
rstb.royalsocietypublishing.org
Review
Cite this article: Hasson U. 2017

The neurobiology of uncertainty: implications

for statistical learning. Phil. Trans. R. Soc. B

372: 20160048.

http://dx.doi.org/10.1098/rstb.2016.0048

Accepted: 1 August 2016

One contribution of 13 to a theme issue

‘New frontiers for statistical learning in the

cognitive sciences’.

Subject Areas:
cognition, neuroscience, behaviour

Keywords:
uncertainty, statistical-learning, entropy,

regularity, grammar, language

Author for correspondence:
Uri Hasson

e-mail: uri.hasson@unitn.it; uri@hasson.org
& 2016 The Author(s) Published by the Royal Society. All rights reserved.
The neurobiology of uncertainty:
implications for statistical learning

Uri Hasson

Center for Mind/Brain Sciences, The University of Trento, via delle Regole 101, Mattarello, TN 38123, Italy

UH, 0000-0002-8530-5051

The capacity for assessing the degree of uncertainty in the environment relies

on estimating statistics of temporally unfolding inputs. This, in turn, allows

calibration of predictive and bottom-up processing, and signalling changes

in temporally unfolding environmental features. In the last decade, several

studies have examined how the brain codes for and responds to input uncer-

tainty. Initial neurobiological experiments implicated frontoparietal and

hippocampal systems, based largely on paradigms that manipulated distribu-

tional features of visual stimuli. However, later work in the auditory domain

pointed to different systems, whose activation profiles have interesting impli-

cations for computational and neurobiological models of statistical learning

(SL). This review begins by briefly recapping the historical development of

ideas pertaining to the sensitivity to uncertainty in temporally unfolding

inputs. It then discusses several issues at the interface of studies of uncertainty

and SL. Following, it presents several current treatments of the neurobiology of

uncertainty and reviews recent findings that point to principles that serve as

important constraints on future neurobiological theories of uncertainty, and

relatedly, SL. This review suggests it may be useful to establish closer links

between neurobiological research on uncertainty and SL, considering particu-

larly mechanisms sensitive to local and global structure in inputs, the degree of

input uncertainty, the complexity of the system generating the input, learning

mechanisms that operate on different temporal scales and the use of learnt

information for online prediction.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. The role of uncertainty in psychology: a story of waxing
and waning (and waxing)

The status of uncertainty (also, entropy, disorder) as an explanatory construct in cog-

nitive psychology has seen fluctuations since the 1950s. Catalysed by Claude

Shannon’s work and the subsequent advent of information theory, numerous studies

from the late 1940s to the early 1960s relied on insights and formalisms of information

theory to explain learning, memory and language (for review of early studies, see

[1]). To name a few, such studies attempted to quantify the channel capacity of sen-

sory systems by studying the relation between the information in the inputs and the

information in behavioural responses, evaluate responses as a function of distribu-

tional uncertainty (entropy) or empirically examine stimulus surprise. Some of

those studies’ insights remain fundamental within computational neuroscience

and certain subfields of psychology. However, the limitation of input uncertainty

as an explanatory factor was soon realized. In particular, George Miller had already

noted in the 1950s [2] that working memory is not constrained by stimulus uncer-

tainty, but by a potential for chunking that depends on long-term familiarity. This,

in turn, introduced a strong limitation on the explanatory power of uncertainty as

a stand-alone construct in approaches to learning and memory (setting aside more

limited applications in domains such as sensory discrimination). Luce [3] covers

some of this historical progression and other limitations in his review, ‘Whatever

happened to information theory in psychology’, and Laming [4] offers a detailed
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critique of the linking hypotheses that underlie interpretations of

behaviour in relation to stimulus uncertainty.

However, the more recent use of non-invasive neurobiologi-

cal methods, particularly functional magnetic resonance imaging

(fMRI), allows a different type of understanding of how humans

(and their brains) respond to uncertainty. Whereas the original

behavioural studies necessarily relied on quantifying the relation

between the information in a stimulus set and the information

inherent in responses to that stimulus (e.g. to infer channel

capacity), neurobiological studies do not need to rely on overt

behaviour. This allows us, for example, to identify brain systems

that track input uncertainty and study their capacity, while

participants are engaged in behaviours that are unrelated to the

stimuli or the manipulation of interest. Studying the neurobiol-

ogy of uncertainty has become central in several domains,

including sensory perception, rule learning (for review, see [5]),

the adjustment of predictions [6,7] and understanding anxiety

from the perspective of uncertainty [8–10].

Importantly, neurobiological questions about the prin-

ciples that organize the brain’s responses to uncertainty do

not necessarily align with, nor are they intended to test, func-

tional accounts of how uncertainty impacts behaviour. In this

sense, neurobiological and functional approaches, while at

times sharing common concerns, are also concerned with

partially separate issues.
2. Neurobiological approaches to uncertainty and
statistical learning: interfaces and disconnects

Statistical learning (SL) is a dynamic field that is itself changing

in theoretical scope and emphasis. Nonetheless, as a working

definition the current discussion adopts Aslin & Newport’s

[11] perspective where SL is defined as a mechanism that

‘enables adults and infants to extract patterns embedded in

both language and visual domains’. A similar view is seen in

Schapiro and Turk-Browne’s neurobiologically focused discus-

sion where SL ‘refers to the ability to extract regularities from

the environment over time’ [12, p. 501].

This intersection between the interest in regularities, on the

one hand, and temporally extended learning, on the other

hand, delimits the SL domain. It also separates it from related

questions such as the coding of instantaneous statistics [13]

or distributional learning of continuous variables (e.g. learning

the mean and variance of a distribution of certain sensory

features [14]). This emphasis naturally leads to the study of

nominal rather than continuous variables, which is also

consistent with the historical context in which the study of SL

was developed. Specifically, SL has been suggested to be a

domain-general capacity that underlies language acquisition

[15], with an emphasis on the ability to code for specific

features of an input stream such as marginal frequencies,

transition probabilities and mutual information.

The shared interest in nominal variables and their distri-

bution constitutes an important formal, if not theoretical link

between neurobiological approaches to SL and uncertainty

(we henceforth focus on neurobiological approaches). At the

end of the day, both approaches are interested in learning,

but they put different emphasis on what might be learnt.

Whereas the theories of SL are focused on how particular regu-

larities or associations between elements are encoded, theories

of uncertainty focus on how the overall degree of input uncer-

tainty may be encoded or used for various purposes. Input
uncertainty is a multifaceted construct and can be captured

by numerous information-theoretic quantities that differentiate

random from non-random inputs. For instance, Shannon’s

measure of entropy captures (roughly speaking) the relative

diversity of input tokens, and Markov entropy reflects the

strength of their transition constraints. Other measures, many

derived within the field of dynamic systems, load in some

way on serial autocorrelation (long-term memory) within the

data (e.g. Hurst exponent, attractor dimensions, etc.). Behav-

iourally, people have been shown to be highly sensitive to

such long-term features that impact uncertainty [16,17].

At times, manipulations of uncertainty or statistical struc-

ture (as implemented in SL paradigms) amount to a

terminological difference. Simple artificial grammars (regular

grammars) of the form often used in SL and artificial grammar

learning (AGL) paradigms can be represented as a first-order

Markov process: one where the next step is conditional only

on the current state. When represented this way, the fact

that certain transitions are allowed, whereas others are not,

produces a quantifiable reduction in uncertainty and dis-

tinguishes grammatical from random strings. For this reason,

some manipulations used in neurobiological studies of SL are

also manipulations of uncertainty. For instance, in an fMRI

study, McNealy et al. [18] examined the blood-oxygen-level-

dependent response when participants heard either random

syllable sequences, or syllable sequences generated by a gram-

mar that effectively produced fixed ‘words’ that could be freely

combined. The latter (more regular) condition produced

greater activity in lateral temporal cortex (see [19] for a similar

paradigm and findings). Thus, most generally, manipulations

of uncertainty can identify brain systems sensitive to the stat-

istical structure of the input, and such manipulations may

subsume ones pitting random strings against those generated

by a grammar. The following sections discuss several theoret-

ical and experimental trends in studying the neurobiology of

uncertainty that have implications for studies of SL.

(a) Distributions and associations: macro- and
microscale aspects of learning

Manipulations of uncertainty impact macroscale properties of a

stimulus series (e.g. mean series uncertainty as quantified via

Shannon or Markov entropy or any other summary feature

related to long-term autocorrelation or embedding dimension

of the input). It has been suggested that there may exist brain

systems that code for such ‘summary statistics’—ones that

reduce uncertainty into a single value (see [5] for discussion

in context of decision-making under uncertainty). However,

uncertainty is also reflected in microscale features at the scale

of single stimulus tokens, such as how surprising is the appear-

ance of a single token or how much information a certain token

provides about what is likely to happen next (cue diagnosti-

city). In some formalisms, for example, the Rescorla–Wagner

model, updating occurs on the microscale—that of transition

constraints between pairs of tokens. However, computations

operating on both scales likely impact how people code for

and respond to uncertainty. Consider a binary [1,0] series

derived from the transition structures of the following

two processes

a. Process 1: P(1 j 1) ¼ 70%; P(0 j 1) ¼ 30%; P(1 j 0) ¼ 50%;

P(0 j 0) ¼ 50%

b. Process 2: P(1 j 1) ¼ P(1 j 0) ¼ P(0 j 1) ¼ P(0 j0) ¼ 50%
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Series generated from the first process are more regular,

because transition constraints are stronger. On some theoret-

ical approaches, brain systems sensitive to this macroscale

feature (a ‘summary statistic’) would differentiate the two

series for this reason. Several neurobiological studies have

modelled brain responses as function of such summary

statistics [20–24].

Conjointly, on the microscale of single items, in the regular

process, the state marked ‘1’ has higher cue diagnosticity—it

provides more information about the next state—than any

token in the random process. For this reason, brain systems

that establish associations between pairs of tokens may be

more frequently engaged for series generated by the first

process. Relatedly, systems signalling prediction error may

also be more extensively engaged in this case, specifically,

when 0 follows 1, which may signal a violated prediction.

The hippocampus has been linked to associative learning

in continuous series, showing greater activity for tokens

highly predictive of a subsequent token [12,25,26]. However,

frontoparietal systems have been implicated by studies that

explicitly manipulated cue diagnosticity, with greater activity

reported for more diagnostic cues [27,28].

The macro vs micro distinction has a parallel in the SL litera-

ture concerned with whether adults and children learn

macroscale distributional information or, alternatively, knowl-

edge of the bigrams or trigrams whose presence typically

differentiates a grammar from random transition network.

To illustrate, the fact that infants look longer at elements that

make up random series could indicate they differentiate

random from regular series owing to sensitivity to a ‘global’

distributional feature, or alternatively, because the regular

series contain more frequent cases of particular sequences/

transitions. Interestingly, recent work suggests that the latter is

the case [29], and the use of neurophysiological measurements

may shed further light on this issue in the future. Thiessen

et al. [30] make a similar distinction between conditional tran-

sition probabilities and distributional statistics. Another

approach that differentiates micro- and macro-description

levels within the context of SL is described in Karuza et al.
[31]. There, relations between items are considered as edges

within a network, and summary features of the network are

taken to correlate with the ability to learn and remember the

system of interest (in their terminology, these levels correspond

to local statistics and complex-network features).

These statistics play an important role in contemporary

neurobiological models of language. Understanding whether

the brain tracks the information that a linguistic cue provides

about potential upcoming ones is becoming increasingly

important because of the hypothesis that certain brain systems

are engaged in prediction (at the phonemic, morphemic and

word level) during comprehension. In particular, it has been

suggested that during language comprehension certain brain

systems signal the uncertainty of what is likely to appear.

This means their activity tracks the variance of the set of poten-

tial completions that can follow at each point (formally,

Shannon’s entropy of set of immediate complements). There

is some empirical support for this proposition, emerging

from neuroimaging [32], electrocorticography [33] and

magnetoencephalography (MEG) studies [34,35], but these

have typically implicated lateral temporal and dorsolateral pre-

frontal cortex. Technically, it is often possible to dissociate the

impact of macro- and macro state features on brain activity

by including in explanatory models both the overall macro
state, as well as the microscale features of the stimuli [23].

Nonetheless, the theoretical distinction between micro- and

macroscale features is one that requires more empirical investi-

gation. It is unknown whether, in terms of computation, there

is a difference between establishing the uncertainty associated

with local (short-term) and global (long-term) patterns and

whether they rely on different latent capacities. Furthermore,

it is unknown whether the coding of local patterns is itself

impacted by macro-state features.

This is not to say that studies of uncertainty necessarily

carry direct implications for neurobiological models of SL.

For instance, some studies have evaluated sensitivity to tem-

porally unfolding features of tonal series such as their fractal

properties [36], relative smoothness [37] or magnitude of

pitch transitions [38]. Such paradigms do indeed impact the

predictability of future stimuli over multiple scales. However,

they rely on manipulations of a physical feature (e.g. pitch-

changes over time). Consequently, their impact on brain

activity may be due not to the coding of statistics of informa-

tional features, but also to the way these manipulations

impact lower-level sensory processing. For instance, series

that consist of smoother or more gradual pitch changes

[36,37] could produce stronger neural repetition suppression,

because auditory neurons tuned to a certain pitch bandwidth

are engaged for longer durations. To conclude, neurobiological

studies of uncertainty and SL develop from largely separate

theoretical backgrounds. Still, there are interfaces between

the two domains, as computational/neurobiological models

of uncertainty consider both macro- and microscale features

that are of interest to neurobiological models of SL.
(b) From learning to using
Traditionally, behavioural studies of SL have drawn inferences

about the outcome of learning from participants’ responses to

test trials presented after learning. This has led to sophisticated

models of the process [39]. However, more recently, the

emphasis on the process of learning has been brought to the

fore, as shown for instance in Frost et al.’s [15] emphasis on

the dynamic aspects of learning wherein internal represen-

tations are updated via interactions between current inputs

and prior knowledge. In tandem, behavioural studies of SL

have begun examining online responses during presentation

of the stimulus series [40,41]. Such examinations produce a

more direct description of the learning process itself rather

than inferring the learning process from responses to test items.

A similar trajectory had occurred in neurobiological studies

of AGL, SL and the coding of uncertainty, which have seen a

shift from an initial interest in identifying a putative ‘learning

system’ to more dynamic ‘real-time’ models of how statistics

are acquired and used. The initial emphasis on identifying

statistical-learning systems is seen, for instance, in a study

that used an AGL paradigm [42] to identify brain regions that

differentiated grammatical from ungrammatical test items.

The authors concluded that the right caudate tracked adherence

to the grammatical rule, whereas hippocampal activity tracked

‘chunk strength’—the extent to which test items were similar to

training items. A similar interest in identifying distributional

learning systems is seen in early neurobiological studies of

uncertainty. Strange et al. [23] focused on sensitivity to marginal

frequencies and implicated the hippocampus, and two other

studies examining sensitivity to transitional probability con-

straints had linked the hippocampus [21] and left posterior
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lateral temporal cortex [20] to these computations. Notably,

however, some of these earlier studies were already concerned

with how distributional knowledge impacted responses to

single tokens—Strange et al. [23] quantified the surprisal of

each item (2log(P(x)) in relation to the distribution of items to

that point and found strong stimulus-surprise effects in fronto-

parietal regions, the thalamus and fusiform cortex (stimuli were

visual). Other work [43] had partitioned a putatively initial

stage of acquiring statistical knowledge (‘process of learning’)

from later stages where that knowledge is used (‘result of

learning’) and showed they involve different brain systems.

A theoretical shift from learning statistics to ‘using stat-

istics’ necessarily foregrounds two interrelated processes that

are of major interest in current cognitive neuroscience but are

seldom addressed within neurobiological studies of SL—that

of the construction of predictions and their evaluations (for

exceptions, see [25,26,44,45]). A very large body of neurobiolo-

gical work is concerned exclusively with these issues, typically

outside the context of SL, using paradigms where cue validity

is manipulated [28] or where cues are used to indicate future

stimuli in different modalities [46]. This work has been

reviewed extensively [7] and we will not do so here. What is

important is that during the process of SL, brain activity inevi-

tably reflects a combination of computations related to

updating of distributional knowledge, as well as the construc-

tion of predictions licensed by that knowledge and their

evaluation. Construing SL from an integrative perspective

that takes into account the implicit detection of patterns or

distributional information, and the subsequent use of this

knowledge for prediction offers multiple opportunities for

theoretical advances and may likely lead to different con-

clusions than those drawn from work to date. To illustrate, in

cue–target paradigms, cues with higher validity (i.e. ones

more informative about a future target) evoke greater activity

than less valid cues in frontoparietal regions [28]. However,

when regular and random inputs are presented for passive
observation in tasks that do not demand executive function,

then the converse pattern is found: stimuli series where (on

average) transition constraints are higher are associated with

less activity in frontoparietal regions than random series [47].

It has also been shown that when a stimulus stream conveys

predictable knowledge in separate dimensions (e.g. shape

and colour), then regularities are associated with less activity

(than a random condition) for the non-attended dimension,

but more activity than a random condition for the attended

dimension [43]. In other work [48], it was shown that brain

responses to predictable stimuli are themselves impacted by

attention allocated to the input stream: when predictable

stimuli were presented at an attended screen side, they were

associated with increased activity when compared with a con-

dition where no prediction was possible. However, the

opposite pattern was found for stimuli presented at an unat-

tended screen side—there, predictable stimuli evoked less

activity than ones for which predictions were not viable. Thus,

the online coding of regularities, as computed in the context of

implicit paradigms that are of interest to SL, may shed new

light on how learning and prediction occur in natural contexts.
(c) The importance of temporal scope
At present, one difference between neurobiological studies of

SL and uncertainty pertains to their theoretical emphasis on

the temporal constants over which information is integrated
during learning. SL developed as a potential explanation for

language acquisition [15], and the two capacities are often

seen as intertwined and potentially loading on the same

latent capacities [49]. An important feature of language stat-

istics (e.g. phonotactic frequencies or transition probabilities

between phonemes or syllables) is that these form a relatively

stationary system. In other words, it is unlikely that once

phonotactic or syllabic-level transition constraints are acquired

by an adult, those would need to be strongly modified as a

result of subsequent exchanges in that language. In this respect,

a language system is largely a ‘fixed target’ where an assump-

tion of stationarity is licensed. (There may be few exceptions

that prove the rule, for instance, circumstances of second

language learning in contexts where L1 and L2 share a

syllabic/phonetic inventory). This implicit assumption of sta-

tionarity is consistent with the finding that individuals show

gradually increasing (or decreasing) responses to stimuli

drawn from regular (but not random) series, which has been

documented in several studies [18,19], and with fMRI work

[43] that separated an initial phase reflecting the ‘process of

learning’ from a later phase of ‘result of learning’.

The stationarity assumption was also implicit in earlier

models of the coding of uncertainty, which assumed that indi-

viduals code statistics as an ideal Bayesian observer—one that

weighs new information in relation to the history of all pre-

vious trials. In practice, this meant analysing entire stimulus

blocks as a single condition [20], or modelling brain activity

on a current trial, Trial(n), in relation to the distribution of

all input trials experienced to that point (from Trial1 to

Trial(n-1)) [21,23]. However, the weakness of this assumption

was soon evident. First, even when events are drawn from a

stationary distribution, people appear to attribute more

weight to the most recent trials. This was elegantly demon-

strated by Huettel et al. [50]. The authors reported fMRI

data indicating that individuals tend to ‘perceive patterns in

random series’. Specifically, when observing a binary pattern

generated by a random process, individuals were sensitive to

the interruption of ‘local streaks’ that were as short as two to

three repetitions or five to six alternations. Thus, even though

the system was stationary and random so that participants

could not make any prediction of the future, they were still

sensitive to statistical structure in the very recent past. Simi-

larly examining stationary cases, work within a classical

conditioning paradigm [51] has shown that different brain

areas learn over different temporal constants as reflected in

their activity profiles having different learning rates when

modelled via a Rescorla–Wagner model. In another neuro-

imaging study, Harrison et al. [52] presented participants

with visual stimuli generated by a stationary first-order

Markov process. They modelled responses to each stimulus

assuming there exists a limited memory capacity that con-

strains the ability to establish associative relations between

token pairs (this capacity was estimated from a behavioural

study). They found that frontal medial cortices (anterior cin-

gulate, ACC) have longer integration windows than primary

visual cortices, with the latter losing almost all traces of

events beyond the last four trials. Bornstein & Daw [53]

addressed a similar question, presenting participants with a

stationary Markov process consisting of four unique images

whose transition-probabilities were controlled. Their model-

ling of behavioural responses to these stimuli indicated two

superimposed learning processes associated with two different

learning rates (faster rate ¼ 0.5 and slower rate ¼ 0.1). Given
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these estimates, they constructed model-informed predictors of

brain activity during series presentation that reflected, at each

point in the series, the uncertainty about the next stimulus.

They constructed such model-informed regressors assuming

both slow and fast learning rates. The model with the fast learn-

ing rate accounted for activity in the ventral striatum and

insula, whereas the model with a slower learning rate

accounted for activity in the anterior hippocampus. To sum-

marize, all these studies show that even in a stationary

context where features of the sampling distribution do not

change over time, people do not function as ideal observers,

and as Bornstein and Daw wrote (p. 1014), ‘this pattern

excludes models that do not incorporate forgetting of past

experience’. The reliance on prior input can be directly linked

to working memory capacity (WMC) [44]: individuals with

higher WMC benefit more strongly from the presence of regu-

larities when performing a behavioural task. Furthermore,

when comparing MEG (theta band) activity prior to appear-

ance of stimuli in random and regular series, higher WMC is

linked to stronger differentiation between these two conditions

indicating greater sensitivity to the statistical context.

Complementary work on temporally bounded integration

has identified brain systems implicated in coding statistics of

non-stationary streams. Initial work [54] conducted within a

reward-based reinforcement learning paradigm (a task that

strongly relies on an executive component) showed that indi-

viduals calibrate their learning rate—the degree to which

they update prior information based on the incoming one—

to match the volatility of the environment. More volatile con-

texts produce faster learning rates, and neurobiologically,

activity in the ACC tracked the volatility of the environment

that itself changed over time. In another fMRI study that

focused on passive perceptual learning [55], participants lis-

tened to tonal series where the transition constraints between

four tones changed continuously over timescales of 10 s,

following a preset profile of gradual increases and decreases.

The study documented learning on two scales: some regions

(mainly perisylvian) tracked the level of regularity in the

recent 10 s, whereas other regions tracked a slower-scale

process characterized by gradual increases or decreases in

regularity over time.

All this suggests some incongruity between the compu-

tational demands involved in tracking the statistical nature of

events in a continuously changing world and those involved

in acquiring the statistics of more stationary linguistic systems.

Formally, this distinction is similar to one made in the reinforce-

ment learning literature between two types of uncertainty [56]:

first, the known uncertainty of a set of potential outcomes given

the current stimulus (e.g. the uncertainty captured by

Shannon’s entropy of the set of known possible outcomes),

assuming veridical knowledge of the contingency structure in

a system. Second, the unknown uncertainty, which reflects lack

of veridical knowledge about what the contingency structure

in the environment actually is; this knowledge is reduced in

volatile environments but can approach certainty in stationary

ones. (These have also been referred to as outcome uncertainty

and rule uncertainty [5].) Language learners may be justified

in assuming that language statistics are associated with low

volatility, so that rule uncertainty is low, whereas understand-

ing the environment may entail a different calibration of such

parameters since rule-uncertainty is higher.

It may be that sensitivity to statistical structure on short

timescales underlies a more general process of segmenting
continuous inputs into different phases or events. As shown

initially by Zacks et al. [57], there exists a brain network

consisting of mainly occipital–parietal regions that shows

transient activation increases at boundaries between naturally

unfolding events. This network has been implicated in event

segmentation during movie viewing and written text

comprehension (see [58] for review). Yet the same network

has been implicated in tracking changes in statistical structure

in tonal series lacking any semantics [59].

To summarize, studies examining temporal integration

windows suggest dissociable operations that occur, in parallel,

over longer and shorter timescales. One possibility is that inte-

gration over short temporal constants is useful for monitoring

changes in non-stationary environments, whereas integration

occurring over longer epochs is useful for making more precise

predictions in stationary environments. The similarity of net-

works linked to subjective changes in statistical structure and

those found for event segmentation suggests that integration

over short temporal constants is related to more general

capacities of input segmentation.
(d) The special status of patterns
As seen in the definitions of SL cited above, one of its main aims

is understanding the computational and neurobiological

mechanisms that allow for learning regularities or patterns.

From this perspective, structure—instantiated either through

statistical (stochastic) constraints or through (deterministic)

sequences—stands in contrast to the ‘default’ or non-marked

random case. In neurobiological studies of SL, this is expressed

in designs that contrast regular and random series [18,19]. The

contrast between item-pairs associated with high versus low

mutual information [26] can also be seen as reflecting similar

interests at the micro level. Most generally, this conceptual

framework and the experimental paradigms it derives assume

a monotonic relation between associative structure and brain

activity. This assumption also underlies many neurobiological

studies of uncertainty that set out from the premise that brain

regions sensitive to uncertainty will track it monotonically. In

practice, this means setting up binary contrasts between regular

and random conditions in block designs [18,20] or, in studies

conducted in the Bayesian framework, modelling responses to

each stimulus as a linear function of input entropy.

However, an emerging picture from both behavioural and

neurobiological studies is that the a priori assumption of a

linear or monotonic relation between input structuredness

and brain activity results in a partial understanding of

computations related to statistical processing and their neuro-

biological basis. Specifically, as reviewed below, some brain

regions are involved in statistical computations but do not

differentiate highly regular from random series.

Cognitive psychologists have already suggested that

people may track uncertainty, though non-monotonically. An

example is Loewenstein’s ‘information-gap’ model of curiosity

[60]. In this model, curiosity is a function of (i) a person’s

assessment of the maximal uncertainty a system may exhibit

[MaxU], (ii) their current level of uncertainty [CurrentU] and

(iii) their target criterion for uncertainty [MinU; 0 if one aims

for veridical knowledge]. On this formalization, curiosity, or

the impetus for exploration, is defined as the information

gap, [(CurrentU – MinU)/(CurrentU – MaxU)]. Assuming

that people strive to minimize uncertainty (fixing MinU ¼ 0),

this means that curiosity and its resulting actions will not



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160048

6
directly track environmental uncertainty, as MaxU is equally

important. Put differently, even given the same level of input

uncertainty, people will show greater curiosity for inputs

generated by systems whose maximal uncertainty is higher.

On this account, there is no direct relation between input uncer-

tainty and curiosity, though all else being equal, increased

uncertainty should induce greater curiosity.

The connections between randomness, complexity and cog-

nition have long been of interest in psychology (for recent

treatment, see [61]). There are several psychological models

that produce U-shaped responses as uncertainty increases; we

have reviewed these in prior work [62] and will not do so here

(see [63] for early, exemplary behavioural study and [1] for

review of early work). Theoretical work within complexity

science also suggests that some uncertainty-related compu-

tations produce the highest values for series that are neither

highly ordered nor random, but are instead associated with

mid-levels of uncertainty. This points to an important distinction

between randomness and complexity. The basic premise of these

approaches is that complexity is not a monotonic function of ran-

domness and that these two concepts should be differentiated.

The emphasis of some complexity theories on the systems that

generate the input (rather than the input itself) is also sensible

from a psychological perspective, as it speaks to a different

level of generalization than is typically studied. Consider for

instance a regular input that consists of four tokens with very

strong transition constraints, which thereby differentiate it

from a matched random process. There may exist cognitive sys-

tems that construct and maintain a representation akin to this

4 � 4 transition matrix, and update this model throughout learn-

ing (this assumption underlies several learning models, such as

the Rescorla–Wagner model or Bayesian approaches that

assume a representation via multivariate distributions). How-

ever, this level of description assumes that input frequencies

are retained faithfully. Nonetheless, a more abstract, sparse

description of the generating system can be formulated:

namely in the regular series some tokens only follow other tokens,
whereas in the irregular series each token follows all others equally
often. Representations at this abstraction level suffice for know-

ing when a regular state shifts to a random one and vice versa,

but do not rely on veridically retaining quantitative distribu-

tional information such as which transitions are strong or

weak, how many different tokens exist, or even summary stat-

istics such as the exact uncertainty level of the most ordered

series. As mentioned, such descriptions are lengthier and more

difficult to formulate for inputs with mid-levels of regularity.

Other formal approaches, conceptually similar to Leowenstein’s

information-gap model, treat complexity as a combined

(weighted) function of a system’s distance from its comple-

tely ordered and completely disordered possible states, with

certain weight-combinations producing an inverse-U output as

function of uncertainty (see [64] for accessible treatment).

Several neuroimaging studies have identified brain systems

that track input uncertainty either quadratically (i.e. with a cur-

vilinear, U-shaped profile) or nonlinearly. In one study,

participants heard long tonal series that varied parametrically

in regularity [62]. This study showed that whole-brain connec-

tivity between the ACC and several brain regions followed

regularity via a quadratic trend (a similar finding was shown

for the hippocampus). Another study [55] found that activity

in lateral temporal regions tracked the strength of transition

constraints among auditory tones with a quadratic response

profile. In another study [47], participants observed visual
series where the location or semantic category of the next

image was or was not predictable. This produced three

levels of uncertainty: a baseline condition where neither

dimension was predictable (maximum uncertainty), two

‘single-regularity’ conditions where either location or category

were predictable (medium uncertainty) and a ‘dual regularity’

condition where both dimensions were predictable (low uncer-

tainty). Interestingly, the study identified several brain regions

that tracked uncertainty quadratically; the conditions with

medium-uncertainty produced less activity than either the

low-uncertainty and maximal-uncertainty conditions.

While the discussion above focused on macroscale features,

quadratic responses may additionally reflect sensitivity to

microscale features of a system. As already noted by Hebb

[65, p. 149], ‘up to a certain point, lack of correspondence

between expectation and perception may simply have a stimu-

lating (or ‘pleasurable’) effect’. Developing this intuition within

the SL approach, Kidd et al. [41] studied surprisal-correlated

behavioural indices on the single trial level within continuous

series. Analysing children’s looking times throughout the

series, they found that children were less likely to look away

from images whose surprisal was intermediate—neither too

low or too high. To the extent that series with moderate

levels of regularity (on average) also contain a greater

proportion of trials with moderate surprisal, this could also

explain why such series are associated with greater activity.

Why should neurobiological theories of SL or uncertainty

be concerned about non-monotonic responses to structured-

ness, regularity or uncertainty? From a strictly neurobiological

perspective, if the goal is to identify brain systems that are sen-

sitive to statistical structure—in the sense that they differentiate

random from non-random series—then it is already clear that

some brain areas may satisfy this criteria even though they do
not differentiate highly regular from random series. This, practically,

calls for using parametric modulations rather than binary con-

trasts between regular and random series. A similar argument

for parametric manipulations has been made in studies of

decision-making under uncertainty [5] where it has been

argued that the comparison between certain and (almost) cer-

tain states may load on brains states not directly related to the

coding of uncertainty. However, the computational/functional

concerns are equally important, as existing data show that com-

putational models that explain how patterns or structures are

identified and memorized (the SL perspective) cannot easily

account for such trends. Monotonic responses are highly

consistent with the perspective of compression and memory,

because more random inputs are, by definition, less compres-

sable, offer less opportunities for chunking [66], and therefore

impose greater memory demands. They are also consistent

with theories in which anxiety scales linearly with uncertainty

[10]. In contrast, quadratic brain responses with increasing

uncertainty reflect different computations, and an important

goal of future work is to expose their characteristics, which at

the current point remain largely speculative.
3. Current explanatory principles meet
challenges from data, and desiderata
for future developments

Section 2 reviewed issues that are of shared concern to compu-

tational/neurobiological approaches to uncertainty and SL.
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This section focuses more specifically on current neurobiologi-

cal approaches to uncertainty, how they ‘carve up’ the

computations that need to be explained, and on their relation

to neurobiological models of SL. It then highlights several chal-

lenges to such accounts from recent findings. Based on these,

it outlines several requirements for future neurobiological

frameworks focused on uncertainty.

(a) Organizing principles of current approaches
to neurobiology of uncertainty

There exists a substantial body of neurobiological research

on uncertainty, developed mainly within reinforcement

learning studies and research into decision-making under uncer-

tainty (particularly economic decisions). In a review of that

literature, Bach & Dolan [5] proposed a useful distinction

between several different types of uncertainty for guiding

neurobiological work: (i) sensory uncertainty that reflects uncer-

tainty about physical features of the stimulus; (ii) uncertainty

about present state (e.g. arewe in street x or street y); (iii) outcome

uncertainty: given the current state, what are the probabilities of

the set of potential outcomes; and (iv) rule uncertainty: what is

the uncertainty about state-outcomes contingencies in and of

themselves. Bach and Dolan suggest different regions are sensi-

tive to different types of uncertainty. With relation to SL, one can

say that typical statistical-learning challenges as examined in

adult populations are associated with low sensory uncertainty

as sensory stimuli are typically constructed to be unambiguous

and easily discriminable among themselves. Furthermore, rule

uncertainty is low in that contingencies are rarely changed

throughout a study, and participants may be instructed in a

way that conveys that these contingencies do not change (see

[67] for the difficulty of acquiring a second rule system). Out-

come uncertainty, however, loads on the quantities of

marginal frequencies, transition probabilities and mutual infor-

mation that are core to SL. The applicability of research on

outcome uncertainty within decision-making paradigms may

be limited though; such neurobiological investigations are

often strongly related to the monetary gain or loss associated

with each possibility (where expected utility is defined as

[value � probability]). This is an element tangential to the

phenomena SL studies are typically interested in.

Ma & Jazayeri [68] present a computational/neurobiologi-

cal approach to uncertainty that differs from that of Bach and

Dolan’s in that it aims to explain one’s own actions and their

potential utility. This framework also partitions between

sensory and other types of uncertainty. Beyond sensory uncer-

tainty (e.g. ‘is this liquid milk’) a different level of uncertainty

pertains to the applicability of different sensorimotor contin-

gencies (e.g. ‘if it is milk, then should I drink it’). This, in turn,

is linked to a set of potential motor actions (with varying

probabilities), and finally, an action-linked reward that is also

assigned a probability. The authors discuss neurobiological sys-

tems that code for these sorts of uncertainties—each is thought

to be linked to a belief distribution, and the framework explains

how neuronal populations can represent such prior beliefs in a

Bayesian framework. This work constitutes an important pos-

ition on computational principles that may govern processing

of incoming information given prior knowledge.

Other frameworks that inform work on uncertainty deal

with the coding of sequential structures. Friston & Buzsaki

[69] suggest that hippocampus maintains information about

sequential transitions (e.g. where/when or what/when), and
interacts with cortical systems to represent the content of the

next event. Dehaene et al. [70] approach the related issue of

coding for serial order. They partition between different

types of sequential information and their putative neurobiolo-

gical underpinnings. Particularly relevant are their

explanations for coding transition structure and chunking.

For transition structure, their model emphasizes the impor-

tance of different sensory cortices. They emphasize that

sensory regions coding for physical features of a stimulus are

implicated in anticipatory predictions and production of

prediction-error terms. For instance, sensory cortices code for

the surprisal of sensory stimuli—for tonal stimuli, the last ‘B’

in ABABB evokes a surprise response in auditory cortex

rather than one showing repetition-suppression, reflecting a

violation of expectation. Chunking—the joining of elements

into a fixed configuration— is taken to be mediated by a differ-

ent mechanism than the one mediating lower-level mismatch

responses, with the prototypical case being ‘word chunks’ in

typical SL paradigms (which are characterized by very high

pointwise mutual information). The authors link these to left

auditory association cortex or left inferior frontal gyrus.

(b) The importance of non-general processes
While computational models of uncertainty outline generic

computations, they make no clear commitments about how

these may be instantiated in neurobiological substrates. What

is already evident is that ‘unified approaches’ that posit

single biological systems that code for sequential structure or

prediction error are no longer viable. Setting aside the impact

of sensory uncertainty, uncertainty about actions or reward,

even the core issue of outcome uncertainty—what are the

potential future events given the present—is one whose neuro-

biology is poorly understood. As mentioned, prediction error

appears to be generated in sensory-specific systems, and even

within a single modality, the statistical structure of different

sorts of dimensions (e.g. location, category) may be coded in

partially different systems [47]. It is therefore unclear

whether a single brain system codes for the regularity of

input streams in different sensory modalities or is generally

involved in generating predictions for those. It may be,

however, that different sensory systems implement similar

computations over inputs with different features (see [71] for

potential computational implementation). Indeed, a recent

approach to SL by Frost et al. suggests that it is a ‘set of

domain-general computational principles that operate in

different modalities’ and therefore reflects modality-specific

constraints [15]. As outlined below, sensitivity to uncertainty

appears to be strongly determined by constraints that are

not only related to sensory features, but are fundamentally

determined by the dimension being tracked, even within a sen-

sory modality. Furthermore, a more difficult challenge arises

when considering the brain as a functional network whose

core features may change with the level of uncertainty.

To make these issues concrete, the four points below exemp-

lify the sort of data that future neurobiological theories of

uncertainty would need to account for.

(i) Lack of support for modality-independent or modality-
encapsulated processing

An fMRI study [22] in which participants were presented with

auditory or visual series that varied across four levels of uncer-

tainty found that different neural systems were involved in
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tracking uncertainty in visual and auditory series. No region was

sensitive to uncertainty in both modalities. Another fMRI study

[72] examined sensitivity to uncertainty in auditory, visual and

audiovisual inputs, and found that the audiovisual condition

strongly altered sensitivity to regularity in bilateral primary audi-

tory cortices; these regions tracked regularity in the auditory,

but not audiovisual condition. Thus, conclusions drawn about

the neurobiological basis of uncertainty that are based on study-

ing inputs in one modality will not necessarily generalize to

alternative modalities or even multimodal contexts.

(ii) Fundamental role for input familiarity
Sensitivity to input-uncertainty is impacted by familiarity with

the input tokens. In one study [24], auditory series that varied

in uncertainty consisted of either familiar tokens or unfamiliar

tokens (syllables in the participants’ native language or bird

chirps, respectively). In the syllable-streams, sensitivity to

uncertainty was found within 4 s from series onset, but in

this early period, there was no sensitivity to disorder in the

bird-chirp streams (these effects were limited to low-level audi-

tory regions). Conversely, in other regions, brain activity after

the series’ end (13 s from onset) tracked uncertainty for the

bird-chirp series, but not the syllable series. Behavioural data

suggested this might be related to more accurate segmentation

of syllable streams into constituent units. The issue of segmen-

tation may be a greater concern within auditory streams, where

elements lack a natural physical boundary (between phonemes

or words) when compared with visual streams where stimuli

are typically separated by blanks.

(iii) Indications that future-uncertainty is a non-unitary construct
Outcome uncertainty refers to the overall uncertainty about a

future event (or events) at a certain point. For instance, given a

stream such as 11001110011110 one can ask what is the likeli-

hood of the next event. In this specific example, two forms of

information are evident. On the one hand, 1 is more frequent,

but on the other hand, the first 0 after a 1 is always followed

by a 0. Thus, marginals and transition constraints provides

different sorts of information. Whether or not different systems

track these sources of information was addressed by an fMRI

study [55] where these forms of uncertainty were manipulated

orthogonally within a single tone series. Participants listened

to a 10 min tonal series that was constructed to satisfy three cri-

teria: (i) the transition constraints between tones, quantified via

Markov entropy, fluctuated over time via a predefined specifica-

tion when quantified over 10 s windows; (ii) the relative

diversity of the tokens, quantified via Shannon entropy simi-

larly fluctuated over this timescale; (iii) fluctuations in Markov

entropy and Shannon entropy were orthogonal (i.e. uncorre-

lated) over the entire tonal series. The study found that

different brain regions were sensitive to these two facets of

uncertainty. The dissociation between systems sensitive to tran-

sition constraints between tokens and those sensitive to overall

diversity is supported by computational models of SL [73],

which draw a similar distinction between two statistical

processes that putatively govern SL: extraction of patterns and

integration of information to arrive at global features.

(iv) Evidence that whole-brain connectivity structure
fundamentally changes with level of uncertainty

Current neurobiological approaches to uncertainty are ‘fixed’

in the sense that they assume that inputs/environments with
different statistics are parsed by the same brain network

(a ‘fixed organization’ model). This holds also for the compu-

tational frameworks reviewed above, which assume that

certain regions code for distributions of prior information,

independent of those distributions’ parameters. A fixed

organization view implicitly assumes that certain regions or

local networks perform computations related to input

statistics such as the representation of distributional features

(e.g. summary statistics), associative binding, prediction and

updating of knowledge based on prediction error. Crucially,

the operating characteristics or connectivity of these regions

do not themselves change with input statistics. This perspec-

tive leads to a specific sort of description for brain activity,

for example, focusing on a specific region’s activity over the

course of learning of inputs that differ in statistical features

[18,19]. In contrast, a ‘network reorganization’ perspective

allows for qualitative changes in whole-brain organization

as a function of input statistics. There is some recent work

suggesting that statistical context (and context more generally)

can impact core organizational features of brain connectivity.

An fMRI study that examined network connectivity while

listening to tonal series that varied in regularity [74] found evi-

dence for changes in core topological features of these

networks. When contrasting network organization during lis-

tening to random versus highly regular series, network

modularity was lower for highly regular series, and the

actual network partition structure also differed significantly

between these conditions. Other work has shown that, more

generally, task demands very strongly impact the organization

of functional networks [75], and documented a relation

between the extent of such reorganization and behavioural

efficiency. These are likely to be central themes in future work.
4. Summary and future directions
Neurobiological accounts of uncertainty originate from a differ-

ent theoretical background than those of SL. Yet, they convey

useful lessons for the development of neurobiological theories

of SL. They suggest that a comprehensive understanding

of how the brain codes for statistics would benefit from the

following: (i) greater appreciation of modality-specific coding

constraints, (ii) reduced emphasis on pattern learning,

accompanied by stronger focus on the import of non-monotonic

responses to structure, (iii) increased emphasis on the dynamics

of the learning process itself including its interaction with mech-

anisms related to generation and evaluation of predictions, and

(iv) a more serious attempt to study the brain as a network

whose configuration and mode of operation can change mark-

edly with input statistics. One limitation of the current state of

the art, which is likely owing to the relative novelty of the

fields of study in question, is the relative fragmentation of theor-

etical perspectives having to do with SL, uncertainty and online

expectation and prediction. To demonstrate, consider four recent

reviews of the neural basis of SL [12], prediction and expectation

[6], estimation of uncertainty [5] and the role of expectation in

perception [7]. As a proxy for shared perspective, we calculated

the overlap between cited references for each pair of reviews,

quantified via the Jaccard index (shared references/total sum).

The mean value of all eight pairwise analyses was 1.7% (s.d. ¼

2%; range ¼ 0–4%). A holistic approach that treats all these as

components of a unified ‘statistical learning’ or ‘uncertainty

learning’ computation and examines those conjointly may lead
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to exciting discoveries that cannot be predicted from approaches

that deal with each computation separately.
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