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Almost all types of learning involve, to some degree, the ability to encode

regularities across time and space. Although statistical learning (SL) research

initially focused on offering a viable alternative to rule-based grammars and

specialized mechanisms for word learning (e.g. [1,2]), the processing of regu-

larities embedded in sensory input extends well beyond language. SL,

therefore, was taken to offer a comprehensive theory of information processing,

holding the promise of advancing knowledge across various domains of cogni-

tion including visual and auditory perception, multimodal integration, motor

learning, segmentation, categorization and generalization, to name a few.

On the theoretical level, SL has had substantial impact on the cognitive

sciences, viewed as a powerful domain-general learning mechanism and often

invoked to argue against nativist or domain-specific accounts of language and

cognition. However, a retrospective view of two decades of SL research reveals

a substantial gulf between the wide-reaching promise of SL as a theoretical con-

struct and the actual empirical work that would support it. Following the

foundational work of Reber [1], and Saffran et al. [2], research on SL has primarily

focused on providing a proof of concept of the human ability to perceive and learn

the distributional properties of visual or auditory input. This has been achieved

by monitoring participants’ performance in laboratory settings with a strikingly

narrow set of tasks: in one paradigm, sequences of stimuli generated by some

miniature artificial grammar are presented for familiarization, and then

subsequent correct classification of novel grammatical and ungrammatical

sequences attests for learning (i.e. Artificial Grammar Learning—AGL). In

another paradigm, regularities are embedded in a sensory input (typically

visual or auditory), and learning of these regularities (co-occurrence of elements,

their transitional probabilities, etc.) during a relatively brief familiarization phase,

usually on the order of minutes, is assessed in a subsequent test phase. Extensive

research using this approach has indeed provided us with detailed information

regarding performance profiles in this particular set of artificial laboratory

tasks. We know, for example, that infants are able to segment artificial speech

on the basis of the distributional properties of the embedded elements [2], that

newborns, like adults, display remarkable sensitivity to the co-occurrence of

items in a continuous stream (e.g. [3]), that this sensitivity is displayed across

sensory modalities, (visual: e.g. [4–6]; auditory: e.g. [7]; tactile: e.g. [8]), for

verbal as well as non-verbal stimuli (e.g. [9]), that sensitivity extends to both adja-

cent (e.g. [10]) and nonadjacent contingencies (e.g. [11,12]) and that learning does

not require overt attention (e.g. [13]), nor explicit memory (e.g. [14]).

Although these findings represent considerable progress within the field,

much of SL research has focused on relatively restricted sets of issues, often

related to the types of regularities extracted from the input, the possible cues

that modulate extraction, the necessary conditions for determining above chance

performance in terms of rate of presentation, complexity of embedded stimuli,

their similarity to previously established representations, etc. At large, the
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‘Zeitgeist’ of this research implicitly regards SL as an indepen-

dent computational mechanism, akin to a device, that is

specialized for extracting the distributional properties of the

sensory input, where research should focus on determining

its operational scope. This has naturally led to investigating

SL in isolation as a separate ability from other systems. A corol-

lary of this approach is that advancing knowledge of SL would

be achieved by mapping the set of constraints on its operation.

Is this all there is to SL? From a theoretical perspective,

would the full description of constraints on SL reveal its

exact role across the full breadth of cognitive systems?

Should the field continue along the same trajectory of the

previous two decades for the next two decades?

We take it as self-evident that a full understanding of SL is

not tantamount to detailing performance of children and

adults in registering the structural similarity of grammatical

sequences in an AGL paradigm, and/or extracting the transi-

tional probabilities between syllables and meaningless shapes

in a stream. A powerful theory of SL as a domain-general mech-

anism—or set of mechanisms—requires a wider perspective. If

SL is a cornerstone of cognition in general, then a comprehen-

sive theory will have to integrate and constrain SL by what we

know about key cognitive faculties, such as perception, attention

and memory, what we know about their development through-

out the lifespan or through evolution, and what we know about

their neurobiological and computational instantiation.

The main goal of this special issue is, therefore, to place

SL in its rightful role as fundamental part of learning and

development across cognition. It aims to foster a transition

from studying SL in isolation to studying it as an integral part

of different cognitive systems. This would involve, for instance,

tying early statistical sensitivities in infants to phonological

structure, to broader theories of language emergence, con-

strained by what we know about memory, attention and their

developmental trajectories. From learning basic regularities in

the visual modality, to theories of perception, visual cognition,

scene segmentation, object recognition and what we know

about the neural systems that support these functions. From

treating individual variation in SL as noise, to emphasizing

the functional significance of such variability, in relation to

what we know about learning and communication abilities

and disabilities. In sum, this special issue offers a way forward

to understanding how SL subserves cognition.

Through this approach, what has traditionally been

termed ‘learning’ may usefully be construed as SL operating

at a large scale, in coordination with the core mechanisms of

other cognitive systems and abilities. This approach has the

promise to offer not only a better understanding of SL, but

also a better understanding of the cognitive systems it oper-

ates within. This forward-looking foundational viewpoint,

however, requires stressing a different set of theoretical ques-

tions for the SL research community, allocating a central

role for an interdisciplinary programme that leverages the

unique insights from different disciplines and method-

ologies. Fortunately, the seeds of this new perspective has

already been sown and the time is ripe to bring these into

an integrated whole.

The diverse papers of the present volume, in one way or

another, exemplify this direction towards the new frontiers of

SL research. Each one of them identifies fundamental ques-

tions along the lines outlined above, and offers a blueprint

for addressing them. Together, the papers thus provide an

exciting picture of what the future may hold for a more
integrated and interdisciplinary approach to SL, viewed

within its rightful place in cognition.

The volume was put together to provide a broad glimpse of

the new frontiers, building from a low-level neurobiological

understanding of SL and its neurocomputational instantiation,

to a scaffolded consideration of how these mechanisms connect

with higher-level key cognitive systems. This understanding is

achieved by drawing upon insights from evolution, develop-

ment and computational constraints on processing. The

volume thus begins with Hasson’s [15] critical review of the

basic neural building blocks for detecting regularities or their

absence. Hasson outlines areas of convergence and divergence

between models of SL and models focused on the coding of

uncertainty. He then derives desiderata for future neurobiolo-

gical work in SL. This review sets the stage for understanding

the possible neurobiological constraints for any theory of SL.

Next, Schapiro et al. [16] provide a higher-level perspec-

tive on the important role of the hippocampus in extracting

regularities from different sensory input streams. Through a

series of neurocomputational simulations, they reveal how

the hippocampal system can resolve an apparent paradox cre-

ated by the need to encode distinct memories for particular

events, on the one hand, and rapidly extract regularities

among events, on the other. Drawing upon insights from

computational modelling, their work clearly illustrates how

a more integrated understanding of SL and complementary

memory systems can better define the interplay between

the hippocampus and the neocortex.

Gomez [17] addresses the critical gap between the rapid

encoding of regularities in brief laboratory experiments, and

what is required for the permanent retention of knowledge

in the domain of language. This work is informed by devel-

opmental insights into the different memory systems that

support initial encoding versus subsequent consolidation.

Gomez, thus, specifically targets the problem of ecological

validity in SL research. Whereas typical learning in the lab-

oratory proceeds at an exceedingly rapid pace, language

acquisition during infancy is known to be slow in relative

terms. This discrepancy cannot be resolved without consider-

ing the constraints of the different memory systems

implicated in learning, as well as their developmental trajec-

tories. In focusing on these considerations, we gain a better

understanding of what underlies the observed differences

between adult and infant SL.

In a related vein, Arciuli [18] discusses SL in the context

of age-related changes and neurodevelopmental accounts of

typical and impaired communication abilities, such as autism

spectrum disorder. This work touches on a fundamental ques-

tion: is SL a unitary mechanism or a composite ability that

relies upon the close coordination of a number of separate cog-

nitive systems such as perception, attention and memory?

Arciuli provides substantial evidence for considering SL as a

multifaceted ability, where individual differences in SL per-

formance should be understood in terms of variability in the

efficacy and relative maturation of these respective systems.

This approach of deriving meaning from individual variability,

as opposed to considering it as noise, not only explicates con-

trasting findings in SL research, but also offers a theoretical

perspective for tying SL to a range of disorders.

Generalizing this perspective, Siegelman et al. [19] offer a

formal conceptual framework for defining SL as a componen-

tial ability. By considering a range of findings from group and

individual level studies, they outline potential dimensions of
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SL, and point to the major methodological consequences that

this has for tying individual differences in SL to specific cogni-

tive functions. This framework offers clear blueprints

for structuring future research, requiring researchers to specify

a priori how and why specific SL tasks would engage parti-

cular cognitive systems. As a corollary, they explicate how

some learning measures are better suited for probing certain

dimensions of SL.

Of key importance to understanding SL as embedded in

our broader cognitive abilities is determining the nature of

input available for such learning. Clerkin et al. [20] adopt

an ecologically motivated approach to the development of

early word learning, asking what the visual environment

looks like during the first year of an infant’s life. Although

the visual input is very cluttered with many objects in

view, the frequency distribution of particular object cat-

egories follows a power-law distribution: a very small set of

objects occur repeatedly. The authors note that this frequency

pattern is quite different from the uniform distribution that is

typically used in SL experiments (typically under the heading

of ‘cross-situational learning’). Nonetheless, the right-skewed

distribution of objects in the child’s visual field may be cru-

cial for word learning, as suggested by the fact that the

names for these visual object categories belong to the first

words that are learned. This paper thus underscores the

importance of incorporating ecological constraints into both

experimental work and theoretical considerations about SL.

Although often implicit in the discussion of SL results, it

is clear that the outcome of SL is not simply a representation

of the statistics of the input. Rather, the cognitive system uses

sensitivity to distributional patterns to shape its expectations

and behavioural responses in an adaptive way, constrained

by preexisting biases in that system. The study by Feher

et al. [21] provides an innovative test of this perspective in

the context of self-tutored bird song learning. They record

the songs of juvenile zebra finches placed in isolation and

play it back to them moments later. These birds normally

learn from adult males that have established categories of

song elements. However, the juvenile birds themselves start

out with a broadly distributed signal. Yet, the self-tutored

birds quickly developed categorical signals at the same rate

as birds raised with an adult tutor. These results demonstrate

that SL does not simply involve recording distributional

patterns, but rather reflects an active process of learning,

shaped by existing perceptual and cognitive biases.

The empirical work of Shimizu et al. [22] extends SL

research on several important fronts. First, it focuses on

visuomotor SL, thereby probing the link between perception

and action. Second, it shifts away from classical SL brain

areas associated with SL, investigating the relatively under-

studied role of the cerebellum. Third, rather than using the

typical design where neural activity is indirectly driven by

the experimental manipulation of the input, Shimizu et al.
manipulate neural activity itself via transcranial direct current

stimulation (tDCS) to probe for commensurate changes in

performance. This work not only reveals the critical role of

the cerebellum in learning and generalizing regularities in

the motor domain, but also raises intriguing questions

regarding its role in SL across a range of domains.

By complementing neurocomputational simulations,

computational modelling at the cognitive level can provide

additional insights into the possible mechanisms underlying

SL. Thiessen [23] discusses recent modelling efforts situating
SL within a basic memory framework. He proposes that SL

may be accommodated by two distinct kinds of computational

mechanisms: one that relies on chunk-based memory processes

to store exemplars, and another that captures central ten-

dencies in distributional input by integrating over prior

exemplars stored in memory. A key feature of this compu-

tational account is that the effects of exposure to statistical

patterns are reflected implicitly in the system’s memory

traces. The paper thus provides a parsimonious way in

which to understand SL in the context of exemplar memory.

Mareschal & French [24] address a related question that is

currently the subject of heated debate: Does the SL mechanism

target the transitional probabilities between elements in the

input signal, or is it simply designed to group together

co-occurring elements into memory chunks? Using a variant

of a connectionist autoencoder model, they show how gradual

chunking of co-occurring elements within an input can poten-

tially explain effects associated with backward and forward

transitional probability learning, as well as preference for

whole-words over part-words which occur with equal prob-

ability in the stream. They also show that such a model is

developmentally plausible by predicting the established

improvement of SL with age. This work demonstrates the criti-

cal role that explicit computational theories of SL can have in

reconciling apparently discrepant findings and theoretical

accounts, offering a more parsimonious explanation of a

range of effects without sacrificing descriptive adequacy.

Using the domain of sentence processing as an anchor,

Altmann [25], in a sense, turns SL on its head. After describ-

ing how repeated encounters with regularities in the input

are the basis for generalization and abstraction in the form

of semantic knowledge, he reverse engineers this process.

In so doing, Altmann offers a possible account of how seman-

tic types acquired through SL underpin the ability to process

and generate novel episodic tokens. By pointing to the reci-

procal relationship between comprehension and generation

of sentence meaning, we gain novel insight regarding the

tight and intertwined relationship between SL, semantic

memory and the comprehension of novel episodes.

The volumes close with an evolutionary perspective on

the interaction between SL, language learning and the evol-

ution of linguistic variation. Smith et al. [26] put forward

the hypothesis that the relatively low prevalence of unpre-

dictable variation in natural languages could be attributed

to children’s SL biases against such variations, along with

processes related to language transmission over multiple gen-

erations. To substantiate this idea, they develop a Bayesian

model of language learning and language transmission and

compare its performance against that of humans in an artifi-

cial language learning task. The data generated by this

approach cast light on the rich and complex relationships

between the constraints imposed by SL and the evolution

of linguistic structure. The emergent perspective considers

SL not simply in terms of individuals extracting the regu-

larities of the environment. Rather, there is a two way street

between human created ‘environments’ such as language

and SL learning mechanisms.

Collectively, the series of papers reveal that the tide is

beginning to turn in the SL community, where the accumulated

evidence regarding processing regularities in the environment

is now taken to shape and constrain theories of cognitive

systems. The outcome of SL is not simply a veridical internal

representation of the regularities of the environment. Rather
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it is a product of the interaction between environmental stat-

istics, the computational principles of the cognitive systems in

which learning takes place, and preexisting biases, either

from prior exposure to other input patterns or architectural con-

straints. The discussions going forward will consequently

inevitably shift from dialog within community to cross-

disciplinary interactions between communities. This would

gradually narrow the gulf between the original promise of SL

as a theoretical construct, and its actual implementation and

impact on theories of language, vision, audition, memory,

social behaviour and so on.

Such a change of perspective, however, brings a new set

of challenges and questions to centre stage. For example,

how does encoding uncertainty in low-level biology [15]

relate to uncertainty in high-level domains such as visual

word recognition or sentence comprehension? How would
the hippocampal system capable of encoding both statistical

regularities and distinct episodes [16] relate to the represen-

tation of semantic types and episodic tokens [25]? Would

the basic computational mechanisms tested in small artificial

language experiments [23,24] scale up to dealing with the

real-world input, such as natural language [20]? This small

sample of questions highlights the new frontiers of SL

research for the road ahead.
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