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The central argument presented in this paper is that statistical learning (SL) is

an ability comprised of multiple components that operate largely implicitly.

Components relating to the stimulus encoding, retention and abstraction

required for SL may include, but are not limited to, certain types of attention,

processing speed and memory. It is likely that individuals vary in terms of the

efficiency of these underlying components, and in patterns of connectivity

among these components, and that SL tasks differ from one another in

how they draw on certain underlying components more than others. This

theoretical framework is of value because it can assist in gaining a clearer

understanding of how SL is linked with individual differences in complex

mental activities such as language processing. Variability in language proces-

sing across individuals is of central concern to researchers interested in child

development, including those interested in neurodevelopmental disorders

where language can be affected such as autism spectrum disorders (ASD).

This paper discusses the link between SL and individual differences in

language processing in the context of age-related changes in SL during infancy

and childhood, and whether SL is affected in ASD. Viewing SL as a multi-

component ability may help to explain divergent findings from previous

empirical research in these areas and guide the design of future studies.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
Statistical learning (SL) refers to the brain’s ability to detect statistical regularities

in the environment. SL operates in a number of ways, including the detection of

relationships within scenes and spatial arrays, and within sequentially presented

stimuli. When it comes to linguistic stimuli that are presented sequentially in the

auditory modality, such as individual syllables presented as a continuous stream

of pseudospeech or natural speech, detection of regularities has been referred to

as word segmentation and speech segmentation. More broadly, detection of regu-

larities within sequentially presented stimuli, usually in the auditory or visual

modality, has been described as sequence learning, grammar learning and artifi-

cial grammar learning. This learning has been assessed using a variety of tasks,

some of the most common being the embedded triplet task and serial reaction

time tasks. For sequentially presented stimuli, the regularities have often been

described as transitional probabilities but other terms such as probabilistic cues,

dependencies (both adjacent and non-adjacent) and co-occurrences have also

been used. Discussion about precisely how these kinds of regularities are com-

puted has included mention of forward transitional probabilities, backward

transitional probabilities and chunks (e.g. [1–5]). For further discussion on how

regularities might be computed see also [6,7].

There has been debate about whether SL is implicit. Perruchet & Pacton argued

that many commonly used tasks of SL fall under the umbrella of implicit learning

because ‘participants in SL experiments are faced with structured material without

being instructed to learn. They learn merely from exposure to positive instances,

without engaging in analytical processes or hypothesis-testing strategies.’

[8, p. 233]. Even so, there is evidence that participants can develop some explicit

knowledge of regularities during some SL experiments. This has led to the proposal
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that dissociable implicit and explicit forms of knowledge can

sometimes accrue in parallel during SL (e.g. [9–11]). Although

investigations are ongoing, there is substantial evidence that

SL can operate largely implicitly even though certain SL tasks

can be modified in ways that result in more or less explicit

knowledge; for example, via task instructions (e.g. [12–14]).

This paper focuses on SL as a largely implicit process.

It is thought that SL has a role to play during a range of

complex mental activities including language processing,

object recognition and music appreciation—and that SL is

critical to understanding individual differences in these

activities (e.g. [15–17]). The bulk of research effort examining

whether SL is related to individual differences in mental

activity has focused specifically on the link between SL and

language processing (see recent reviews by Erickson &

Thiessen [16] and Arciuli & von Koss Torkildsen [18]). This

link is of central concern in this paper.

With regard to this link, there have been some inconsistent

findings but there is growing evidence of an association

between SL and many different aspects of language proficiency

such as vocabulary, processing of grammatical structures and

reading ability (e.g. [19–28]). Better performance on indepen-

dent tasks of SL tends to be associated with greater language

proficiency. As all of these studies reflect assessments under-

taken at a single point in time or over a short period of time,

further research is needed to explore questions of causality.

Specifically, there is a need for more longitudinal research

(as argued by Arciuli & von Koss Torkildsen [18] and investi-

gated in only a handful of empirical studies such as Ellis et al.
[29] and Shafto et al. [30]). In addition, we need more research

that explores causality via training studies (e.g. [31–34]).

The central argument that I present in this paper is that SL

is a multi-component ability. Components relating to the

encoding, retention and abstraction of statistical regularities

may include, but are not limited to, certain types of attention,

processing speed and memory. It seems reasonable to hypo-

thesize that individuals vary in terms of these underlying

components, and in connectivity among these components,

and that SL tasks differ in how they draw on particular under-

lying components. Viewing SL as a multi-component ability

may lead to a deeper understanding of the nature of SL, and

of the link between SL and individual differences in complex

mental activities such as language processing. For a more

comprehensive theory of SL, and for practical reasons relating

to innovations in the remediation of language difficulties,

it is important to understand how variability in language

processing across individuals might relate to the different

components that underpin SL.

In this paper, I will discuss how individual differences in

language processing might relate to the multi-component

nature of SL by focusing on language in the context of

(i) age-related changes during infancy and childhood and

(ii) neurodevelopmental disorders such as autism spectrum

disorders (ASD) where language can develop atypically.

Note that throughout this paper the terms autism and ASD

are used interchangeably. The purpose of discussing SL in

the context of age-related changes and autism is not to pro-

vide a systematic review of every study that has been

undertaken in these areas. Rather, the aim is to outline

some key SL studies that demonstrate divergent findings

that extend beyond obvious methodological differences and

thereby serve to demonstrate that SL may be comprised of

multiple components.
2. Age-related changes in statistical learning
If we adhere to the view that first language acquisition is gen-

erally accomplished in early childhood, we might speculate

that the capacity for SL ought to be at its peak during early

childhood. Indeed, the prevailing view for many years was

that implicit learning, unlike explicit learning, is underpinned

by phylogenetically older brain structures that mature early

and thereafter remain developmentally invariant (e.g. [35]).

In line with this view, two seminal studies reported no

effect of age on SL. These results were reported by Saffran

et al., who examined auditory SL in 6–7 year olds versus

young adults [36] and Kirkham et al., who examined visual

SL in three groups of infants under 1 year of age [37]).

In contrast with these earlier studies, more recent studies

have reported age-related effects in SL. For example, one

study reported differences in sequence learning using a

visual serial reaction time task in a group of children (mean

age ¼ 9.6 years) versus a group of adults (mean age ¼ 27.9

years) [38]. In that study, behavioural data revealed that learn-

ing that was faster and more accurate in adults and fMRI data

revealed a number of differences between the groups.

Additionally, several studies have reported age-related

changes in infants using tasks that assess the learning of visu-

ally presented sequences [39–41] and visual spatio-temporal

sequences [42]. See also the review article by Krogh et al. [43].

In one of the largest studies conducted to date, Arciuli &

Simpson examined the effect of age on visual SL in typically

developing children aged 5–12 years (n ¼ 183) using one of

the most common paradigms in SL research, the embedded

triplet paradigm [44]. The familiarization stream was com-

prised of individually presented cartoon figures that could

be loosely described as aliens (these figures were not recog-

nizable or readily verbalizable). Unbeknown to participants,

there were regularities in the familiarization stream because

the figures appeared in triplets. The familiarization phase

was followed by a surprise test phase, which included 64

untimed alternative-forced-choice trials (2AFC: embedded

triplets that occurred during familiarization pitted against

foil triplets that never appeared during familiarization). Ana-

lyses revealed that age was a significant predictor of SL, with

older children out-performing younger children. It was

argued that the result was not due to age-related effects of

overt attention during the task (indeed, researchers collected

a measure of overt attention during familiarization via a

cover task and included this variable as a predictor in the

regression analysis). Rather, Arciuli & Simpson speculated

that SL may be a multi-component capacity whereby some

components mature earlier than others. They speculated that

an implicit form of working memory (WM) may be an under-

lying component of SL and may be late maturing. This point

about implicit working memory being a component of SL is

taken up later in this paper.

In a study of children with and without autism, which is

discussed more fully in the next section on autism, Jeste and

co-workers investigated the effect of age on SL [45]. Event-

related potentials (ERPs) were collected during a visual SL

task with sequentially presented stimuli (individually pre-

sented coloured geometric shapes, such as a pink diamond

and a yellow circle, that were easily verbalizable) that was

administered to 45 children with ASD (2–6 years) and 23

age-matched control participants. The nature of the statistical

regularity was that shapes appeared in pairs. Collapsed
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across groups, the data revealed a negative relationship

between age and both N1 amplitude and Nc amplitude,

which was interpreted as more robust learning in younger chil-

dren. This finding is in contrast with that reported by Arciuli &

Simpson [44], who found better learning in older children.

The studies by Arciuli & Simpson [44] and Jeste et al. [45]

covered a broader age range than many previous studies, yet

they reported opposing developmental trajectories. There are

several key differences between these studies that are worthy

of consideration. First, the two studies examined different

ages; Arciuli & Simpson examined 5–12 year olds whereas

Jeste et al. examined 2–6 year olds. Second, the task used

by Jeste et al. contained embedded pairs while the task

used by Arciuli & Simpson contained embedded triplets.

While embedded triplets also contain embedded pairs, it is

possible that statistical regularities that extended over a

longer string of stimuli in the task used by Arciuli & Simpson

may have placed greater demands on implicit WM. Third,

although the age-related effect reported by Jeste et al. did

not appear to be related to overt attention during the task,

the researchers suggested that their task may not have been

engaging for older children. This lack of engagement may

have led to the appearance of less robust learning in older

children in the ERP data even though this was not actually

the case. Arciuli & Simpson found that age was a significant

predictor of SL, even after overt attention was taken into con-

sideration. Finally, the visual stimuli used in these two

studies may have involved differences in encoding and reten-

tion. Given that the stimuli were recognizable geometric

shapes, with each shape being presented in a particular

colour in the study by Jeste et al., there may have been a

higher proportion of explicit processing relative to implicit

processing during the SL task. By contrast, the stimuli used

by Arciuli & Simpson were unfamiliar to children. Each

alien figure contained a number of featural characteristics

and did not have a recognizable geometric shape or defining

colour. Thus, the stimuli in the SL task used by Arciuli &

Simpson may have drawn more heavily on implicit encoding

and retention. Of course, it could be argued that if an SL task

involves more explicit processing relative to implicit proces-

sing, older children would be expected to show greater

learning than younger children (i.e. the opposite of what

Jeste et al. found). Unfortunately, it is difficult to speculate

further on this point because the older children in the study

by Jeste et al. may have lacked engagement with the task.

On balance, the empirical research reviewed here suggests

that SL is not age-invariant. However, there are mixed findings

concerning whether SL improves or deteriorates with age.

How does this fit with our understanding of how SL supports

first language acquisition? As mentioned earlier, if we believe

that the task of first language acquisition is typically accom-

plished in early childhood, we might speculate that the

capacity for SL would be at its peak during early childhood.

Alternatively, in accordance with the view that language profi-

ciency continues to improve beyond early childhood [46], we

might expect that SL improves with age. See also Newport’s

‘Less is More’ hypothesis, which rests on the somewhat para-

doxical notion that ‘the very limitations of the young child’s

information processing abilities provide the basis on which

successful language acquisition occurs.’ ([47] p. 22–23).

Another possibility is that SL and first language acquisition

have a bidirectional link such that improvements in SL boost

language, and vice versa. As mentioned earlier, most of the
empirical evidence linking SL and language processing

comes from assessments undertaken at a single point in time.

Longitudinal research is needed for a variety of reasons: in

order to shed light on whether SL improves, deteriorates or

remains stable in children as these individuals get older, and

in order to investigate whether any developmental trajectory

that is observed is causally related to first language acquisition.

Longitudinal research examining the link between SL and

second language acquisition would also be valuable.

Importantly, if SL is a multi-component ability, particular

SL tasks that draw more heavily on certain underlying

components may be more likely to reveal a developmental tra-

jectory. It also seems possible that different components may

show different developmental trajectories (e.g. with some show-

ing a peak in performance at an earlier age than others).

Examining the components of SL within and across modalities

may be especially worthwhile when considering the link

between SL and first language acquisition and examining the

nature of developmental trajectories.

In summary, for those interested in individual differences

in language processing, the issue of age-related changes in SL

is highly relevant. Of course, individual differences in

language processing are a key focus in research on neuro-

developmental disorders such as autism. It is well known

that some individuals with autism experience oral and also

written language difficulties (e.g. [48–51]). Accordingly,

there is growing interest in whether SL is affected in autism.
3. Autism and statistical learning
Of the studies that have been conducted to date, there have

been mixed findings regarding the capacity for SL in those

with autism. Some studies have reported impaired SL in indi-

viduals with autism; one study has reported enhanced SL in

autistic adults. Other studies have reported no difference in

SL when comparing those with and without autism. Findings

have also been mixed with regard to the relationship between

language and SL in autistic individuals. Some studies report

a link, while others report no link. A close look at the pre-

vious research reveals some relatively straight forward

methodological differences across the studies (e.g. regarding

sample size and restricted sampling of high-functioning indi-

viduals). More interestingly, conceptualization of SL as a

multi-component ability may assist in understanding some

of these different findings.

One of the earliest studies in this area, by Brown and co-

workers [52], compared a group of high-functioning children

and adolescents with ASD (n ¼ 31, 8–14 years of age) with

typically developing peers (n ¼ 31) across a range of behav-

ioural tests of implicit learning, including artificial grammar

learning, a contextual cueing task, a serial reaction time task

and a probabilistic classification learning task (all tasks used

visually presented stimuli). Their results showed intact and

comparable implicit learning for individuals with ASD and

typical peers. Of particular relevance here, analyses that

moved beyond group-level comparisons in order to explore

individual differences revealed no relationship between

the degree of communication impairment (measured via the

Social Communication Questionnaire; SCQ [53]) and perform-

ance on the implicit learning tasks. The focus on high-

functioning individuals continued in subsequent studies of

whether individual differences in language processing might
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be related to SL that were conducted by other researchers such

as Mayo & Eigsti [54] and Scott-Van Zeeland et al. [55].

Similarly to the findings of Brown and co-workers [52],

Mayo & Eigsti [54] reported intact SL in ASD and no difference

between SL in individuals with and without ASD. In their study,

Mayo & Eigsti assessed sequential SL of linguistic stimuli in the

auditory modality using the embedded triplet paradigm (21 min

for familiarization followed by a surprise 2AFC test phase) in

high-functioning individuals with ASD (n ¼ 17, 7–17 years)

and typically developing peers (n ¼ 24, 8–17 years). In addition

to examining SL, a wide array of tests assessing cognition, ASD

severity (as measured by the Autism Diagnostic Observation

Schedule; ADOS [56]) and language were also administered.

There was no relationship between SL and scores on tests

assessing cognition or ASD. In line with Brown et al., there was

no relationship between SL and degree of language impairment

(as measured by standardized tests of vocabulary, non-word

repetition, sentence formation and comprehension in the

Peabody Picture Vocabulary Test (PPVT-III [57]), Expressive

Vocabulary Test (EVT [58]) and Clinical Evaluation of Language

Fundamentals (CELF-4 [59])). However, despite their behaviour-

al findings showing comparable SL in individuals with and

without autism, Mayo & Eigsti [54] emphasized that there

may well be neural processes associated with SL that differen-

tiate individuals with ASD from typically developing peers.

If SL is a multi-component ability it seems possible that

some components are better observed at the neural rather

than the behavioural level. Regarding this point about possible

differences between behavioural and imaging studies, it is inter-

esting to note that an earlier fMRI study by Scott-Van Zeeland

and co-workers compared a group of 18 high-functioning chil-

dren and adolescents with ASD (9–16 years) with a group of 18

typically developing peers [55]. SL was assessed using the

embedded triplet paradigm—familiarization streams of pseu-

dospeech comprised of individually presented syllables were

presented while children were in the scanner (three streams,

which were each 144 s in duration). A test phase was adminis-

tered outside of the scanner. Behavioural performance during

the test phase was at chance, but group differences were discov-

ered in terms of neural processing during familiarization. These

group differences were interpreted as less sensitivity to statisti-

cal regularities in those with ASD. In addition, the study

revealed a relationship between the degree of communication

impairment (measured via the Autism Diagnostic Interview,

Revised (ADI–R [60])) and neural processing during the SL

task in those with ASD. Participants with less communication

impairment showed greater signal increases during the SL

task in left inferior parietal lobule (IPL) and putamen. Findings

regarding group differences between those with and without

ASD, and a link between communication impairment and SL

in those with ASD, are contrary to the behavioural findings of

Brown et al. [52] and Mayo & Eigsti [54].

Unlike previous studies that have focused primarily on

high-functioning individuals with ASD, Jeste et al. [45] collected

ERP data during a visual SL task with sequentially presented

stimuli in a group of young children with ASD (2–6 years)

and a group of age-matched typically developing peers. No be-

havioural data on SL were collected. Early negativity (N1)

correlated with SL for all children in the study; however, there

were some differences between electrophysiological responses

in those with ASD versus typically developing children. These

differences appeared to be driven by differences between low-

and high-functioning children with ASD, suggesting that ASD
is linked with variability in SL. In addition, in the ASD group

there was a positive correlation between P300 amplitude col-

lected during the SL task and adaptive behaviour (Vineland

Adaptive Behavior Scales-II (VABS-II); [61]). As mentioned ear-

lier, because the stimuli used by Jeste et al. [45] were coloured

geometric shapes (e.g. pink diamond, yellow circle, blue

cross), some individuals may have processed stimuli as particu-

lar shapes or colours. As such, explicit processes may have

contributed to some of the effects reported in that study

although it is difficult to speculate further, especially given

lack of engagement by older participants.

Departing from a focus on sequential SL in manyof the other

studies in this area, Roser and co-workers examined the detec-

tion of spatial regularities in those with and without ASD [62].

If SL is comprised of multiple components, it is reasonable to

expect that (at least some of) these components process spatial

regularities differently from sequential regularities. Roser et al.
examined children (n ¼ 28 with ASD and n ¼ 22 without

ASD, both groups had a mean age of 13 years) and adults

(n ¼ 10 with ASD with a mean age of 41, and n ¼ 10 without

ASD with a mean age of 36.5). ASD groups included individuals

with a previous diagnosis of high-functioning autism, Asper-

ger’s Syndrome, or ASD, however, all child participants were

noted as being mainstream educated (i.e. very low-functioning

children may not have been represented in the sample). The SL

task was comprised of a familiarization phase followed by a sur-

prise test phase (2AFC trials). During familiarization, stimuli

were presented in different areas of a 3 � 3 grid (certain pairs

of stimuli were presented in an invariant spatial relationship).

Although the stimuli could loosely be described as shapes,

they could not be easily verbalized and were presented as

black figures against a white background (unlike the familiar

coloured geometric shapes presented by Jeste et al. [45]).

The findings reported by Roser et al. [62] revealed intact SL in

individuals with ASD—as well as a somewhat surprising find-

ing of superior SL in adults with ASD by comparison with a

control group of adults. Superior SL in individuals with ASD

was not observed in the child data. The authors acknowledged

their modest sample sizes and stated that their study ‘does not

allow for the full heterogeneity of the ASD spectrum to be rep-

resented’ ([62], p. 169). They also noted that studies that rely

solely on group-level comparisons, such as theirs, are not the

most effective way to examine individual differences. As men-

tioned, if SL is comprised of multiple components we might

expect that these components process spatial regularities differ-

ently from sequential regularities, although it is not clear why

such components would be differentially affected by age in

individuals in ASD compared with neurotypical peers.

With regard to further investigations of the link between SL

and variability in language processing in ASD, several other

issues are worthy of attention. It may be useful for future

studies to incorporate language tasks that are specifically

designed with embedded statistical regularities in mind and

have previously revealed differences in performance between

those with and without ASD (e.g. Arciuli & Paul [63]).

Certainly, it is important for future investigations to include

more representative samples of individuals with ASD rather

than focusing only on those who are high-functioning. In

addition, future research could explore whether (some of) the

components underlying SL show a different developmental

trajectory in individuals with and without ASD.

It would also be valuable for future research to move

beyond assessment of immediate SL in order to explore
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retention/consolidation of SL. If SL contributes meaningfully

to language acquisition, there must be retention/consolida-

tion over time rather than just momentary computations.

Moreover, if SL is a multi-component ability it may be that

some components are more important for retention/consoli-

dation than others. Exploring retention/consolidation of SL

may shed light on the link between language acquisition

and SL in individuals with ASD.
 hing.org
Phil.Trans.R.Soc.B

372:20160058
4. Retention and consolidation of statistical
learning in autism

By way of brief background, there have been a handful of

studies that have examined retention/consolidation of SL in

neurotypical individuals. An early study of neurotypical

adults (18–35 years) was reported by Kim et al. [64], who

assessed sequential SL in the visual modality with an

embedded triplet task. Stimuli were unfamiliar shapes presen-

ted as black figures against a white background. Participants

were exposed to a familiarization phase followed 24 h later

by a surprise test phase comprised of a rapid serial visual pres-

entation (RSVP) task. Arciuli & Simpson [65] reported another

study of neurotypical adults (17–25 years) using different

visual stimuli (the aforementioned aliens in the embedded tri-

plet task first reported in [44]). In a between-participants

design, a familiarization phase was undertaken 30 min, 1 h,

2 h, 4 h or 24 h before a surprise test phase comprised of

2AFC trials. Significant SL was observed in each of these con-

ditions. The results from both of these previous studies attest to

the longevity of SL in neurotypical adults. For studies of reten-

tion/consolidation of SL and in infants, see [66,67] as well as

the paper included in this special issue [68].

Might retention/consolidation of SL be disrupted in indi-

viduals with ASD? Certainly, it is well documented that

many individuals with autism experience disturbed sleep

(e.g. [69–73]). And there is growing interest in how retention

and consolidation of learning that is associated with sleep

might be related to language processing (e.g. [74,75]).

To date, only one study has investigated a possible link

between SL and sleep in ASD [76]. In that study, Nemeth

and co-workers used a visually presented four-element alter-

nating serial reaction time task (ASRT) task to examine

learning over 16 h (including a period of overnight sleep) in

14 children with ASD (7–17 years) and two control groups

(n ¼ 14 age-matched participants and n ¼ 13 IQ-matched par-

ticipants). Findings revealed intact and equivalent learning

over time in groups with and without ASD. The authors of

that study acknowledged that small sample size and ‘great

variability in responses’ may have reduced statistical power

to detect group differences [76, p. 5]. It is noteworthy that

direct monitoring of sleep activity via polysomnography was

not undertaken in the studies by Kim et al. [64], Arciuli &

Simpson [65] or Nemeth et al. [76]. Such data are invaluable

in determining whether SL might be related to individual

differences in the type and/or duration of sleep.

Studies of neurotypical adults, and a study of adults with

sleep apnoea, that have used direct monitoring of sleep activity

via polysomnography have a found a link between SL and indi-

vidual differences in non-rapid eye movement sleep (NREM)

[77–79].1 It has been suggested that NREM sleep may be

important for SL through: (i) restoration of cellular homeosta-

sis after the energy-rich processing of statistical regularities
during waking periods, and (ii) consolidation and integration

of learning via offline sampling of statistical regularities

collected during waking periods [80]. See also [81] for

discussion of sleep-dependent brain processes relating to SL.

Future studies could use polysomnography to determine

whether there is a link between individual differences in

NREM sleep, SL and language proficiency in ASD. It may

be that only some of the components underpinning SL con-

tribute to this link. The next section focuses more closely on

the multiple components that may underpin SL and how

research efforts might be directed at exploring this possibility.
5. Multiple components underpinning statistical
learning

It is not entirely clear why the previous studies reviewed here

have produced such divergent findings. While I have outlined

methodological issues in each of the preceding sections, I have

also put forward a more powerful explanation—the possibility

that SL is a multi-component ability and that both individuals

and SL tasks differ in terms of underlying components.

Components relating to the stimulus encoding, retention

and abstraction required for SL may include, but are not limited

to, certain types of attention, processing speed, and memory

(both WM and longer-term memory). Viewing SL as a multi-

component ability is compatible with the view that sensitivity

to statistical regularities is domain-general but not necessarily

uniform across modalities (e.g. [82–84]). It may well be that

some of the components underpinning SL operate differently

in different modalities. However, we can go a step further

and speculate that even within modalities, some components

of SL may operate differently depending on the stimuli and

task instructions that are used. Investigation of how individuals

vary in terms of the efficiency of underlying components, and

connectivity among components, within and across modalities,

may be helpful in explaining seemingly divergent findings

relating to how SL interacts with age and also autism.

Interestingly, some of the components underpinning SL

may interact with social cues (e.g. [85,86]). It has been suggested

by Kuhl [87] that ‘Social cues ‘gate’ what and when children

learn from language input.’ (p. 139). See also [88] for discussion

on the interaction between SL and social cues. As such, an excit-

ing line of research concerns the interaction between social cues

and particular components of SL (e.g. attention). This may be an

especially promising avenue of inquiry in autism research

because of the link between difficulties with social cognition

and autism; however, it is of relevance for understanding SL

in any individual who is learning in the ‘real world’, outside

of the laboratory and often in the company of others.

In terms of how SL tasks draw on some components more

than others, previous studies have explored whether tests of SL

might be measuring the same abilities assessed by commonly

used tests of intelligence. For example, Evans et al. [22],

Conway et al. [20] and Kidd & Arciuli [26] found that tasks

of sequential SL were tapping into abilities that were indepen-

dent of those assessed by tests of non-verbal intelligence.

Kaufman et al. [24] found that variability in SL was indepen-

dent of variability in general intelligence and WM but related

to variability in processing speed. A study conducted by

Siegelman & Frost [84] used an array of SL tasks assessing

sequential learning and found that performance on these

tasks was largely independent of performance on tests of



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160058

6
non-verbal intelligence, WM and rapid naming. Only one

of the five SL tasks included in that study was correlated

with performance on only one of the cognitive measures,

non-verbal intelligence.

Most of the studies mentioned above that have looked at the

relationship between SL and other aspects of cognition have

incorporated tests of cognition that measure explicit processing.

In this sense, it is perhaps not surprising that performance on SL

tasks, which are usually designed to assess implicit learning, is

not highly correlated with performance on tasks that assess

explicit processing. We will need to develop innovative ways

to assess the components that comprise SL.

Exploration of implicit WM would be a good place to start.

In one of the earliest empirical studies of individual differences

in SL, Arciuli & Simpson [44] stated ‘It seems likely that a task

in which participants implicitly compute the statistical regu-

larities that are present in sequentially delivered stimuli will

recruit, among other processes, some kind of implicit mode

of WM.’ (p. 470). Later, Janacsek & Nemeth [89] made a similar

observation: ‘it seems plausible that a local short-term storage

is necessary for processing sequence information (e.g. actively

maintaining and binding several items in the sequence),

although the exact nature of this short-term storage and its

relation to WM [working memory] is still unexplored. . .even

if such local short-term storage dedicated to SL exists, it

seems unlikely to be connected to the classical concept of

WM.’ (p. 412).

Indeed, while it has generally been assumed that WM

operates under conscious awareness, there is interest in devel-

oping tasks that assess WM which operates ‘unintentionally

and outside of conscious awareness’ ([90], p. 675). See also

[91], which reported on implicit WM and [92], which

included discussion of WM in the context of implicit

sequence learning. It is for future research to reimagine

long-held beliefs about cognition, including aspects relating

to attention, WM, longer-term memory, processing speed

and so on, in order to develop new tests of implicit cognition

and examine relationships between individuals’ performance

on these tests and accepted measures of SL.

Discovering the neural basis of the components that com-

prise SL will also assist our understanding of the nature of SL

and how individual differences in SL are linked with devel-

opment through infancy and early childhood in typically

developing children and in those with neurodevelopmental

disorders such as ASD. SL probably operates with the sup-

port of a variety of brain regions including networks within

and across the hippocampus, the striatum and frontal regions
(e.g. [79,93–98]). See also Yang & Li [99] for discussion of

differences in implicit versus explicit learning networks in

the brain. It has been pointed out that learning processes in

these key brain regions may occur at different rates, thereby

resulting in quite different types of behavioural effects

depending on the learning task that is used [100]. Arciuli &

Simpson [44] noted that some of the learning processes in

different brain regions may be early-maturing while others

are not. For example, see research on protracted neural devel-

opment in fronto-parietal regions associated with WM [101].

We need to understand how individuals and SL tasks vary

in terms of the components that comprise SL and how

these components are subserved by different neural regions

and processes.
6. Conclusion
The argument I have presented here is that SL is an ability com-

prised of multiple components that operate largely implicitly.

Although empirical research is required to test this possibility,

individuals probably vary in terms of the efficiency of these

underlying components, and in patterns of connectivity

among components. In addition, it seems highly likely that

SL tasks differ from one another in the way they draw upon

certain underlying components more than others. This theor-

etical framework can assist researchers interested in the link

between SL and individual differences in complex mental

activities such as language processing, especially those inter-

ested in typical child development and neurodevelopmental

disorders like ASD where language can be affected. It may

help in explaining divergent findings and in guiding the

design of more illuminating future research.
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Endnote
1Note that unlike the study by Arciuli et al. [77], in the study by
Durrant et al. [79] participants were made aware that there would be
test phases after the familiarization phase. This may have implications
regarding the proportion of explicit versus implicit knowledge in these
different studies of SL. Note also that while the study by Arciuli et al.
[77] used a completely different SL task, the studies by Durrant and
co-workers [78,79] used a similar SL task (although the underlying
sequential structure was simpler in [79]).
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