
rstb.royalsocietypublishing.org
Research
Cite this article: Mareschal D, French RM.

2017 TRACX2: a connectionist autoencoder

using graded chunks to model infant visual

statistical learning. Phil. Trans. R. Soc. B 372:

20160057.

http://dx.doi.org/10.1098/rstb.2016.0057

Accepted: 4 September 2016

One contribution of 13 to a theme issue

‘New frontiers for statistical learning in the

cognitive sciences’.

Subject Areas:
cognition

Keywords:
connectionist modelling, infant,

statistical learning, chunking

Authors for correspondence:
Denis Mareschal

e-mail: d.mareschal@bbk.ac.uk

Robert M. French

e-mail: robert.french@u-bourgogne.fr
& 2016 The Author(s) Published by the Royal Society. All rights reserved.
TRACX2: a connectionist autoencoder
using graded chunks to model infant
visual statistical learning

Denis Mareschal1 and Robert M. French2

1Centre for Cognition and Computation, Centre for Brain and Cognitive Development, Birkbeck University of
London, London, UK
2Laboratoire d’Etude de l’Apprentissage et du Développement, CNRS UMR 5022, Univeristé de
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Even newborn infants are able to extract structure from a stream of sensory

inputs; yet how this is achieved remains largely a mystery. We present a con-

nectionist autoencoder model, TRACX2, that learns to extract sequence

structure by gradually constructing chunks, storing these chunks in a distrib-

uted manner across its synaptic weights and recognizing these chunks when

they re-occur in the input stream. Chunks are graded rather than all-or-nothing

in nature. As chunks are learnt their component parts become more and more

tightly bound together. TRACX2 successfully models the data from five exper-

iments from the infant visual statistical learning literature, including tasks

involving forward and backward transitional probabilities, low-salience

embedded chunk items, part-sequences and illusory items. The model also

captures performance differences across ages through the tuning of a single-

learning rate parameter. These results suggest that infant statistical learning

is underpinned by the same domain-general learning mechanism that

operates in auditory statistical learning and, potentially, in adult artificial

grammar learning.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
We live in a world in which events evolve over time. Consequently, our senses

are bombarded with information that varies sequentially through time. One of

the greatest challenges for cognition is to find structure within this stream of

experiences [1,2]. Even newborn infants are able to do this [3,4]; yet how this

is achieved remains largely a mystery.

Two possibilities have been suggested (see [5,6] and Theissen [7] for detailed

discussions). The first, often referred to as ‘statistical learning’, involves learning

the frequencies and transitional probabilities (TPs) of an input signal to construct

an internal representation of the regularity boundaries between elements encoun-

tered (e.g. [8,9]). The second possibility, often referred to as ‘chunking’, suggests

that elements that co-occur are simply grouped together—or chunked—into

single units, stored in memory and recalled when necessary [10]. Over time,

these chunks can themselves be grouped into super-chunks or super-units.

According to this view, behaviour is determined by the recognition of these

chunks stored in memory and associated with particular responses (e.g.

[5,10,11]). What distinguishes these accounts is that the former argues that it is

the probabilistic structure of the input sequence that is represented and stored

(e.g. TPs), whereas the later argues that specific co-occurring elements are

stored, rather than the overarching statistical structure. Ample evidence in

support of both of these views has been reported in the literature.

We will argue that both TP learning (statistical learning) and chunking coex-

ist in one system implementing a single-learning mechanism, which can
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Figure 1. Architecture and information flow in TRACX2. In all simulations reported in this paper, a ¼ 1, unless otherwise stated. When D is large (items not
recognized as having been seen together before on input), almost all contribution to LHS comes from RHS. When D is small (items recognized as having been seen
together before on input), almost all contribution to LHS comes from the Hidden layer (Hid), see equation (2.1). (Online version in colour.)
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transition smoothly between two apparently distinct modes

of behaviour. The appearance of two modes of learning is

an illusion because only a single mechanism underlies

sequential learning; namely, Hebbian-style learning in a par-

tially recurrent distributed neural network. Such a system

encodes exemplars (typical of chunking mechanisms) while

drawing on co-occurrence statistics (typical of statistical

learning models). An important corollary of this approach

is that chunks are graded in nature rather than all-or-nothing.

Moreover, interference effects between chunks will follow a

similarity gradient typical of other distributed neural

network memory systems.

Chunks were historically thought of as all-or-nothing items

[10,12]. However, recent work (for example, on the gradedness

of the morphological features of compound words [13,14])

shows that this is not the case. When we encounter the

words ‘smartphone’, ‘carwash’ or ‘petshop’, we still clearly

hear the component words. We hear them less in words like

‘sunburn’ and ‘heartbeat’. We hear them hardly at all in ‘auto-

mobile’. How long did it take for people to stop hearing ‘auto’

and ‘mobile’ when they heard or read the word ‘automobile’?

Like ‘automobile’, it is likely that in a few years the current gen-

eration will no longer hear ‘smart’ and ‘phone’ when they hear

the word ‘smartphone’. This simple observation involving the

graded nature and gradual lexicalization of chunks is at the

heart of the chunking mechanism in TRACX2.

In TRACX [15], we showed that a connectionist auto-

encoder, augmented with conditional recurrence, could

extract chunks from a stream of sequentially presented inputs.

TRACX had two banks of input units, which it learnt to auto-

encode onto two banks of identical output units. Sequential

information was encoded by presenting successive elements

of the sequence, first on the right input bank, then on the

left input bank on the next time step. Thus, the sequence

of inputs was presented in a successive series of right-to-left

inputs, with learning occurring at each time step. However, if

the output autoencoding error was below some preset

threshold value (indicating successful recognition of the current

pair of input elements), then, on the next time step, instead of

the input to the right input bank being transferred to the left

input bank, the hidden-unit representation was put into the

left input bank. The next item in the sequence was, as always,

put into the right input bank. Weights were updated and the

input sequence would then proceed as before. The result of

this was that TRACX learnt to form chunks of elements that it
recognized as co-occurring (see [15] for full details). TRACX suc-

cessfully captured a broad range of data from the adult and

infant auditory statistical learning literature (e.g. [16–19]).

Moreover, it outperformed existing models of both chunking,

notably, PARSER [11,20] and statistical learning (SRNs, [21]).

Finally, the model was able to scale up to more realistic linguistic

corpora, in particular, the Brent & Cartwright [22] data.

In the present article, we introduce TRACX2, an upda-

ted version of TRACX, which removes the use of an

all-or-nothing error threshold that determines whether or

not the items on input are to be chunked. This effectively

removes a mechanism—a conditional jump (i.e. an ‘if-then-

else’) statement—that is not natural to neural network

computation. In TRACX2, the contribution of the hidden-

unit activation vector to the left bank of input units is

graded and depends on the level of learning already

achieved. We then use TRACX2 to model a total of seven

experiments, two classic experiments from the infant audi-

tory statistical learning literature that we previously

modelled with TRACX [15] and five from the infant visual

statistical learning literature. Visual statistical learning para-

digms involve showing infants sequences of looming

coloured shapes with varying degrees of statistical regularity

embedded in the sequences. It was first developed as a visual

analogue of the auditory statistical learning experiments [23]

and has yet to be captured by any modelling paradigm.

In summary, the aim of this article is: (i) to describe the

TRACX2 architecture, (ii) to model a range of representative

phenomena characteristic of infant visual statistical learning

with the TRACX2 architecture and, as a result, (iii) to demon-

strate that behaviours typically taken as evidence of either a

chunking or statistical learning mechanisms can be accounted

for by a single-learning mechanism.
2. The TRACX2 architecture
TRACX2 was initially introduced by French & Cottrell [24].

This recurrent connectionist model consists of an autoencoder

with two identical banks of inputs units, two identical banks

of output units (each of which is the same size as each of the

banks of input units), and a bank of hidden units with the

same dimensions as one of the input/output unit banks

(figure 1). In the current implementation, the model is trained

using the backpropagation algorithm.
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The key to understanding TRACX2 is to understand the

flow of information within the network. Over successive time

steps, the sequence of information is presented item-by-item

into the right-hand bank (RHS) of input units. The left-hand

bank (LHS) of input units is filled with a blend of the right-

hand input and the hidden-unit activations at the previous

time step. This mixture is determined by following equation:

LHStþ1¼ð1� tanhðaDtÞÞ�Hiddenst þ ðtanhðaDtÞÞ�RHSt,

ð2:1Þ

where Dt is the absolute value of the maximum error across all

output nodes at time t, LHSt is the activation across the left-

hand bank of input nodes, Hiddenst are the hidden-unit

activations at time t and RHSt is the activation across the

right-hand bank of input nodes. Finally, a determines the

weight of the contribution of the internal representation at

time t to the left-hand bank of inputs at time t þ 1. Unless

otherwise stated, for all simulations in this paper we have set

a to 1. If at time t, Dt is small, this means that the network

has learnt that the items on input are frequently together

(otherwise Dt could not be small). The contribution to the

left-hand bank of input units at time t þ 1 of the hidden-unit

activations, which constitute the network’s internal repre-

sentation of the two items on input at time t, is, therefore,

relatively large and the contribution from the right-hand

inputs will be relativelysmall. Conversely, ifDt is large, meaning

that the items on input have not been seen together often, the

hidden layer’s contribution at time t þ 1 to the left-hand input

bank will be relatively small and that from the right-hand

inputs will be relatively large. Finally, at each time step, the

weights are updated to minimize the output autoencoder error.

In layman’s terms, this means that as you experience items

(visual, auditory, tactile) together over and over again, these

items become bound to each other more and more strongly

into a chunk. At first, a chunk is weak (e.g. ‘smartphone’),

but if it is encountered frequently, it gradually develops into

a tightly bound chunk in which we no longer perceive its

component parts.
3. Modelling infant statistical learning
In this section we report on a total of seven different simu-

lations using TRACX2 of infant statistical learning behaviour,

two from classic studies in the auditory domain [12,13], and

the remainder from the visual domain. All weights were

initially randomized between 21 and 1. The D value determin-

ing the amount of new input versus hidden-unit representation

presented at input was determined by the maximum absolute

error over all output units. So, for example, if desired output ¼

[0.1, 0.5, 0.4] and actual output ¼ [0.3, 0.9, 0.3], then the

absolute difference between the two is [0.2, 0.4, 0.1], and

the max-abs-diff over the three units is D ¼ 0.4. Note that for

updating weights in the network, we used the standard

summed-squared-error typical of backpropagation networks.

There was no momentum term, but a Fahlman offset of 0.01

was used. We used a tanh squashing function to determine

the hidden and output unit activations. Finally, all simulations

are averages over 30 runs.

We used h (the learning rate) as a proxy for development,

with h set to 0.0005 for newborns, 0.0015 for two-month-olds,

0.0025 for five-month-olds and 0.005 for eight-month-olds.

There was a bias node on the input and hidden layers, and
momentum was always set to 0. The key developmental

hypothesis here is that, with increasing age, infants are pro-

gressively better at taking up information from an identical

environment. This is consistent with the well-established

finding that the average rate of habituation increases with

increasing age during infancy (e.g. [25–27] ). Finally, as has

been used repeatedly elsewhere, we take network output

error as a proxy for looking time in the infant [27–33]). The

idea here is that the amount of output error correlates with

the number of cycles required to reduce the initial error,

which corresponds to the amount of time or attention that

the model will direct to a particular stimulus.

The first two simulations are replications by TRACX2 of

results reported in French et al. [15] and French & Cottrell

[24]. We show that TRACX2 captures the key phenomena in

auditory statistical learning (i.e. [12] and [13]). Next, we

model the seminal Kirkham et al. [23] visual statistical learning

experiment demonstrating that age-related effects in the efficacy

of learning can be accounted for by a simple and plausible par-

ameter manipulation in TRACX2. We then show that TRACX2

can capture statistical learning in newborns, as well as their

dependency on the complexity of the information stream [4].

Next, we show that TRACX2 captures the processing of back-

ward TPs [19,34] in much the same way as eight-month-olds

[35]. Finally, we show that, like eight-month-olds [36,37],

TRACX2 forms illusory conjunctions, normally taken as evi-

dence of a statistical (TP) learning mechanism and but also

shows decreased salience of embedded chunk items, normally

taken as evidence of a chunking mechanism. It, therefore, recon-

ciles two apparently paradoxical infant behaviours within a

single common mechanism.
(a) Auditory statistical learning
Saffran et al. [16] is a seminal paper on infant syllable-sequence

segmentation. Six different words were used, each with

three distinct syllables from a 12-syllable alphabet. A random

sequence of 90 of these words (270 syllables) with no immediate

repeats or pauses between words was presented twice to eight-

month-olds infants. After this familiarization period, the infants

heard a word from the familiarization sequence and a partword

from that sequence. A head-turn preference procedure was used

to show that infants had a novelty preference for partwords. The

conclusion of the authors was that the infants had learnt words

better than partwords. We simulated this experiment with

TRACX2 and a typical SRN1 using the same number of

words drawn from a 12-syllable alphabet. The familiarization

sequence was the same length as the one that the infants

heard. Both models learnt words better than partwords.

Note also that, although the SRN performance seems to devi-

ate more from infant performance than that of TRACX2, we

did not carry out a systematic search for the optimal SRN par-

ameters, so it may be possible that better SRN performance

could be achieved with different parameters.

However, in Saffran et al. [16] there was a confound—

namely, words were heard three times as often as partwords.

Aslin et al. [17] then designed an experiment that removed the

unbalanced frequency of words and partwords. There were

now four 3-syllable words, two of which occurred twice as

often in the familiarization sequence as the other two. Thus,

the partwords spanning the two high-frequency words

would have the same overall frequency in the familiarization

sequence as the low-frequency words. The same head-turn
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preference procedure showed, again, that infants had a

novelty preference for partwords. These authors’ conclusion

was that the infants had learnt words better than partwords.

Once again, we designed a set of words exactly like those

used in [17]. Figure 2 shows the performance of eight-

month-old infants, TRACX2 and a simple recurrent network

(SRN) on words and partwords from this sequence.

We can also use these data to illustrate the role of the a par-

ameter in TRACX2. This parameter controls the extent to which

hidden-unit representations are incorporated into the left-side

input representations. Ifa is large, thenD (error) has to be extre-

mely small before the hidden layer begins to contribute to the

left-hand-side input. Under these circumstances, the network

will find it very hard, if not impossible, to form chunks

larger than two successive items that can be encoded across

the two banks of input units. In other words, if a is too large,

there will be little or no internal (i.e. hidden-unit) contribution

to the left-hand-side input units. On the other hand, if a is too

small, the contribution from the hidden layer to the left-hand

bank of units will always be significant, whether or not the pre-

vious two items on input had been seen together frequently by

the network. This is largely irrelevant in many of the infant

visual statistical learning experiments because ‘words’ tend

to consist of only two images. However, Saffran et al. [16]

and Aslin et al. [17] use three-element words. As can be seen

in figure 2b, if a is too small or too big, then TRACX2 is

unable to chunk three elements into a single word, and is,

therefore, unable to differentiate three-element words from
partwords. For all of the simulations reported in this article,

we set a to 1, which allowed good chunking.
(b) Visual statistical learning
Kirkham et al. [23] developed a visual analogue of the audi-

tory statistical learning tasks initially developed by Saffran

et al. [16]. Instead of listening to unbroken streams of

sounds, infants were shown continuous streams of looming

colourful shapes in which successive visual elements within

a ‘visual word’ were deterministic, but transitions between

words were probabilistic (figure 3). Infants at three different

ages were first familiarized to this stream of shapes, then pre-

sented with either a stream made up of the same shapes but

with random transitions between all elements, or a stream

made up of the identical visual words as during habituation.

Kirkham et al. [19] found that infants from two months of age

subsequently looked longer at the random sequence than the

structured sequence (even though the individual elements are

identical between streams) suggesting that the infants had

learnt the statistical structure (TPs) of the training sequence.

We modelled this experiment by training the model with

a sequence of inputs containing the identical probability

structure to that used to train infants. The training sequence

was identical in length to that used by Kirkham [23]. The

TP within a visual word was p ¼ 1.0, and between visual

words p ¼ 0.33. Shapes were coded using localist, bipolar

(i.e. 21, 1) orthogonal encodings in order to minimize effects



Random sequence, each item is followed by a different shape with equal probability.

40

familiar

two-month-
olds

five-month-
olds

age group

eight-month-
olds

two-month-
olds

five-month-
olds

age group

eight-month-
olds

novel
30

m
ea

n 
lo

ok
in

g 
tim

e 
(s

)

er
ro

r

20

10

0

2.0

1.6

1.2

0.8

0.4

0

(a)

(b) Pair-based grammar where the black bracket indicated the fixed deterministic.
(i) (ii)

Figure 3. (a) Illustration of visual sequences used to test infants (after Addyman & Mareschal, [38]). (b) (i) Infant performance reported in [19] and (ii) TRACX2
performance with the familiar structured and novel non-structured sequences. (Error is the maximum error of the network over all output units; s.e.m. error bars).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160057

5

due to input similarity. As in the Aslin et al. [17] and Saffran

et al. [16] simulations, the RHS and LHS input vectors were

composed of 12 units. Network performance was evaluated

by averaging output error over all three of the possible

two-image ‘visual words’ in the sequence. This was then

compared with the average output error for a set of three ran-

domly selected two-image ‘visual non-words’ that were

neither words nor partwords, and consequently, occurred

nowhere in the training sequence. This is analogous to the

word/non-word testing procedure used in auditory statisti-

cal learning studies (e.g. Saffran et al. [16]), and completely

equivalent to testing the networks with a structured sequence

(from which they would have extracted visual words) and a

fully random sequence (in which no previous words or part-

words exist). The model, like infants at all ages, looked longer

at the randomized sequence than the structured sequence

(figure 3a).
(c) Visual statistical learning in newborns
Bulf et al. [4] asked whether the sequence-learning abilities

demonstrated by Kirkham et al. [23] were present from birth.

They tested newborns (within 3 days of birth) on black and

white sequences of streaming shapes. In their ‘high-demand

condition’ (HDC), the sequence had the same statistical struc-

ture as in Kirkham et al. [19]. That is, the sequences were

made up of three visual words, each made up of two shapes

with a constant transition probability of 1.0 defining the

word, and TPs of 0.33 between words. They also introduced

a ‘low-demand condition’ (LDC) in which the sequences

were made up of only two words (each consisting of two

shapes with internal transition probabilities of 1.0) leading to

transition probabilities at word boundaries of 0.5 (instead of

the 0.33 previously used). The reasoning here was that
newborns had more limited information-processing abilities

and may therefore struggle with a more complex sequence,

already proving to be a challenge for two-month-olds.

Again, we modelled this study using TRACX2, in the same

way as above, but by (i) reducing the learning rate to 0.0005 and

(ii) creating both high- and low-demand sequences. In the

LDC, there were two pairs of images, each made up of two

different images (i.e. a total of four separate images). In the

HDC, there were three pairs of images, each made up of two

different images (i.e. a total of six separate images). In the simu-

lation for both the HDC and LDC, TRACX2 saw sequences of

120 words. Statistics were averaged over 30 runs of the pro-

gram, with each run consisting of 10 simulated subjects.

Figure 4 shows both the infant data and the model results.

As with the infants, TRACX2 did not discriminate between

the structured training sequence and the random sequence in

the HDC (with the lower learning rate) but did discriminate

between the two sequences in the LDC.
(d) Learning backward transitional probabilities
Tummeltshammer et al. [35] explored whether eight-month-

olds could use backward TPs, as well as forward TPs, to

segment the looming shape sequences. Backward TPs occur

when there is a high probability that an item is preceded by

something rather than the other way around [19,34]. While

the original TRACX model was able to capture the infant and

adult data related to the processing of backward TPs in audi-

tory sequences, SRNs were not able to do so [15]. This is,

therefore, an important test of the underlying learning architec-

ture. For the simulations we used a sequence containing 48

items taken from table 1 of [31]. In the actual experiment

with infants, this sequence was repeated only three times, but

for our simulation, we found that this did not produce
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sufficient learning and we used a training sequence that was

produced by repeating this sequence 25 times. The learning

rate was set at 0.005. Figure 5 shows that both eight-month-

olds and TRACX2 are able to segment sequences involving

predictable backward TPs as well as sequences containing

forward TPs.
(e) Learning embedded and illusory items
An embedded item is a group of syllables that occurs within a

word, but never occurs independently (e.g. ‘ele’, as in ‘elephant’;

Thiessen et al., [5]). Statistical (TP) learning accounts predict that

because learners represent the statistical relations between all

pairs of adjacent elements, distinguishing components

embedded in longer word should improve with greater

exposure to the word. By contrast, chunking models predict

that as learners become familiar with a word, they should

become less able to distinguish subcomponents embedded in

that word [18]. Thus, the recognition of illusory items and

embedded items provides critical tests of the statistical learning

and chunking accounts of sequence processing.

Illusory items are pairs or triplets of elements that have

never been encountered, but which have the same statistical

structure (e.g. TPs) as other pairs or triplets that have been

previously encountered (cf. [36]). For example, if ‘tazepi’,

‘mizeru’ and ‘tanoru’, are words presented in a speech

stream, with TPs of p ¼ 0.50 between the successive syllables

in these words, then tazeru would be a statistically matched
illusory word because the TPs between the successive sylla-

bles in this new word match the TPs encountered

previously. Statistical (TP) learning mechanisms would be

unable to distinguish between real and illusionary words

because they are statistically equivalent. By contrast, chunk-

ing mechanisms will fail to recognize the new illusory

word precisely because it has never been encountered

before and is therefore not stored in memory.

Fortunately, Slone & Johnson [37,39] have investigated

whether infants’ learning mechanisms would lead to the

reduced salience of embedded items or to the emergence of

illusory chunks, as a means of testing whether chunking or

statistical (TP) learning underpins infant visual sequential stat-

istical learning. To do this, they presented eight-month-olds

with sequences structured as depicted in figure 6a. Infants in

the ‘embedded pair experiment’ did not differentiate

embedded pairs from part-pairs that crossed word boundaries,

but both were differentiated from the word pairs. Infants in the

‘illusory item experiment’ did not differentiate the illusory tri-

plets from the part triplets, but both were differentiated from

the actual triplets. This is perplexing because the former

result suggests that infants use chunking, whereas the latter

results suggests that they engage in statistical (TP) learning.

TRACX2 captures both of these results equally well.

Recall that the model is designed to produce the smallest

error on the best learnt patterns. If we consider output error

to be a measure of visual attention (the higher the error, the

longer the infant attends to that item), then we can say that
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TRACX2 is designed to orient to novel test patterns most (i.e.

shows a novelty preference). A familiarity preference is the

inverse of a novelty preference. This means that the smaller
the error for an item, the longer the infant looks at that

item. Thus, to model familiarity preferences we subtract the

error on output from the maximum possible error and call

this ‘inverse error’ (figure 6b). So when modelling a familiarity
preference, the greater TRACX2’s inverse error, the longer the

infant looking time is.

Such shifts in orienting behaviour are common in infant

visual orienting, and have been related to the complexity of the

stimuli and the depth of processing [40,41]; see also [42], for a

process account of the familiarity-to-novelty shift in a neural net-

work model of habituation). In sum, TRACX2 captures both the

reduced salience of embedded chunk items and the appearance

of illusory conjunctions within a single mechanism, thereby

reconciling apparently paradoxical infant behaviours.
4. Discussion
TRACX2 [20] is an updated version the TRACX architec-

ture [15]. As in the original architecture, TRACX2 is a

memory-based chunk-extraction architecture. Because it is

implemented as a recurrent connectionist autoencoder in the
recursive auto-associative memory (RAAM) family of architec-

tures [43,44], it is also naturally sensitive to distributions

statistics in its environment. In TRACX2, we replace the arbi-

trary all-or-nothing chunk-learning decision mechanism with

a smooth blending parameter. TRACX2 learns chunks in a

graded fashion as a function of its familiarity with the material

presented. An implication of this is that chunks are no longer to

be thought of as ‘all-or-nothing’ entities. Rather, there is a con-

tinuum of chunks whose elements are bound together more or

less strongly. Finally, unlike some other chunking systems such

as PARSER, TRACX2 also synthesizes information across prior

exemplars stored in memory.

TRACX2 was used to model a representative range of

infant visual statistical learning phenomena. No previous

mechanistic model of these infant behaviours exists (though

see [45] for a Bayesian description of adult performance on

visual spatial statistical learning). As with the auditory learn-

ing behaviours, TRACX2 captures the apparent utilization of

forward and backward TPs, the diminishing sensitivity to

embedded items in the sequence, and the emergence of illusory

words. However, it is important to understand that TRACX2 is

not simply internalizing the overall statistical structure of

the sequence, but encoding, remembering and recognizing pre-

viously seen chunks of information. This is a fundamentally

different account of infant behaviours than has previously
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been proposed (see [46]), and fits better with the recent sugges-

tion that much of infant statistical learning can be accounted for

by a memory-based chunking model [47].

TRACX2 can use frequency of occurrence or TPs equally

well and fluidly to learn a task (as is the case with eight-

month-olds; [48]). This would suggest that categorizing

learning either as statistical or memory-based is a false

dichotomy. Both classes of behaviours can emerge from a

single mechanism. The different modes of behaviour appear

depending on the constraints of the task, the level of learning

and the level of prior experience. Moreover, the idea that

infant looking time is determined by the recognition of

regularly re-occurring items (chunks or individual items) is

consistent with the recent evidence suggesting that local

redundancy in the sequences is the prime predictor of look-

ing away in infant visual statistical learning experiments [38].

TRACX2 also suggests that there are no specialized mech-

anisms in the brain dedicated to sequence learning. Instead,

sequence processing emerges from the application of fairly

ubiquitous associative mechanisms, coupled with graded

top-down re-entrant processing. Although there may be differ-

ences in the speed and richness of encoding across modalities,

there is nothing intrinsically different in the way TRACX2

processes visual or auditory information. This suggests that

any modality-specific empirical differences observed can be

attributed to encoding differences rather than core sequence

processing differences (see Arciuli, [49], for further discussion

of the implications of differences in encoding stimuli for

the understanding of individual differences on statistical

learning tasks).
In conclusion, we believe that chunking cannot be viewed

as an all-or-nothing phenomenon, that learning from TPs

should not be held in opposition to learning chunks. Instead,

graded chunks emerge gradually precisely because of the TPs

present in the input. Chunks are learnt and, over the course

of being learnt, their component parts become more and

more tightly bound together. This is a fundamental principle

of TRACX2. The results of the present paper suggest that

infant sequential statistical learning is underpinned by the

same domain-general learning mechanism that operates in

auditory statistical learning and, potentially, also in adult

artificial grammar learning. TRACX2, therefore, offers a

parsimonious account of how infants find structure in time.
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1A 24–12–24 architecture was used with a learning rate of 0.01 and
momentum of 0.9 with a Fahlman offset of 0.1. Bipolar (i.e., 21, 1)
orthogonal encodings localist encodings were used for each of the
12 syllables.
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