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Summary

Over one billion people worldwide are infected with parasitic nematodes. Many parasitic 

nematodes actively search for hosts to infect using volatile chemical cues, so understanding the 

olfactory signals that drive host seeking may elucidate new pathways for preventing infections. 

The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: 

because sensory neuroanatomy is conserved across nematode species, an understanding of the 

microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic 

nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, 

gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes 

that lays the groundwork for future studies of their olfactory microcircuits.

Introduction

Nematodes comprise a large and diverse phylum of roundworms that includes both free-

living and parasitic species. Parasitic nematodes of humans, livestock, and plants cause 

extensive disease and economic loss worldwide. The free-living nematode C. elegans has 

emerged as a model for the study of sensory neurobiology. C. elegans offers many 

advantages as a model system: it has a small and transparent body, making it possible to 

image neural activity in real time and to use behavior as a readout of circuit function. Its 

small nervous system consists of 302 neurons in the adult hermaphrodite and 385 in the 

adult male [1,2]. The connections among these neurons have been mapped, facilitating the 

identification of functional microcircuits [1–3]. Studies of the C. elegans connectome have 

shown that similar connectivity motifs are found in both C. elegans and mammalian cortex 

[3], suggesting that similar computational units operate across diverse taxa. Recent technical 

advances have made probing neural circuit function in intact animals feasible with the ability 

to induce and reversibly manipulate neural activity through genetics, pharmacology, light, 
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and sound [4–7]. These advances have greatly expanded our knowledge of how olfactory 

microcircuits drive behavior and how these circuits are contextually modulated.

Different nematode species share conserved positional sensory neuroanatomy [8,9], and thus 

understanding how C. elegans microcircuits generate olfactory behaviors may have direct 

implications for how analogous microcircuits operate in parasitic nematodes. Although the 

microcircuits underlying olfactory preferences in parasitic nematodes are poorly understood, 

recent studies have elucidated the divergent olfactory preferences of different parasitic 

nematode species. Here we review the olfactory behaviors of free-living and parasitic 

nematodes, and highlight some of the microcircuit computations underlying olfactory 

behaviors in C. elegans.

Olfaction in C. elegans

Olfaction is an important sensory modality for C. elegans, enabling it to sense food, 

pathogens, predators, and conspecifics. Proliferating populations of C. elegans are found 

primarily in fallen rotting fruits, where oxygen (O2) concentrations are low [10]. When 

environmental conditions are unfavorable or food is scarce, C. elegans enters a 

developmentally arrested, alternative larval stage called the dauer. Dauers disperse into the 

soil to search for more favorable environments. Dauers are also phoretic, meaning that they 

associate with insect vectors that can transport them to more favorable environments [10]. 

These ecological niches inhabited by C. elegans inform the olfactory and gas-sensing 

strategies of the worm. Like other animals, C. elegans responds flexibly to odors and gases, 

modulating its behavior based on both internal and external contexts. The contextual 

modulation of olfactory behaviors allows worms to make appropriate behavioral decisions in 

their current environment.

The olfactory circuit of C. elegans consists of a small number of highly interconnected 

neurons, with an average of 3.5 synapses separating sensory neuron input from motor 

neuron output [2,3,11]. Using this circuit, C. elegans can sense and respond to at least 50 

odorants [12]. C. elegans expands its coding capacity through dynamic modulation of 

neurons and microcircuits, including the use of neuromodulators and neuropeptides to create 

extrasynaptic functional connections between neurons [13]. The computations performed by 

the C. elegans olfactory circuit involve fundamental circuit motifs of neural networks and 

control systems (e.g. feedback inhibition and reciprocal inhibition), suggesting that the 

mechanisms by which C. elegans microcircuits functionally process sensory information and 

drive contextually appropriate behaviors may be conserved in other nervous systems [14].

Organization of the olfactory system—The primarily olfactory organs of C. elegans 
are the bilaterally symmetric amphid sensilla in the head. Eleven chemosensory neurons 

extend anterior processes with ciliated endings into each amphid sensillum [12]. In contrast 

to the olfactory sensory neurons of insects and mammals, those of C. elegans each express 

many different olfactory receptors. As in mammals, most of the olfactory receptors are seven 

transmembrane domain G protein-coupled receptors [12]. Different pairs of olfactory 

sensory neurons generally drive attraction or avoidance: odor sensing by the AWA and AWC 
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neurons promotes attraction, whereas odor sensing by the ASH, ADL, and AWB neurons 

promotes repulsion (Box 1) [12].

Box 1

Summary of functional properties of selected C. elegans chemosensory 
neurons

A non-exhaustive compilation of selected sensory neuron properties and their functional 

involvement in different microcircuits that are highlighted by this review. The “schematic 

of activity” depicts a representative shape of calcium activity of each sensory neuron to a 

particular stimulus that it senses. These traces were based off the following references: 

AWC [15], AWA [28], ASH [18], ADL [59], BAG [52]. The variable timescales by 

which these neurons respond to stimuli is not distinguished in our schematic. For BAG 

neurons, the trace depicts activity from the C. elegans adult. For ADL neurons, the male 

ADL response is shown in green and the hermaphrodite response is shown in black. The 

functional properties described were based off the following references: AWC 

[11,12,15,19–23,33], AWA [28,39], ASH [18,39], BAG [22,44,48,50,52–54], ADL 

[36,59].

The AWA olfactory neurons are “on-cells” that depolarize in the presence of odors, whereas 

the AWC olfactory neurons are “off-cells” that hyperpolarize in the presence of odors and 

depolarize upon odor removal [11,15–17]. AWB neurons show both “off” and “on” 

responses [11,16–18]. Each of these neurons has synaptic connections with other sensory 

neurons as well as downstream interneurons [3]. Whereas insect and mammalian sensory 

neurons are generally dedicated to one sensory modality, most C. elegans sensory neurons 

are polymodal as a consequence of the worm’s compact and highly interconnected nervous 

system. For example, the AWC neurons sense odors, temperature, salt, pH, CO2, and 

osmotic stress [11,19–22].

A circuit for olfactory attraction—The microcircuit that mediates olfactory attraction 

via the glutamatergic AWC neurons is the most well-characterized and involves at least three 

downstream interneurons – AIY, AIA, and AIB [15,23]. In response to the removal of an 

attractive odorant, AWC inhibits AIY and AIA via glutamate-gated chloride channels, and 

activates AIB via AMPA-type glutamate receptors. This organization of the olfactory 

microcircuit into parallel pathways with inverted polarities resembles that of the vertebrate 

retina, where photoreceptors synapse onto opposing ON and OFF bipolar cells [15]. The 

temporal dynamics of AWC neuron responses to on/off patterns of olfactory stimuli 

correspond to the timescales of AWC-mediated odor-evoked behaviors, suggesting that 

sensory neuron temporal dynamics instruct behavioral dynamics [24].

Navigational strategies for odor responses—To navigate through odor gradients, C. 
elegans primarily uses klinokinesis, also called a biased random walk, to modulate its 

turning rate and forward locomotion in response to its changing perception of odor 

concentration [12]. Worms either increase turns and decrease linear forward motion to 

reorient themselves away from their last (unfavorable) position, or suppress turns and 
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increase forward motion to continue moving in the same (favorable) direction [12]. 

Manipulating the activity of first-order interneurons can mimic chemoattraction, suggesting 

that navigational strategy is determined at the level of the first-order interneurons [6]. By 

changing the polarity of klinokinesis in response to increasing and decreasing odor 

gradients, worms can shift their behavior from odor attraction to odor avoidance.

Mechanisms that determine odor valence—A number of mechanisms operate within 

the olfactory circuit to encode odor valence, i.e. whether an odor is attractive or repulsive. 

One mechanism involves a guanylate cyclase signaling pathway mediated by the receptor 

guanylate cyclase GCY-28, which acts in AWC sensory neurons to promote attraction to 

odors that AWC senses. Loss of gcy-28 switches AWC from a neuron that mediates 

attraction to one that mediates repulsion [25]. A similar switch from attraction to repulsion 

occurs in wild-type animals that are exposed to an odor that is initially attractive for a 

prolonged period in the absence of food [12,25], raising the possibility that gcy-28 signaling 

is part of a normal mechanism that flexibly alters odor valence based on environmental 

context. This study suggests that C. elegans olfactory sensory neurons are not irreversibly 

hard-wired for attraction or repulsion, but may in fact be more flexible in their responses 

than previously thought.

The valence of an odor stimulus can depend on its concentration. For example, low 

concentrations of the food-associated odorant isoamyl alcohol are attractive to C. elegans, 

while high concentrations are less attractive or even repulsive [18]. This valence change 

occurs because different sensory neurons mediate the response at different concentrations. 

At low concentrations the response is mediated primarily by the AWC olfactory neurons, 

while at high concentrations the response is mediated primarily by the ASH polymodal 

avoidance neurons (Box 1). The AWC response is blocked at high concentrations due to 

synaptic inhibition from other neurons [18]. A similar mechanism operates in the fruit fly 

Drosophila melanogaster, where the behavioral response to apple cider vinegar shifts from 

attraction at low concentrations to repulsion at high concentrations due to the recruitment of 

additional glomeruli [26]. In both of these cases, odor valence is determined by which 

sensory neurons respond to the odor at a given concentration.

The valence of an odor stimulus can also depend on the presence of other sensory stimuli. 

First-order interneurons can modulate odor valence by integrating information about odor 

stimuli with information about other sensory stimuli to generate appropriate behaviors. For 

example, the AIA interneurons have been implicated in multisensory decision-making for 

behavioral cues with conflicting valences, such as the attractive odorant diacetyl and the 

aversive stimulus Cu2+ [27]. Multisensory decision-making is an important computation for 

evolutionarily stable nervous systems but occurs much earlier in C. elegans microcircuits 

(i.e. within one synapse of sensory input) than those of insects and mammals because the 

worm nervous system is so small and shallow. However, how first-order interneurons in 

worms integrate olfactory stimuli with other types of stimuli to drive appropriate behaviors 

remains poorly understood and is an active area of research.

Mechanisms of gain control and olfactory adaptation—Like other animals, C. 
elegans is capable of maintaining a dynamic range for sensing odors across concentrations 
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that span several orders of magnitude. One mechanism for this involves rapidly attenuating 

sensory neuron responses and normalizing first-order interneuron responses [28]. 

Attenuation of the sensory neuron response prevents saturation, while normalization of the 

interneuron response results in a relatively concentration-invariant odor representation. The 

result is a microcircuit specialized for detecting small increases in odor concentration 

regardless of the absolute odor concentration. Similar mechanisms of odor coding operate in 

insects and vertebrates, where first-order interneurons in the olfactory circuit show 

normalized odor responses that encode odor identity regardless of concentration [29,30].

Another mechanism that may contribute to gain control is feedback inhibition from 

interneurons onto olfactory sensory neurons. For example, neuropeptide signaling between 

the AWC olfactory neurons and the AIA interneurons creates a feedback loop that promotes 

adaption to prolonged odor exposure and may also function as a gain control mechanism by 

dampening responses to strong odor stimuli (Figure 1A) [23]. Thus, both intracellular and 

circuit-level mechanisms are used to maintain odor responses across concentrations and 

promote adaption to prolonged odor exposures.

Mechanisms that contribute to behavioral flexibility and variability—Olfactory 

responses in C. elegans are modulated by external and internal context, memory, sex, and 

life stage [12,16,31,32]. Multiple circuit mechanisms contribute to this behavioral flexibility. 

One mechanism involves modulation of chemoreceptor expression levels [31,32]. For 

example, sex, developmental stage, and feeding status alter expression of ODR-10, an 

odorant receptor in the AWA sensory neurons that detects the food-associated odor diacetyl 

[31]. Developing larvae of both sexes and starved adults express high levels of ODR-10, 

allowing them to find and remain in food. In contrast, adult males express low levels of 

ODR-10, allowing them to forego food in favor of locating mates [31]. By modulating the 

response properties of its sensory neurons, the worm can prioritize either food finding or 

mating in a context-appropriate manner.

In addition to showing context-dependent modulation of behavior, C. elegans shows 

stochasticity in its olfactory behavior. This behavioral variability stems at least in part from 

variability in interneuron responses: while sensory neuron responses are stereotyped, first-

order interneuron responses are variable [33]. Interneuron response variability arises from 

the stochastic activity of multiple regulatory interneurons in the circuit; silencing these 

interneurons increases the reliability of first-order interneuron responses and reduces 

behavioral variability [33]. From an ecological perspective, behavioral variability is 

presumably advantageous at a population level: olfactory stimuli are often unpredictable, 

and behavioral variability increases the likelihood that at least some members of the 

population generate an appropriate behavioral response and survive.

Variability also occurs across populations as a result of genetic polymorphisms. For 

example, polymorphisms in the tyramine receptor TYRA-3, the neuropeptide Y receptor 

NPR-1, and the globin GLB-5 all cause population differences in foraging behavior and 

other chemosensory behaviors [32,34–38]. The behavioral differences that result from these 

polymorphisms demonstrate that the same olfactory circuit can drive a wide range of 

behaviors.
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Interactions between the olfactory circuit and other sensory circuits—Olfactory 

signals can be integrated with other sensory stimuli to enhance or suppress behavioral 

responses. For example, pairing food with an attractive odor causes worms to eat more, 

whereas pairing it with an aversive odor causes worms to eat less [39]. Odors modulate 

feeding through a mutual inhibition circuit motif that relies on extrasynaptic neuromodulator 

signaling (Figure 1B). The increased feeding caused by attractive odors requires serotonin 

release from the NSM neurons. In contrast, the decreased feeding caused by aversive odors 

requires release of the neuromodulators octopamine and tyramine from the RIC and RIM 

interneurons. Serotonin and octopamine/tyramine bind receptors on RIC/RIM and NSM, 

respectively, and reciprocally block release of the other neuromodulator [39]. This reciprocal 

inhibition motif permits a bistable “winner take all” output from the circuit that either 

enhances or suppresses eating [39]. As a result, food intake in C. elegans is modulated based 

on the valence of associated olfactory stimuli, as it is in humans.

Olfactory sensory neurons can also participate directly in other sensory circuits to modulate 

non-olfactory behaviors. For example, in the presence of high salt concentrations one of the 

two AWC neurons is recruited as an interneuron into the gustatory circuit by the release of 

neuropeptides from the salt-sensing ASEL neuron and enhances attraction to salt [21]. By 

both responding to multiple types of stimuli and modulating behavioral responses to non-

olfactory stimuli, olfactory neurons participate in multiple functional microcircuits. 

Dynamic regulation of these microcircuits through neuropeptide signaling expands the 

coding capacity of the C. elegans nervous system and allows the same neurons to be used for 

multiple functional microcircuits.

Circuits for learned avoidance of pathogenic bacteria—C. elegans displays 

associative olfactory learning: naïve worms that have never ingested the pathogenic 

bacterium Pseudomonas aeruginosa strain PA14 show either mild attraction or no preference 

for its odor, whereas worms that have ingested PA14 avoid it [17,40]. Learned avoidance of 

PA14 involves the RIA interneurons and two insulin-like peptides [41]. INS-7 released from 

the gas-sensing URX neurons increases the RIA response to PA14 and prevents worms from 

avoiding PA14. Antagonistically, INS-6 release from the ASI chemosensory neurons 

promotes learning by silencing signaling from URX onto RIA through the inhibition of ins-7 
expression [41]. The ethological contexts in which insulin peptides regulate learning in wild-

type animals remain to be determined.

Recently it was discovered that if C. elegans are exposed to PA14 early in development, 

olfactory imprinting occurs: worms form an aversive memory of the pathogenic bacteria that 

lasts into adulthood [42]. Separate microcircuits create and retrieve the memory, and transfer 

of the aversive memory from the formation microcircuit to the retrieval microcircuit involves 

tyraminergic signaling between the two circuits [42]. These examples of learned PA14 

avoidance and aversive imprinting demonstrate that C. elegans is capable of learning on 

multiple timescales, and that learning on different timescales involves distinct circuit 

computations.

Microcircuits for gas-sensing behaviors—In addition to sensing volatile organic 

compounds, C. elegans senses oxygen (O2) and carbon dioxide (CO2). The natural habitat of 
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C. elegans is fallen rotting fruit, where O2 levels are low [10]. Consistent with this, wild 

isolates of C. elegans prefer low O2 environments [43]. O2 is sensed primarily by the 

dedicated gas-sensing URX, AQR, PQR, and BAG neurons via soluble guanylate cyclases 

[43–46]. Variation in O2-evoked behaviors among C. elegans strains is due in part to 

polymorphisms in NPR-1 and GLB-5 [12,34,35]. The downstream circuitry for O2 response 

involves multiple interneurons, including RMG, AIY, AIA, AVB, and AVA [36,47]. High O2 

environments are unfavorable and induce a global arousal state that is driven by the URX 

neurons and translated to other neurons in the circuit via the RMG interneurons [47]. This 

circuit architecture generates a long-lasting behavioral state in response to aversive high O2 

environments that promotes rapid escape.

CO2 is a complex cue for C. elegans that may signal the presence of predators, conspecifics, 

or food. Well-fed C. elegans adults avoid CO2 both in the presence and absence of food 

[48,49]. However, CO2-evoked behavior is modulated by feeding status, salt, O2 

environment, and temperature [37,38,48–50]. For example, CO2 response in adults is 

regulated by O2 environment through the O2-sensing URX neurons and NPR-1, such that the 

level of ambient O2 determines whether CO2 is perceived as aversive or neutral [37,38,48–

50]. CO2 response also varies across life stages, with developmentally arrested dauer larvae 

showing CO2 attraction (Figure 2A) [51].

The microcircuits underlying CO2 response are incompletely understood. CO2 exposure 

alters the activity of many sensory neurons, although CO2 chemotaxis appears to be 

primarily mediated by the BAG and AFD neurons [22,37,38,48,50,52]. The BAG neurons 

are depolarized primarily by molecular CO2 rather than bicarbonate or low pH (Box 1) [53], 

and this response is mediated by the receptor guanylate cyclase GCY-9 [52,53]. The 

mechanisms of CO2 detection that operate in AFD and other CO2-sensing neurons have not 

been elucidated. The downstream circuitry that mediates CO2 chemotaxis is poorly 

understood, but both the RIA and AIA interneurons display CO2-evoked activity, 

implicating them in the CO2 microcircuit [22,38].

CO2 not only stimulates chemotaxis, but also inhibits egg-laying [22]. The CO2-induced 

inhibition of egg laying is mediated in part by the BAG and AWC sensory neurons [22,54]. 

This circuit presumably functions to prevent deposition of eggs in unfavorable environments. 

Through extensive modulation of the O2 and CO2 microcircuits, and interactions of these 

circuits with those driving related behaviors such as egg laying, C. elegans can efficiently 

position itself in favorable environments for feeding and reproduction.

Microcircuits for pheromone-sensing behaviors—The C. elegans population 

consists of both hermaphrodites and males, and C. elegans males display mating behaviors 

toward hermaphrodites. The attraction of males to hermaphrodites is an essential aspect of 

mating behavior, and involves both volatile pheromones of unknown molecular identity [55] 

and soluble small-molecule pheromones in the ascaroside family that also mediate dauer 

formation [56,57]. Male attraction to hermaphrodites is driven by a combination of 

ascarosides that synergistically promote attraction [56]. Different free-living and parasitic 

species release different blends of ascarosides, and the behavioral responses to ascarosides 

are species-specific [58].
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Detection of ascarosides by C. elegans males is mediated by both male-specific and shared 

sensory neurons: the four male-specific CEM sensory neurons, as well as the shared ASK 

and ADL sensory neurons, contribute to pheromone response [36,56,59]. The CEM neurons 

are unusual in that they show stochastic functional heterogeneity in their ascaroside 

responses both within and between animals, which may contribute to their encoding of 

ascaroside concentration [60]. The AIA interneurons act downstream of the ASK sensory 

neurons to mediate ascaroside attraction [36,57].

While males are attracted to ascarosides released by hermaphrodites, other hermaphrodites 

are repelled. This sexual dimorphism is regulated by a push-pull circuit motif involving the 

ADL and ASK sensory neurons [59]. In hermaphrodites the ADL neurons promote 

ascaroside avoidance (Box 1), whereas in males the ADL neuron response is smaller and 

eclipsed by the ASK neuron response, which antagonizes ADL-mediated avoidance to 

promote attraction. This push-pull arrangement can generate opposite behavioral responses 

depending on the balance of activity between the attractive and repulsive arms of the 

microcircuit [59], thereby enabling sex-specific responses to the same pheromone.

In wild isolates of C. elegans, pheromones are not only important for mating but also 

promote aggregation behavior, in which worms cluster together in the low O2 environment 

found at the edges of a bacterial lawn. Aggregation is regulated by both O2 and pheromone 

environments [36]. Responses to O2 and pheromones are coordinated by a hub-and-spoke 

microcircuit motif. The RMG interneurons form the hub and sensory neurons form the 

spokes. RMG is connected to the spoke sensory neurons, including the O2-sensing URX 

neurons and the pheromone-sensing ASK neurons, by gap junctions. This hub-and-spoke 

arrangement enables a single interneuron to regulate a complex behavior involving multiple 

sensory modalities by coordinately modulating the activity of many different sensory 

neurons [36].

In summary, C. elegans has a small nervous system but expands its coding capacity through 

the use of neuropeptides and neuromodulators that dynamically alter microcircuit function 

and composition. These neuropeptides and neuromodulators complement the highly 

interconnected nature of the nervous system and allow neurons to simultaneously participate 

in multiple orthogonal microcircuits that all coordinately converge on motor neurons to 

produce contextually appropriate behaviors. Many of the computational mechanisms found 

in C. elegans are likely used by parasitic nematodes in the context of host-seeking behavior, 

as discussed below.

Olfaction in parasitic nematodes

Human-parasitic nematodes infect over one billion people globally and cause some of the 

most neglected tropical diseases [61]. These diseases occur predominantly in low-resource 

settings and result in reduced work productivity and decreased cognitive performance as a 

result of chronic morbidity [61]. In addition, parasitic nematodes of livestock and plants 

result in billions of dollars in economic and food losses each year [62]. Many parasitic 

nematodes have an environmental infective stage, called the infective juvenile (IJ) or 

infective third-stage larva (L3i) in the case of insect-parasitic and mammalian-parasitic 

nematodes, that actively searches for hosts to infect using olfaction in combination with 
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other sensory modalities [9]. A better understanding of olfaction in parasitic nematodes 

could therefore lead to new strategies for preventing parasitic nematode infections.

A unique aspect of nematode neurobiology is conserved neuroanatomy: electron microscopy 

studies of anterior sensory anatomy have demonstrated that even distantly related species 

have approximately the same number of neurons located in roughly the same positions 

within the body [8,9]. In addition, laser ablation studies have demonstrated that sensory 

neuron function is often conserved across free-living and parasitic nematode species [9]. For 

this reason, studies of C. elegans olfaction can directly inform studies of olfaction in 

parasitic worms.

A number of recent technical advances with skin-penetrating nematodes in the genera 

Strongyloides and Parastrongyloides promise to greatly facilitate the study of parasitic 

nematode sensory neurobiology. These include the ability to generate transgenic nematodes 

by gonadal microinjection and the ability to conduct genome editing using the CRISPR/

Cas9 system [63]. In addition, RNAi has been used successfully with some parasitic 

nematodes [63,64]. These techniques will enable studies of the neurons and circuits 

underlying the host-seeking behaviors of parasitic nematodes.

Olfactory behaviors of entomopathogenic nematodes—Entomopathogenic 

nematodes (EPNs) in the genera Heterorhabditis and Steinernema are parasitic nematodes 

that infect and kill insects. They are sometimes referred to as “beneficial nematodes” due to 

their utility for insect biocontrol. EPN-infection of insects is also of interest as a model for 

harmful parasitic nematodes that infect humans. Like C. elegans, EPNs respond to a diverse 

array of insect odorants, plant odorants, and CO2 [51,65–71]. Attraction to plant odorants 

serves to draw EPNs to locations where their insect hosts feed, and in fact some of the plant 

odorants that attract EPNs are emitted in response to insect damage [71–74].

CO2 is a strong attractant for EPNs and is used in combination with both insect- and plant-

emitted odorants to locate insect hosts (Figure 2A) [51,65,66,71]. Attraction of EPNs to the 

odors of live insects is greatly reduced or eliminated when CO2 is chemically removed, 

suggesting that CO2 is a critical host cue [65,67]. However, the relative importance of CO2 

versus insect-specific odorants varies for different EPN species and different insect species 

[65].

The attractive response of EPN IJs to CO2 resembles that of C. elegans dauer larvae (Figure 

2A) [51,65]. Parasitic IJs and C. elegans dauers are developmentally analogous life stages 

[75] that may also be behaviorally analogous: whereas IJs seek out hosts to infect, dauers 

seek out invertebrate carriers [10]. CO2 attraction by both IJs and dauers may serve the 

similar purpose of facilitating interactions with insects. CO2 also stimulates jumping, a 

specialized host-finding behavior exhibited by some EPN species in which the IJs propel 

themselves into the air [51,65]. Thus the same chemosensory cue, CO2, can stimulate both 

general and species-specific behavioral responses. As in C. elegans, the BAG neurons 

mediate CO2-evoked behaviors (Figure 2B), indicating that the neural basis of CO2 response 

is at least partly conserved across species regardless of whether CO2 is an attractive or 

repulsive cue [51].
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Olfactory behaviors of plant-parasitic nematodes—Soil-dwelling plant-parasitic 

nematodes (PPNs) use the general cue CO2 in combination with plant-specific odorants to 

specifically target the roots of host plants [70,76,77]. For at least some species, the attractive 

response to CO2 may in fact be a response to low pH resulting from dissolved CO2 rather 

than to the CO2 itself [78]. Some of the plant root volatiles that attract EPNs also attract 

PPNs, suggesting that there is an ecological cost for the plant associated with the production 

of these volatiles [79].

Plants also release volatiles such as ethylene that modulate attraction of PPNs to their roots 

[80]. In addition, volatiles from nearby plants can modulate attraction of PPNs to host 

plants. For example, when intercropped with crown daisy, the tomato plant is protected from 

parasitism by the root-knot nematode Meloidogyne incognita [81]. Crown daisy roots 

produce lauric acid, which is attractive for PPNs at low concentrations but repulsive at high 

concentrations [81], reminiscent of the concentration-dependent effects of isoamyl alcohol 

on C. elegans [18]. After attracting M. incognita to crown daisy root, lauric acid appears to 

disrupt chemotaxis behavior and infectivity by downregulating expression of the 

FMRFamide-related neuropeptide FLP-18 [81]. The intercropping of certain plants may be a 

nonhazardous alternative to artificial pesticides: intercropping decreases PPN-induced crop 

damage through the modulation of PPN chemotaxis behavior.

Olfactory behaviors of mammalian-parasitic nematodes—Mammalian-parasitic 

nematodes also respond to a chemically diverse array of odorants. The olfactory behaviors of 

the human-parasitic threadworm Strongyloides stercoralis are the most well-studied. Str. 
stercoralis infects approximately 100 million people worldwide and leads to chronic 

gastrointestinal distress; infections can be fatal for immunocompromised individuals [82]. 

Str. stercoralis is a soil-dwelling worm that infects primarily by penetrating the skin of the 

feet. As such, Str. stercoralis IJs are attracted to a number of human skin and sweat odorants 

[83,84]. For example, Str. stercoralis IJs are attracted to urocanic acid, a histidine metabolite 

found in mammalian skin that is enriched in the skin of the feet [83]. Many of the odorants 

that attract Str. stercoralis are also known mosquito attractants, suggesting that human-

parasitic nematodes and mosquitoes may target humans using some of the same olfactory 

cues [84]. An exception is CO2, which is attractive for mosquitoes but repulsive for Str. 
stercoralis and other skin-penetrating nematodes (Figure 2A) [84,85]. CO2 is presumably not 

an effective long-range host cue for Str. stercoralis due to its route of infection since only 

very low levels of CO2 are emitted from human skin [84].

The only passively ingested mammalian-parasitic nematode whose olfactory behavior has 

been characterized in detail is Haemonchus contortus, a parasite of ruminants that is a major 

cause of livestock disease worldwide [86]. H. contortus IJs respond robustly to olfactory 

cues, but unlike skin-penetrating IJs, they are attracted to CO2 (Figure 2A) [84]. H. contortus 
is also attracted to grass odor [84]. Attraction to CO2 and grass may serve to direct H. 
contortus IJs toward the mouths of grazing animals, where they are more likely to be 

ingested.

Olfactory behaviors of the necromenic nematode Pristionchus pacificus—
Olfactory behavior has also been studied in Pristionchus pacificus, a necromenic species that 
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associates with beetles [87]. Necromenic nematodes do not kill their hosts, but rather wait 

for their hosts to die and then propagate on the host cadaver. As such, necromeny is often 

considered an evolutionary intermediate between free-living and parasitic life styles. P. 
pacificus is attracted to live beetles as well as beetle odorants, beetle pheromone, and plant 

odorants [87,88]. Olfactory preferences differ among wild P. pacificus strains and among 

closely related Pristionchus species, perhaps reflecting differences in their host preferences 

[87,88]. Natural variation in the responses of different P. pacificus strains to beetle 

pheromone is associated with the cGMP-dependent protein kinase gene egl-4 [89], raising 

the possibility that cGMP signaling contributes to host seeking in parasitic nematodes.

Parasite olfactory preferences exhibit context-dependent modulation—As is the 

case for C. elegans, the olfactory preferences of parasitic nematodes are context-dependent 

and flexible. For example, both EPN IJs and skin-penetrating IJs exhibit temperature-

dependent olfactory plasticity: culturing IJs at different temperatures changes their odor 

preferences [90]. In the case of the EPN Steinernema carpocapsae, the response to 80% of 

the tested odorants changed as a function of their previous cultivation temperature. IJs are 

long-lived and can survive in the soil through multiple seasons. The volatiles emitted by 

both animals and plants change seasonally, and thus temperature-dependent modulation of 

olfactory behavior may enable IJs to locate hosts despite seasonal changes in volatile 

emissions [90].

Some parasitic nematodes also show age-dependent changes in their olfactory preferences 

[90]. For example, the EPN Steinernema scapterisci is initially repelled by CO2 but becomes 

attracted to CO2 as the IJs age (Figure 2C). This change in CO2-evoked behavior may reflect 

a change in host-seeking strategy: CO2 avoidance by younger IJs may cause them to 

disperse into the environment in search of new host niches with more available resources (a 

high cost but potentially high reward behavior), whereas CO2 attraction by older IJs may 

cause them to remain in the proximity of existing host niches (a low cost but lower reward 

behavior) [90].

Odor preferences of parasitic nematodes are shaped by host specificity and 
mode of infection—A comparison of olfactory behavior across parasitic nematode 

species revealed that parasite olfactory preferences reflect host specificity and infection 

strategy rather than genetic relatedness, and that these parasite-specific preferences have 

evolved multiple times (Figure 3) [84]. For example, the skin-penetrating rat parasites Str. 
ratti and Nippostrongylus brasiliensis share similar odor preferences but are not closely 

related [84]. That odor preferences reflect parasite lifestyle rather than phylogeny suggests 

that olfaction plays an important role in the ability of parasitic nematodes to find and infect 

their hosts.

In summary, parasitic nematodes show species-specific olfactory behaviors despite the fact 

that sensory neuroanatomy is roughly conserved across nematode species [8,9]. Efforts to 

study olfactory neural circuits in parasitic nematodes are ongoing. Existing knowledge of 

sensory neuron function is based exclusively on laser ablation studies; the dynamics of 

sensory neural activity in parasitic nematodes have not been examined. Although the BAG 

neurons are the only olfactory neurons shown to have conserved function in parasitic and 
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free-living worms [51], conserved sensory neurons also drive salt chemotaxis, thermotaxis, 

and changes in developmental stage in C. elegans and mammalian-parasitic worms [8,9]. 

Based on these studies, sensory neuron function appears to be broadly conserved across free-

living and parasitic nematodes. In addition, the RIA interneuron plays a role in thermotaxis 

in both C. elegans and H. contortus [91], suggesting that interneuron function may be 

conserved in at least some cases. Nervous system connectivity has not yet been examined in 

parasitic nematodes. However, a recent study of the P. pacificus pharynx found that although 

P. pacificus and C. elegans share a set of 20 homologous pharyngeal neurons, the 

connectivity of these neurons differs in the two species [92]. Thus, behavioral differences 

among species may arise from a combination of altered connectivity of the nervous system, 

the actions of neuromodulators and neuropeptides, and species-specific differences in the 

functional properties of neurons. Future studies of olfactory circuits in parasitic nematodes 

should clarify the relative contribution of each of these factors to the evolution of olfactory 

neural circuits and odor-driven behaviors.

Conclusions

Recent studies of olfactory microcircuits in C. elegans have elucidated how the worm 

responds to odorants across a wide range of concentrations, and how these responses are 

modulated by environmental stimuli, internal behavioral state, and genotype. With new 

technical advances that enable nearly whole-brain imaging with single-neuron resolution in 

freely moving C. elegans [93–96], it should now be possible to determine how global 

changes in brain state alter olfactory microcircuits and to clarify the dynamics of how 

neurons are recruited into or omitted from these microcircuits.

Studies of olfactory behavior in parasitic nematodes have demonstrated how these parasites 

use olfactory cues to find and infect hosts, with implications for nematode control. Since 

molecular and genetic tools are now available for some parasitic worms, the microcircuits 

that drive these behaviors are at the cusp of discovery. Future studies comparing microcircuit 

function in C. elegans and parasitic nematodes should provide insight into how analogous 

microcircuits operate in free-living versus parasitic species to support parasite-specific 

olfactory behaviors.

Highlights

• C. elegans encodes complex olfactory behaviors with only a small 

number of neurons.

• Microcircuit motifs that are fundamental across computational systems 

encode these behaviors.

• Odor preferences of parasitic worms reflect their host ranges and 

infection mode.

• Olfactory neuron function is at least partly conserved across nematode 

species.
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Figure 1. Models of microcircuit motifs present in the C. elegans olfactory system
A. A feedback inhibition motif promotes odor adaptation and possibly gain control [23]. The 

AWC olfactory neurons release NLP-1, which binds NPR-11 on AIA interneurons to inhibit 

their activity. In the presence of an odor, AWC activity is suppressed. The resulting decrease 

in NLP-1 signaling permits AIA to release INS-1, which inhibits AWC through an unknown 

receptor [23]. B. Odor environment modulates feeding through a reciprocal inhibition motif 

[39]. The presence of attractive odors increases feeding, while the presence of repulsive 

odors decreases feeding. The attractive odorant diacetyl is sensed by the AWA neurons and 

causes serotonin (5-HT) release from the NSM neurons. 5-HT binds the serotonin-gated 

chloride channel MOD-1 on the RIM and RIC interneurons, which inhibits them and 

increases feeding. Repellents such as quinine or high concentrations of isoamyl alcohol 

(IAA) are sensed by the ASH neurons and promote release of octopamine (OA) and 

tyramine (TA) from RIM and RIC. OA and TA bind the SER-2 receptor on the NSM 

neurons and inhibit serotonin release [39].
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Figure 2. Diverse responses to CO2 across nematode species
A. CO2 chemotaxis behavior varies across nematode species [84]. Phoretic C. elegans 
dauers, which seek insect vectors, entomopathogenic Ste. carpocapsae IJs, and passively 

ingested H. contortus IJs are attracted to CO2, while skin-penetrating Str. stercoralis IJs are 

repelled by CO2 [51,84]. Dauers and IJs were tested in a chemotaxis assay with 10% CO2, 

in which the animals were given 1 hr to migrate in a CO2 gradient. A positive chemotaxis 

index (CI) indicates attraction and a negative CI indicates repulsion. B. The BAG neurons 

are required for multiple CO2-evoked behaviors across species. Left, BAG neurons are 

required for CO2 chemotaxis in C. elegans adults and dauers regardless of whether CO2 is 

attractive or repulsive [37,51]. BAG-ablated C. elegans adults were tested in a 20 min assay 

[37], whereas dauers were tested in a 10 min assay [51]. Right, BAG neurons are required 
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for both CO2 chemotaxis and CO2-evoked jumping in Ste. carpocapsae IJs [51]. The BAG 

neurons in IJs were laser-ablated; wild-type animals were mock-ablated. IJs were tested in 

either a 1 hr chemotaxis assay or a jumping assay in which IJs were given 8 s to jump in 

response to a 10% CO2 puff [51]. C. The response of Ste. scapterisci IJs to CO2 shifts from 

repulsion to attraction as the IJs age [90]. IJs were tested in a 1 hr chemotaxis assay with 1% 

CO2.
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Figure 3. Olfactory responses of parasitic nematodes reflect their host ranges and infection 
modes rather than their genetic relatedness
A. Schematic of phylogenetic relationships among nematode species [65,84]. Phylogenetic 

analysis is based on Castelletto et al., 2014 [84] and Dillman et al., 2012 [65]. B. A 

behavioral dendrogram of odor preferences among nematode species [84]. Species cluster 

based on the hosts they infect and their modes of infection, rather than their genetic 

relationships. For example, the skin-penetrating rat parasites Str. ratti and N. brasiliensis 
show similar odor preferences, even though they are not closely related genetically [84].
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