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We offer a new solution to the unsolved problem of how infants break into

word learning based on the visual statistics of everyday infant-perspective

scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-

old infants at 147 at-home mealtime events were analysed for the objects in

view. The images were found to be highly cluttered with many different

objects in view. However, the frequency distribution of object categories was

extremely right skewed such that a very small set of objects was pervasively

present—a fact that may substantially reduce the problem of referential ambi-

guity. The statistical structure of objects in these infant egocentric scenes differs

markedly from that in the training sets used in computational models and in

experiments on statistical word-referent learning. Therefore, the results also

indicate a need to re-examine current explanations of how infants break into

word learning.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
Despite 30 years of intensive study, we do not know how infants learn their first

words. The core theoretical problem facing researchers in this field is referential

ambiguity. Novice learners must acquire language by linking heard words to per-

ceived scenes, but everyday scenes are highly cluttered. For any heard word, there

are many potential referents, and thus within any learning moment, there is much

uncertainty as to the relevant scene elements for determining the meaning of an

unknown word [1,2]. By the time children are 2 years old, they have many

resources at their disposal to resolve referential ambiguity; a large experimental lit-

erature [3–6] documents their skill in using social cues, known words, category

knowledge and pragmatic context to determine the referent of a novel word. How-

ever, that same literature shows that this knowledge develops incrementally

during earlier stages of word learning (e.g. [7–9]) and reflects the specific cultural

and language context in which learning takes place (e.g. [10–13]). Thus, the pro-

wess of 2-year-old children depends on processes and knowledge not available

to 1-year-old infants, yet these young infants have already begun learning object

names [14–16]. How, given the clutter in everyday scenes, have 1-year-old infants

managed to map heard names to their referents?
(a) The unrealized promise of statistical word-referent learning
Recent theory and experiments have offered a promising solution to the begin-

ning of object name learning, one that does not require the infant to resolve

referential ambiguity within a single situational encounter [17]. Instead, young

learners could keep track of the potential referents that co-occur with a word

across different situations and use that aggregated data to statistically determine

the likely referents of to-be-learned words [18]. This form of bottom-up learning

could explain how infants acquire their first object names and how they get on the
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Figure 1. The selective nature of egocentric views. The field of view indicated with shading corresponds to the field of view of the head camera used in the study.
The rectangles illustrate the frustrum of the camera field of view, which is 698 in the horizontal and 428 in the vertical.
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path to becoming 2-year olds who have the knowledge and

skills to infer the likely referent of a novel name within a

single coherent context.

The problem with this statistical learning solution is

that it may be beyond the abilities of 1-year-old infants [17].

Considerable evidence shows that adults and a whole variety

of computational models are very good at cross-situational

word-referent learning even in contexts of high uncertainty

(e.g. [7,9,19–22]). Several studies have also shown that 1-year-

old infants can aggregate word-referent co-occurrence data in

simple laboratory experiments with minimal visual clutter

and short temporal lags between repeated naming events

(e.g. [18,23,24]). However, other studies show that even minor

increases in task complexity disrupt infant learning [17,23,24].

To emphasize the non-scalability of infant statistical word-

referent learning to the real world, Trueswell, Gleitman and

coworkers [25,26] asked adults to guess the intended referent

when presented with the video (but not the audio) of parents

naming objects for their toddlers. Adults proved to be very

poor at this and showed no ability to aggregate information

about word-referent correspondences across these highly clut-

tered visual scenes. In brief, 1-year-old infants’ perceptual,

attentional and memory systems may be insufficiently robust

to handle the clutter of everyday scenes. Thus, the question of

how infants learn their first object names remains unanswered.
(b) Visual statistics as the proposed solution
Here we provide evidence that the visual ambiguity problem

may be solved, at least in part, by the frequency distribution

of objects in infants’ visual worlds. Research in vision indicates

that long-term experience with specific visual object categories

markedly increases their recognition in suboptimal visual

conditions of clutter, partial occlusion and unusual views

(e.g. [27–29]); i.e. the viewing conditions of everyday life.

Experiments on novel word learning with infants in the labora-

tory also indicate that visual familiarity with objects (prior to

naming) enhances learning and retention of the name-object

link [30–32]. Thus, by supporting perceptual and memory
processes, visual familiarity could be critical to statistical learn-

ing. Further, if only a relatively small set of recurring objects in

the lives of infants are highly frequent, these high-frequency

objects could comprise a privileged class of candidates as the

referents of heard object names. By this Pervasiveness Hypothesis,
some object categories are naturally much more prevalent than

others and the familiarity this prevalence brings enables infants

to track objects and their co-occurrences with heard words

across scenes.

Consistent with this proposal, the frequency distribution

of object categories in large corpora of visual scenes are

characterized by a few objects that are very frequent and

many objects that occur much more rarely [33,34]. Like

the distribution of elements in many naturally occurring

phenomena [35–37], the frequency distribution of visual

objects in these corpora of visual objects are extremely right

skewed and best described by a power law. However, the

data to date on the distribution of object categories come

from analyses of natural scene databases [33,34]. These

scenes are photographs purposefully taken by adults and

thus potentially biased in their content by the visual and cog-

nitive systems of the photographer [38–40]. More critically,

they are not the scenes experienced by infants in the early

stages of word learning.

Accordingly, as a first step in testing the Pervasiveness

Hypothesis, we sought to determine the frequency distribution

of visual objects in infant egocentric scenes. Egocentric vision is

an emerging field that studies vision from the individual percei-

ver’s point of view; a viewpoint dependent on momentary

location and bodily orientation [38–41]. Research with infants,

toddlers and adults (e.g. [39,40,42–47]) using head cameras and

head-mounted eye trackers shows that egocentric views are

highly selective (see [38] for review). Figure 1 provides an illus-

tration; the environment near the infant contains many objects:

the sink, the father, the woman at the sink, the clock and the

dog. These are all in the same vicinity as the infant and could

be seen by the infant—if the infant were located in the room dif-

ferently or if the infant turned his or her head and eyes to those

objects. But at the moment captured in the image, none of these
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Figure 2. Infant-perspective head camera images. The left panel of six images labelled (a) shows the variety of ‘mealtime’ contexts examined in this study. The
panel labelled (b) shows two sequences (one per column) of images sampled at 0.2 Hz.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160055

3

objects is in the infant’s view; instead, the momentary view is

much narrower. This momentary selectivity of some scenes

and their contents over others—if governed by principled

internal and external constraints on infant location and infant

bodily orientation—has the potential to systematically, day in

and day out, privilege some object categories over others. By

the Pervasiveness Hypothesis, these high-frequency objects

should coincide with the object names normatively learned

first by infants.
2. Material and methods
(a) Collection of the corpus
The corpus of scenes was collected from eight infants (three

males) who were all between the ages of 8 1/2 and 10 1/2

months. We focused on this age because it is just prior to the tra-

ditional milestone (the first birthday) of first words [2] and

because recent laboratory studies indicate that infants this age

may already know some name-object mappings [14–16]. To col-

lect the infant-perspective scenes, we used a commercially

available, wearable camera (Looxcie) that was easy for parents

to operate, safe (did not heat up) and very lightweight (22 g).

The camera was secured to a hat that was custom fit to the

infant so that when the hat was securely placed on the infant,

the lens was centred above the nose and did not move. Parents

were given the hat with the camera and instructed how to use

it at an initial meeting; they were asked to collect videos through-

out the daily activities of their infant. Parents were told that we

were interested in their infant’s everyday activities and that

they were free to choose to record whenever it suited their

family’s schedule. The average amount of video collected per

infant was 4.4 h (s.d. ¼ 1.4). The diagonal field of view (FOV)

of the camera was 758, vertical FOV was 428 and horizontal

FOV was 698 with a 200 to infinity depth of focus. The camera

recorded at 30 Hz, and the battery life of each camera was

approximately two continuous hours. Video was stored on the

camera until parents had completed their recording and then

transferred to laboratory computers for storage and processing.

Head cameras measure the scene in front of the viewer but

do not provide direct information as to momentary gaze,

which in principle could be outside of the head camera image
[38]. However, head mounted eye-tracking studies show that

under active viewing conditions, human observers including

infants typically turn both heads and eyes in the same direction,

align heads and eyes within 500 ms of a directional shift, and

maintain head and eye alignment when sustaining attention

[44,46,48–54]. The result is that the distribution of gaze in

active viewing (not watching screens) is highly concentrated in

the centre of the head camera image [44].

(b) Selection of video segments for coding
We chose a single activity context for analysis because of the likely

sparseness of individual objects across contexts (see [55] for discus-

sion). We chose mealtime as the at-home activity because it occurs

multiple times per day every day, and for infants this age, does so

in various contexts and postures. Thus mealtime should yield a

large number of distinct types of objects – but by hypothesis,

a relatively small set of high-frequency object categories. Mealtime

was defined very broadly as including any eating behaviour by

anyone wherever it occurred as well as closely related activities

such as preparation of and cleaning up after meals. A total of

8.5 h of video of 147 individual events (with a mean duration of

3.5 min, s.d.¼ 7.2) met this definition. Of the 147 mealtimes, 16 con-

formed to the image in figure 1 of the infant sitting in a high chair;

the rest—as illustrated in the head camera images in figure 2a—

occurred in a variety of contexts, including on the floor, at restau-

rants and while the infant was being carried. The total number

of mealtime frames was 917 207 (mean per infant¼ 114 651,

s.d.¼ 57 785). These scenes comprise a normative mealtime

corpus for 8 1/2 to 10 1/2 month-old infants and thus reflect the

aggregated object frequencies across contributing infants.

(c) Coding of head camera images
The 917 207 frames in the mealtime corpus were sampled at

0.2 Hz (one image every 5 s) for coding as illustrated in

figure 2b, which yielded a total of 5775 coded scenes. Sampling

at 0.2 Hz should not be biased in any way to particular objects

and appears to be sufficiently dense to capture major regularities

(see [56] for relevant data).

Scene-to-text coding is an approach that has been well used in

previous research on scene regularities with respect to visual

object recognition (e.g. [33,34]). For this study, adults (through

Amazon Turk) were paid to label the objects in each image. Each



Table 1. The 30 most frequent object Types named by nouns on the First
Nouns list, the Early Nouns list and the Later Nouns list.

30 most frequent object Types by AoA category

First Nouns Early Nouns Later Nouns

table tray shelf

shirt jar container

chair sofa bag

bowl tissue counter

cup napkin lid

bottle basket curtain

food washing machine tablecloth

window knife bin

pants dryer cabinet

spoon bench seat

toy can painting

plate yogurt handle

door bucket wood

picture sauce fireplace

couch walker cloth

box sandwich cushion

glasses belt straw

telephone grass mug

glass scarf outlet

light closet cord

book pretzel letters

sweater soda frame

paper sidewalk sweatshirt

refrigerator ladder dresser

blanket potato railing

jeans stick ring

pillow stone tub

lamp strawberry vase

plant popcorn desk

fork garbage trim
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coding set consisted of 20 sequentially ordered images (sampled

from 100 s of the video). For each image in a coding set, four

coders were asked to provide labels for five in-view objects. The

instructions to coders were pre-tested on Amazon Turk and then

hand-checked for the effectiveness, frame-by-frame for a set of 200

frames and 15 Turk coders. The final instructions consisted of a

set of eight training scenes and feedback that coders completed

prior to each of the 20 sequential scenes in each coding set. The train-

ing scenes were structured to clarify the following instructions: to

exclude body parts but not clothing, to name objects with everyday

nouns (‘spoon’ not ‘soup spoon’ or ‘silverware’), to label images on

objects (e.g. the pictured elephant on a child’s cup), to prioritize fore-

ground not background objects (the toy on the floor not the floor)

and to not repeat names in an image (if there were three cups in

view, the word ‘cup’ could be provided just once in the list of five

objects for that scene). We used this conservative approach to mul-

tiple instances of a category, one that underestimates the frequency

of individual objects, because of the difficulty of counting individ-

ual objects within groups (baskets of balls, cupboards of cups,

drawers of spoons). Coders were asked to try to supply five

unique object labels per image but could supply fewer if the

image was sparse (e.g. only one cup was in view).

The labels supplied by the coders were ‘cleaned’ with respect

to the following properties: spelling errors were corrected, plural

forms were changed to singular (e.g. dogs to dog), abbreviations

were changed to the whole word (e.g. fridge to refrigerator) and

adjectives were removed (e.g. redbird to bird). However, distinct

names—even if semantically close, such as mug and cup, or couch
and sofa, were not collapsed. We made this decision on four

grounds: first, closely related words such as mug and cup are not

collapsed on the normative child vocabulary inventories [57].

Second, for the full variety of objects and object names that

might be supplied by coders, there is no rigorous system for deter-

mining which names are close enough to comprise a single object

category versus which are not. Third, basic level categories are

defined by the common nouns used by people to label objects,

and thus the data from the coders themselves seems the most

defensible approach. Fourth, this approach seemed least likely to

systematically bias certain words over others.

The main dependent measure was the unique objects, or Types,

listed by the four coders of each image. Because these scenes con-

tain potentially many more objects that the five listed by any

individual coder, and because variability among coders in the

five objects listed is a potential measure of the clutter in the

scene, we included all object labels offered by any coder as present

in a scene. Given four coders and five potential object labels by each

coder, the maximum number of unique Types per image was 20.

(d) Age of acquisition categories
We defined three age of acquisition (AoA) categories for the names

of the objects provided by the coders. First Nouns were defined

from the receptive vocabulary norms of the Bates-MacArthur

Infant Communicative Developmental Inventory. This is a

widely used parent-report checklist with considerable reliability

and validity [57]. This inventory—designed for 8- to 16-month

olds—contains 396 words, 172 of these are names for concrete

objects (excluding body parts), and all these names were in the

receptive vocabulary of at least 50% of 16-month-old infants in a

large normative study [57]. Early Nouns were defined from the pro-

ductive vocabulary norms (there are no receptive norms) for

the Bates-MacArthur Toddler Communicative Developmental

Inventory [57]. This parent checklist, again with considerable

reliability and validity, consists of object names that were in the

productive vocabularies of at least 50% of 30-month-old children

in a large normative study [57]. We designated as Early Nouns

only the 105 names for concrete things that were not also on the

infant form (that is, on our First Noun list). These Early Nouns

name very common everyday objects and thus one might expect
these to be objects to be visually frequent in households with chil-

dren. However, the critical key prediction is that the objects named

by these Early Nouns, unlike objects named by First Nouns, will

not be pervasively frequent in the egocentric views of 8- to

10-month-old infants. Later Nouns consisted of all other labels

supplied by the coders.
3. Results
The coders labelled 745 unique object Types, 133 of which were

labelled by nouns on the First Nouns list (77% of the possible

First Nouns) and 59 of which were labelled by Early Nouns

(55% of the possible Early Nouns); 553 other object Types

were reported as in view and thus make up the Later Nouns

comparison group. By adult subjective judgement norms

[58], the average AoA for the object names in this category

was 6.15 years (s.d. ¼ 1.56). Table 1 shows the 30 most frequent
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object Types in the three AoA categories. In brief, many differ-

ent common objects were present in these scenes, and these are

objects named by nouns learned in childhood.

Figure 3 shows a histogram of the number of unique

Types per image. The maximum, if each coder reported five

different objects, is 20. The minimum, if all coders reported

just one object and all reported the same object, is one. The

histogram shows that most images were cluttered (unique

Types reported per image, Mdn ¼ 8, M ¼ 7.94, s.d. ¼ 2.73).

Types labelled by First Nouns appeared in 97% of the

coded images and thus show the same distribution with

respect to clutter as shown in figure 3. In sum, the individual

scenes in this corpus show the clutter and referential ambigu-

ity assumed by theorists of statistical word-referent learning.
(a) Frequency distribution
Figure 4 shows that the frequency distribution of unique object

Types is extremely right skewed. Most of the Types are very
infrequent; over 75% of all types occur in 25 images or fewer.

However, a small number of types are pervasively present.

Seven items, less than 1% of the 745 unique object Types,

occur in more than 1000 of the 5775 images, accounting for

33% of all reported object instances. An inset shows the distri-

bution of the 100 most frequently reported Types, which

includes those Types most pervasively present in the scenes.

The three different shades of grey in figure 4 show the AoA cat-

egories for the names of the reported objects. As is evident in

the figure, the very high-frequency objects—the tail of words

that occur more than 1000 times in these scenes—are all

named by nouns in the First Words category.

A power law was fitted to our data with the following esti-

mated parameters: a ¼ 2.44, xmin ¼ 238. A Kolmogorov–

Smirnov test was performed to test the power law’s goodness

of fit, D ¼ 0.07, p ¼ 0.96. The large p-value provides reasonable

confidence that the observed distribution of objects in these ego-

centric scenes—like many natural distributions [36,59]—is well

described by a power law.
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(b) Object frequency and age of acquisition
Figure 5 shows the proportion of images in which each object

Type occurred as well as the median and mean proportion of

images for each AoA category. As is evident, objects named

by First Nouns were more frequent than objects named by

Early or Later Nouns. The comparison of First and Early

Nouns is particularly striking as both sets of object names are

acquired quite early in childhood and refer to objects

common in households with infants. We used Mann–

Whitney–Wilcoxon tests to compare these frequencies due to

the non-normality of the data. Object Types named by First

Nouns (Mdn ¼ 0.47% of images) were more frequent than

Early Nouns (Mdn ¼ 0.12% of images), U ¼ 5145, p , 0.001,

and they were also more frequent than Later Nouns (Mdn ¼

0.07% of images), U ¼ 54 610.5, p , 0.0001. The 15 most

frequent objects in these scenes were all on the First Noun

list. These findings provide direct evidence for two predictions

by the Pervasiveness Hypothesis: the infant’s egocentric

views during mealtime persistently present a small set of

objects, and those high-frequency object categories have

names that are among the very first object names normatively

learned first by infants.

The theoretical import of these results is highlighted by

considering their day in and day out consequences. We used

two sources of information to estimate the total amount of

mealtime experiences infants would have between 8 and 10

months of age: (i) the frequency and duration of eating

events per hour of collected video for each infant in this

sample, and (ii) the frequency of eating events from a time-

sampling study of daily activities of infants this age [60]. By

both measures, 8- to 10-month-old infants engage in about

five eating events a day, and from the present head camera

recordings, those events each last about 3.5 min. Images

(frames) are a measure of time. Accordingly, we combined

this information to estimate the cumulative number of hours

of visual experience of each object Type that would be expected

over the two-month period from 8 to 10 months. Figure 6

shows that the estimated cumulative frequency of the 10

most frequent object categories—all named by nouns in the

First Words category; over this two-month period, the total

estimated experience markedly outpaces all other reported

object categories. In brief, from their day in day out mealtime

experiences, some object categories would be visually very
well known to 10-month old infants; the many other visual

objects that comprise the visual clutter in everyday scenes

would be experienced much more rarely.
4. General discussion
From the infant perspective, individual mealtime scenes are

highly cluttered with many different objects in view. However,

across the scenes in the corpus, there is a small set of objects that

are repeatedly present. This statistical fact about the distri-

bution of visual objects suggests that not all the objects in the

clutter are equal contenders as referents for heard words. By

the Pervasiveness Hypothesis, the prevalence of a few object

categories biases the candidate referents that are tracked and

linked to heard words, a proposal that is supported by the

observed correspondence between the set of highly frequent

visual objects and normatively first-learned object names.

These findings provide new insights about how truly novice

learners may break into object name learning. They also illus-

trate how a developmentally informed conceptualization of

statistical learning may emerge as the plausible mechanism

through which infants learn their first object names.
(a) The visual side of name-object learning
The general consensus is that infants learn their first object

names through ostensive definition, by linking heard words

to seen objects. There is a large literature documenting infants’

abilities to find words in the speech stream and on the per-

ceptual and statistical learning that supports that necessary

step to word-referent learning (see [61]). By contrast, there

has been little study of the visual side of the problem. In

part, this neglect derives from the oft-cited assumption that

basic level categories—the object categories named by First

Nouns—‘carve nature at its joints’ and are ‘given’ to young

learners by the structure in the world and by their visual sys-

tems (e.g. [62,63]). However, this characterization does not fit

contemporary understanding of visual object recognition

[28,64]. Certainly, our adult ability to visually recognize objects

is rapid, robust and accurate [64]. But the developmental evi-

dence shows that this is hard won, through a protracted,

multi-pathed, learning-dependent set of processes and that

object recognition does not show its full adult prowess until

adolescence [65–68]. Although, there is much that we do not

know about the development of these processes, we do know
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that recognition in clutter, under partial occlusion, from mul-

tiple views, and across different instances of the same

category are all challenging—and are particularly so for infants

and toddlers [69–72]. These challenging visual contexts are the

setting of everyday learning. However, everything we know

about perceptual learning indicates that extensive visual

experience with specific categories leads to their more robust

detection and recognition in challenging contexts [73].

Infants learning their first object names are in the early

stages of building the internal mechanisms for processing

and representing visual objects [66]. Their greater visual fam-

iliarity with some objects over others may yield a reasonably

small set of visual object categories that can be recognized,

detected and robustly remembered across the clutter and

complexity of everyday scenes. If these ideas are near right,

then the referential ambiguity of these scenes for young lear-

ners may be much reduced relative to judgements of these

same scenes by adults. This hypothesis, in need of direct

experimental test, is a form of the ‘less as more’ hypothesis

[74,75]: infants who lack the perceptual and cognitive

power of adults may be solving simpler and more tractable

tasks than one would think from the adult perspective.

When does the visual learning that, by hypothesis, privi-

leges high-frequency objects occur—prior to or simultaneous

with learning the name? The correspondence of high-frequency

visual objects in 8- to 10-month-old infants’ egocentric views

with first-learned object names—names normatively learned

after the first birthday—may indicate that critical visual learn-

ing occurs developmentally prior to word-referent learning.

This sequence of learning, first about visual objects and then

about the links between objects and names, fits a theoretical

idea prevalent in deep-learning solutions to visual object recog-

nition. Successful visual object recognition is often achieved via

an unsupervised phase of visual learning that precedes and

speeds a supervised phase in which object categories are

labelled [76]. However, it may also be the case that visual learn-

ing and object name learning proceed in tandem. Recent studies

measuring 6- to 12-month-old infants’ receptive knowledge of

object names suggest that normative measures (based on

parent report) may overestimate the age of acquisition of early

learned names as these young infants consistently looked to

named referents when tested in the laboratory, showing at the

very least partial knowledge of name-object mappings [4].

Further, although the current analyses only considered the

visual statistics, it is likely that the infants are also hearing the

spoken names of the high-frequency objects.

All this is relevant to the plausibility of cross-situational

word-referent learning as an account of novice word learning.

Computational models and analyses of the statistical learning

problem have made it clear that even small decreases in ambi-

guity facilitate statistical word-referent learning [77]. The

visual prevalence of a select set of objects and the more

robust visual processing likely associated with that prevalence

simplifies the computational problem. Further, the source of

simplification—visual familiarity—seems likely to directly

counter the limitations on attention and memory that have

been observed with novel objects in laboratory studies of

infant cross-situational word-referent learning [23,24].
(b) Right-skewed distributions and statistical learning
The entire set of visual objects identified in infants’ head camera

images includes both a smaller set of high-frequency items and a
much larger set of infrequent items. One possibility is that only

the few high-frequency objects contribute to learning and that

the many more numerous but infrequent objects simply do

not occur enough to be registered and, therefore, are irrelevant

to the account of how infants learn their first object names. This

idea is consistent with both theory and evidence indicating that

for novices in the early stages of learning, consistency and a

small set of learning targets is optimal [78,79]. By this idea, a

world that presented young learners with only the high-

frequency objects and did not include the many low frequency

objects at all would be ideal. There are several reasons, however,

to believe that this might be the wrong conclusion and that the

right-skewed distribution itself is relevant to visual learning

about the high-frequency objects.

The experience of high-frequency objects in the clutter of

many rarer objects may create what has been called a ‘desirable

difficulty’ [80], by forcing the learning system to define appro-

priate category boundaries and by preventing recognition

solutions that are over-fit to just a few experienced targets

(e.g. [33,78,79]). Further, power-law distributions present

other regularities that are likely relevant to learning. These dis-

tributions are believed to be the product of the multi-scale

dynamics of the processes that generate the distribution and

other inter-related regularities ([35–37]; see also [81]). One

property is scale invariance: the right-skewed shape of the fre-

quency distribution characterizes the distribution at different

scales. For example, the distribution of objects within one

meal, within all the mealtime clips, within a larger corpus of

activities that include mealtime, play and dressing would

retain the same shape. The object categories at the heads and

tails may be different, but there would be many rare objects

and a few highly frequent objects. These multi-scale non-

uniform distributions are a likely product of the coherent,

non-random, structure of the physical world. For example,

within infants’ everyday environments, bowls are likely to be

in scenes with tables, bottles, cups and spoons; moreover,

scenes with these co-occurring objects are likely to occur close

in time. When these co-occurrences, in space (same scene)

and/or time (adjacent scenes), are represented as networks,

they typically exhibit a scale-free or small-world structure, show-

ing clusters of inter-related items as well as sparser links among

the clusters [82–84]. The structure of these small-world net-

works, in turn, are relevant to how new items are added to the

network with the addition of new items predicted by their con-

nectivity to already required items (see [85]). Past research shows

that by the time children know 50 words, the network structure

of their vocabularies shows the characteristic properties of small-

world networks [86]. Small-world patterns in the statistics of

visual objects could developmentally precede those in vocabu-

lary and be central not just to understanding how infants

acquire first words, but to how their vocabularies grow.

Because this is the first study to examine the frequency

distribution of objects in infant-perspective views, there are

many questions that remain to be answered about the natural

statistics of objects in infant egocentric scenes. However, we

do know that infants learn visual object categories and they

learn object names. A reasonable assumption is that the learn-

ing mechanisms that accomplish this are well fit to the natural

distributional statistics of words and objects in infant lives.

Although non-uniform distributions have been shown to

make statistical word-referent learning more difficult for

some models and for adult learners ([87,88] but see [9]), in

the natural learning contexts of infants, these non-uniform
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distributions may be part of the solution to the problem of

referential ambiguity.

(c) Developmental changes in visual environments
Infants are not stationary learners; motor, perceptual, attentional

and cognitive processes all change dramatically over the first 2

years of life. As a consequence, children’s visual environments

also change [42–46,56]. Previous studies examining egocentric

vision in older word learners (16- to 18-month-olds) have

shown that these older infants often create—through their own

manual actions—views in which a single object is large, centred,

un-occluded and visually dominant [46,47]. Parents often name

objects at these moments and when they do, toddlers are highly

likely to learn and remember those object names [22]. All current

indications are that younger infants, prior to their first birthday,

do not create these uncluttered one-object-in-view scenes

because they are not able to stably hold and sustain manual

actions on objects [22]. The within-scene clutter observed in

this study of 8- to 10-month-olds fits this pattern and suggests

that the learning of first object names may take place in a different

visual environment than the learning of early and later object

names. If this is so, visual pervasiveness and the resultant

visual familiarity with particular objects may be most critical

to object name learning only at the start of word learning. In
sum, the visual environment for learning first object names

may have unique properties that differ substantially from

those several months forward.
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