, ensuring that all protein was completely membrane

associated. All spectra were 100 Gauss scans recorded at 2 mM incident microwave power and 1 G

modulation. The spectra were baseline corrected and normalized by double integration using a Lab-

VIEW (Austin, TX)-based program (Dr. Altenbach, UCLA).

Continuous wave power saturation experiments were performed as previously described

(Kuo et al., 2011), using 12 microwave power steps ranging from 0.6 to 36 mW. A LabVIEW-based

program (Dr. Altenbach, UCLA) was used to plot the data points and determine P1/2 values from

which DP1/2 values for NiEDDA and O2 were obtained. These data yielded depth parameters, F,

which were used to estimate the distance (x) from the lipid phospholipid phosphates using an empir-

ically derived calibration curve (Frazier et al., 2002).

Membrane docking of the Syt1 C2B domain
Membrane depth data obtained from EPR power saturation were used to generate models for the

position of the C2B domain in bilayers containing either PtdSer or PtdIns(4,5)P2. The approach uti-

lized a version of Xplor-NIH (Schwieters et al., 2003) that included a plane distance potential, and

followed the general procedure described previously (Herrick et al., 2009). Briefly, to the high-reso-

lution NMR structure for the C2B domain (PDB ID: 1K5W [Fernandez et al., 2001]) the site-scan fea-

ture of the software package MMM (Polyhach et al., 2011; Polyhach and Jeschke, 2010) was used

in conjunction with the warsh rotameric library to determine possible rotamers for the positions of

interest. The most probable rotamer was then attached to each site. The depth parameters shown in

Table 1 were used as point-to-plane distance restraints and the labeled structure was subjected to

simulated annealing and energy minimization to dock the domain to the membrane interface. The

spin label atoms and all protein backbone atoms were fixed for the duration of the simulated anneal-

ing runs. For these point-to-plane restraints, the distance range was set to the uncertainty in the

label position, which was determined from the experimental error in the membrane depth parameter

and the empirically derived calibration curve (Herrick et al., 2006). Approximately 100 structures

were generated from each simulated annealing run. The structures were analyzed and figures were

generated using the program PyMOL (Schrödinger, Cambridge, MA).

Statistics
All data are shown as means ± SD (n = 2–10), and all statistical analyses were performed by one-way

ANOVA and Fisher post hoc test (p-value < 0.05).
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ÁP-L, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; AT, SBN, DAN, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article; PH, Conception and design, Drafting or revising the article; MT, Acquisition of

data, Drafting or revising the article; KT, Analysis and interpretation of data, Drafting or revising the

article; DSC, RJ, Conception and design, Analysis and interpretation of data, Drafting or revising the

article

Author ORCIDs
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Bacaj T, Wu D, Burré J, Malenka RC, Liu X, Südhof TC. 2015. Synaptotagmin-1 and -7 Are Redundantly Essential
for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biology 13:e1002267.
doi: 10.1371/journal.pbio.1002267, PMID: 26437117

Bai J, Chapman ER. 2004. The C2 domains of synaptotagmin–partners in exocytosis. Trends in Biochemical
Sciences 29:143–151. doi: 10.1016/j.tibs.2004.01.008, PMID: 15003272

Bai J, Tucker WC, Chapman ER. 2004. PIP2 increases the speed of response of synaptotagmin and steers its
membrane-penetration activity toward the plasma membrane. Nature Structural & Molecular Biology 11:36–44.
doi: 10.1038/nsmb709, PMID: 14718921

Bai J, Wang P, Chapman ER. 2002. C2A activates a cryptic Ca(2+)-triggered membrane penetration activity
within the C2B domain of synaptotagmin I. PNAS 99:1665–1670. doi: 10.1073/pnas.032541099, PMID: 118052
96

Bhowmik A, Ellena JF, Bryant RG, Cafiso DS. 2008. Spin-diffusion couples proton relaxation rates for proteins in
exchange with a membrane interface. Journal of Magnetic Resonance 194:283–288. doi: 10.1016/j.jmr.2008.07.
023, PMID: 18723378

Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, Zhou A, Zhou P, Barlow N, Xu J, Seven AB,
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Dai H, Shen N, Araç D, Rizo J. 2007. A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in
neurotransmitter release. Journal of Molecular Biology 367:848–863. doi: 10.1016/j.jmb.2007.01.040,
PMID: 17320903

Daily NJ, Boswell KL, James DJ, Martin TF. 2010. Novel interactions of CAPS (Ca2+-dependent activator protein
for secretion) with the three neuronal SNARE proteins required for vesicle fusion. Journal of Biological
Chemistry 285:35320–35329. doi: 10.1074/jbc.M110.145169, PMID: 20826818

Damer CK, Creutz CE. 1994. Synergistic membrane interactions of the two C2 domains of synaptotagmin. The
Journal of Biological Chemistry 269:31115–31123. PMID: 7983052
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