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In recent years, statistical learning (SL) research has seen a growing interest in

tracking individual performance in SL tasks, mainly as a predictor of linguistic

abilities. We review studies from this line of research and outline three presup-

positions underlying the experimental approach they employ: (i) that SL is a

unified theoretical construct; (ii) that current SL tasks are interchangeable,

and equally valid for assessing SL ability; and (iii) that performance in the stan-

dard forced-choice test in the task is a good proxy of SL ability. We argue that

these three critical presuppositions are subject to a number of theoretical and

empirical issues. First, SL shows patterns of modality- and informational-

specificity, suggesting that SL cannot be treated as a unified construct.

Second, different SL tasks may tap into separate sub-components of SL that

are not necessarily interchangeable. Third, the commonly used forced-choice

tests in most SL tasks are subject to inherent limitations and confounds. As a

first step, we offer a methodological approach that explicitly spells out a poten-

tial set of different SL dimensions, allowing for better transparency in choosing

a specific SL task as a predictor of a given linguistic outcome. We then offer

possible methodological solutions for better tracking and measuring SL

ability. Taken together, these discussions provide a novel theoretical and

methodological approach for assessing individual differences in SL, with

clear testable predictions.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
Over the past two decades, extensive research has focused on statistical learning

(SL), demonstrating sensitivity to complex distributional properties in the input.

Starting from the seminal work of Saffran and co-workers [1], numerous studies

have shown that humans display remarkable sensitivity to distributional regu-

larities in the auditory [2], visual [3], and tactile [4] modalities, with verbal [5]

or non-verbal [6] stimuli, comprising adjacent or non-adjacent [7] dependencies,

over both time and space [8], even without overt attention [9] and from a very

young age [10]. Sensitivity to the input’s statistical structure has become an

important theoretical construct in explaining a wide range of human capacities

such as language learning, perception, categorization, segmentation, transfer

and generalization (see [11] for discussion).

Although all of the above studies focused on demonstrating that a given

sample of participants shows evidence of learning the distributional properties

of a sensory input, recent years have seen a growing interest in tracking individ-
ual performance in SL tasks. This line of study is relatively new. Its initial

motivation was to confirm the theoretical link between SL and language acqui-

sition. However, more generally, the study of individual differences holds the

promise of providing critical insights regarding the mechanisms of SL and
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could enable more powerful studies ([11–13]; see also [14]).

Note that ‘individual differences’ in the context of SL can in prin-

ciple refer to any quantitative or qualitative differences

between individual learners (i.e. differences in both the

extent and the speed/trajectory of learning, individual vari-

ation in the sensitivity to multiple statistics within the same

input, etc.). Nevertheless, individual differences other than

overall performance differences have to date rarely been inves-

tigated. We return to this issue further on, when considering

the limitations of the currently used offline learning measures.

For now, the important point is that these recent SL studies that

tracked individual performance aimed to show that language

learning relies, at least in part, on being sensitive to the statisti-

cal properties of a linguistic environment, and that individual

variation in sensitivity to such regularities predicts linguistic

abilities. Within this research programme, SL and artificial

grammar learning (AGL) tasks were shown to correlate with

literacy skills in a first language (L1) [15,16], literacy acquisition

in a second language (L2) [17], comprehension of syntax [18],

sentence processing [13,19,20], semantic and phonological lex-

ical access [21], vocabulary development [22,23] and speech

perception [24,25]. Conversely, other studies aimed to show

that participants with language deficits, such as children

with specific language impairment ([21,26], but see [27]), dys-

lexic readers [28,29] and agrammatic aphasia patients [30]

display poor SL abilities.

This research is characterized by a prototypical experimen-

tal approach. First, a SL or AGL task that has been shown to

produce above chance performance at the group level is

selected, and imported into the study as is or with minor modi-

fications. Typically, the tasks involve a visual or an auditory

familiarization stream (representing an artificial grammar or a

stream comprising set of transitional probabilities (TPs)),

which is followed by a test phase. Second, individual per-

formance in the task is registered for each participant (often

the number of correct two-alternative forced-choice (2AFC)

decisions in distinguishing presented visual or auditory

sequences from foils at the test phase). Third, given the aim of

the study (e.g. reading, syntactic processing, speech recognition,

etc.), participants’ capability in the respective linguistic domain

is independently measured through well-established relevant

language tests. Fourth, the participants’ SL scores are used as

predictors of their linguistic test performance. Table 1 presents

a set of recent studies that followed this approach, including our

own, along with the correlations they obtained.

Although never explicitly specified, individual differences

studies of this kind typically involve three critical preliminary

presuppositions, which underlie the logic of this experimental

strategy. First, as there is no agreed taxonomy of possible types

of SL, it is treated by default as a unified theoretical construct,

a general capacity for picking up regularities (with the exception

of [13,31]; see, e.g. [32] for discussion). Second, and relatedly,

the tasks that are selected for the study from the arsenal of

tasks employed in this domain, are naturally assumed to equally

represent a good operational proxy of this unified theoretical con-

struct, so that the selection of one specific task for the study is not

a matter of deep theoretical concerns (though see [13,31,33]).1

Third, the performance score of the test phase in the task is

naturally assumed to be a valid and reliable measure of the

operational proxy, and therefore, a valid and reliable measure

of the postulated ability for picking up regularities.

In the following, we will argue that these three critical

presuppositions are subject to a number of both theoretical
and empirical issues. Although previous studies of individ-

ual differences in SL have yielded important initial insights

into how SL might be involved in various aspects of cogni-

tion, to get a deeper understanding of the extent and

precise nature of these relationships we need to address

these issues head on.
2. Is statistical learning a general unified
capacity?

Most studies of SL do not provide an explicit computational

account of learning but, rather, tend to adopt a more abstract

notion of the underlying computations in the form of domain-

general learning. Typically, the underlying computational

system is assumed to be a ‘unified capacity’ instantiated by

a unitary learning system that is applied across different modal-

ities and domains. This may be a reasonable first approximation,

given that the ability to extract statistical structure from the input

is found across a wide range of stimuli as well as different

domains, as reviewed above. Indeed, in the simple and abstract

sense, there is something common to all these behavioural

phenomena: registering regularities in the environment. How-

ever, advances in cognitive science require moving from

abstract verbal theorizing to refined mechanistic computational

theories. From this perspective, it seems that current empirical

evidence suggests that the differences in computations across

different SL phenomena largely outweigh their superficial

abstract similarity.
(a) Modality specificity
Although SL has been demonstrated in all sensory and sen-

sory-motor areas, current evidence systematically suggests

qualitatively different patterns of performance in different

modalities (see [11] for review). Importantly, tracking individ-

ual abilities in different SL tasks reveals significant reliability of

capacity within modality, but zero correlation in performance

across modalities [34]. Admittedly, one should be cautious

drawing firm conclusions from a lack of correlations in a

single study, especially given the relatively low reliability of

some of the studied SL tasks (which limits the extent of

expected correlations between SL measures, see [12,34]).

Importantly, however, this result concurs with other findings

showing qualitative differences in SL ability in the auditory,

visual and tactile modalities [4,35], opposite effects of presen-

tation parameters on visual versus auditory SL performance

[36], lack of learning transfer across modalities (e.g. [37]) and

interference in learning two artificial grammars within

modality, but no interference across modalities [38]. This

large body of evidence suggests that individual capacity of

learning regularities differs across domains. This state of affairs

should not come as a surprise. Recent imaging data suggest

that in spite of the suggested role of the medial temporal lobe

(MTL) memory system in SL (e.g. [39,40]), substantial SL com-

putations occur already in the early visual and auditory

cortices (e.g. [41,42]). The visual and auditory cortices involve

different representations, and the set of computations charac-

terizing these cortical areas is naturally constrained by the

specific characteristics of the processed input. Thus, both the

neurobiological and the behavioural evidence are inconsistent

with the presupposition that SL is a unified capacity.
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(b) Informational specificity
Although SL can be abstractly defined as ‘learning the statistical

properties of the continuous sensory input’, from an informa-

tional perspective there are different kinds of ‘statistical

properties’ that are the object of learning (see [43] for discussion;

see also [44]). First, there is ample evidence that humans are sen-

sitive to transitional statistics in continuous input, allowing

them to detect even small changes in TPs [45].2 Second, there

is evidence that humans also aggregate information about

the relative frequency of events (e.g. [50]), as well as their var-

iance in the stream (e.g. [51]), showing sensitivity to

distributional statistics. Cue-based statistics as revealed

in spatial contextual cuing (e.g. [52]), or temporal cuing

(e.g. [53]), are yet another form of learned regularities. In

some cases, multiple cues either within or across modalities

are needed to learn more complex probabilistic patterns

[54]. As Thiessen et al. discuss in their expansive review

[43], different kinds of statistical information do not necess-

arily implicate different sets of computations. Nevertheless,

they argue that a complete account of SL must explain not

only the learning of distributional statistics (i.e. the frequency

and variance of exemplars) but also transitional statistics

(i.e. learning the co-occurrences of elements in the stream).

Whether one or more kinds of computations are needed

to cover the range of SL behaviours requires additional inves-

tigation, mainly through computational modelling, but also

through correlational designs. For example, it has been

suggested that learning non-adjacent contingencies follows

specific constraints that do not exist while learning adjacent

contingencies [7]. Indeed, supporting findings show that

individual SL ability to learn adjacent contingencies is uncor-

related with their ability to learn non-adjacent contingencies

even within modality [13,34,55].3

In sum, current empirical evidence is largely inconsistent

with SL being a unified capacity involving a single set of compu-

tations. This has immediate implications for any correlational

study aiming to tie specific cognitive abilities to SL. We suggest

that such studies need to consider SL as a componential ability,

requiring researchers to explicitly specify the theoretical link

between the specific cognitive construct they investigate and

its relation to the specific relevant SL computations.
3. Are all statistical learning tasks equally valid
for assessing SL ability?

To date there are no agreed-upon constraints on which tasks

should be selected as proxies for SL capacity. This is exempli-

fied by the different tasks employed in correlational studies

tying SL to other cognitive capacities, with often very little

discussion regarding the theoretical logic governing the

specific task selection (but see, e.g. [13], for such discussion).

The problem with this state of affairs is twofold. First, with-

out a clear understanding of the specific SL components

that are being tapped by a given task, well-defined empirical

predictions regarding its predictive validity cannot be gener-

ated. Second, understanding the relation between specific SL

components and the proxies selected to tap them is necessary

for integrating different findings, so as to make sense of the

wide range of obtained results. In order to develop such

integrative theory of the relations between SL computatio-

nal components and linguistic capacities (as well as other
cognitive capacities), we must first explicitly spell out the

different components of SL capacity that, according to current

evidence, is a multi-faceted construct.

One promising way to develop a theory regarding the

inner structure of a complex construct is to define it in the

form of a mapping sentence in line with Facet Theory, a sys-

tematic approach to theory development and data collection

(e.g. [57,58]). In Facet Theory, the first and most important

step in investigating a complex theoretical construct (in our

case, SL) is to formulate a mapping sentence, which defines

the full domain of the studied phenomena given existing

data. A mapping sentence includes content facets that rep-

resent the different dimensions of the construct. It further

outlines for each content facet a set of possible values (categ-

orical or continuous) that could be relevant to the specific

facet. This divides the full range of behavioural phenomena

into theoretically distinct sub-types [58]. Importantly, one of

the unique characteristics of Facet Theory is that it is taken

to be a continuous effort of trial and error, where constructing

a mapping sentence that outlines the various facets of a theor-

etical construct resembles an ongoing process of hypothesis

testing and updating. An initial sentence is typically offered

as a starting hypothesis (see [34]), and it is subsequen-

tly modified given novel empirical data regarding the

inter-correlations between the suggested facets and their

postulated values. Following this strategy, we define a pre-

liminary mapping sentence below that concurs with a wide

range of SL phenomena already reported in the literature,

and outlines a potential set of different dimensions:
Statistical Learning is the ability to pick-up (1) transitional
distributional

� �

statistics from the sensory environment, in the (2) visual
auditory

� �

modality, when contingencies are (3) adjacent
non-adjacent

� �
, over

(4) verbal
non-verbal

� �
material, across (5) time

space

� �
, (6) with

without

� �

motor involvement, thereby shaping behavior.
This suggested that mapping sentence offers then six prelimi-

nary content facets to account for SL phenomena.4 The first

three facets, the type of statistics extracted (transitional

versus distributional), the input modality (visual versus audi-

tory)5 and the type of contingencies (adjacent versus non-

adjacent), were included in the light of empirical evidence

(reviewed in the previous section), and which have been

suggested to involve non-overlapping sets of computations.

Facets (4) and (5) are additional hypothetical dimensions

that we offer to account for SL capacity, because they reflect

ecologically separable phenomena: SL studies show that it

occurs for both verbal and non-verbal material (e.g. [6]),

and that statistical contingencies are extracted across both

time and space (e.g. [8], though with different biases;

see [35]). Admittedly, to date there is little unequivocal

evidence showing that these phenomena are governed by

non-overlapping computations and necessarily result in

different learning constraints. Nevertheless, our recent inves-

tigation of SL capacities demonstrates no correlation in

performance with verbal versus non-verbal stimuli within

modality [34]. Similarly, no interference was found in learning

two different sets of regularities at the same time, when they

comprised verbal and non-verbal materials (non-words

versus tones [38]).6 Indeed, recent neurobiological findings

suggest that neural temporal coding is independent of the
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spatial dimension, and that specific time cells represent the

flow of time (see [61]).

Importantly, from a theoretical perspective, including

facets (4) and (5) in the mapping sentence has the advantage

of shaping future investigation, so as to examine empirically

the extent of their relative overlap and interaction. Facet

number (6)—motor involvement—is yet another dimension

that requires further investigation. Statistics of an input can

be extracted without any motor involvement (such as in the

case of most SL or AGL tasks). However, some SL tasks

specifically involve active motor responses to stimuli

(such as in the case of motor sequence SL, best exemplified

by the serial reaction time (SRT) task, e.g. [62]). Whether

such motor activity results in non-overlapping sets of compu-

tations in extracting statistical structure is then another open

question awaiting future research (see for example [63] for

a discussion).

Mapping sentences typically start small and grow bigger as

empirical investigation progresses. Our initial proposed map-

ping sentence, therefore, does not preclude the possibility

that other dimensions may be relevant for understanding SL

ability. Possible additional candidate facets could be, for

example, basic perceptual dimensions (colour, line orientation,

etc.; e.g. [38]), full versus quasi-regularity (see [45] for discus-

sion), implicit versus explicit learning settings (e.g. [64]), or,

relatedly, unsupervised versus supervised learning settings

(see [65] for a discussion of the role of feedback in perceptual

category learning). An additional factor that was shown to

affect SL performance is the rate of presentation—with oppo-

site effects of both the inter stimulus interval and the actual

stimulus duration on SL performance in the visual versus

auditory modality ([35,36]; but see [66]). Whether rate of pres-

entation constitutes a separate facet, or simply affects

peripheral aspects to SL such as the encoding of individual

elements, with different constraints in different modalities

(see [11]), deserves further investigation.

Defining a mapping sentence as a working hypothesis for

studying individual differences in SL enables theoretical dis-

cussions regarding how and why specific SL components

modulate specific sub-components of other cognitive abilities,

given their overlapping hypothesized computations. This

makes the logic of choosing specific SL tasks for a given

study more transparent, and allows a clear interpretation of

the findings. For example, different components of linguistic

phenomena most likely involve more than one type of under-

lying SL computations. Acquiring phonotactic constraints of a

language requires registering both transitional and distribu-

tional statistics7 of phonemes in the speech stream via the

auditory modality [67], while learning to read in L1 or L2

involves assimilating transitional statistics of letter sequen-

ces in the visual modality, but also aggregating systematic

correlations between letters and sound, and between letter

sequences and meaning through morphological form (see

[68] for discussion). The mapping sentence above thus

allows for more refined discussions of the components

involved in each linguistic capacity and its relation to SL.

Importantly, a mapping sentence for SL not only dissects

the outcome cognitive phenomena in terms of their different

statistical computations, but also points to tasks that could

(or should) be used to measure SL as predictors of a specific

ability. To date, the arsenal of tasks tapping SL capacity is

impressively varied: in addition to those reviewed in table 1,

tasks, such as the SRT (e.g. [69]), contextual cuing (e.g. [70]),
tone detection (e.g. [71]), or Hebb repetition task (e.g. [72]),

are all considered to be proxies of SL, because they all involve

learning statistical regularities. The advantage of a mapping

sentence is that it provides a priori criteria for selecting one of

the many available tasks for a given study, specifying

the inter-relations between them. For example, in contrast

with tasks such as visual SL or SRT that tap the extraction of

transitional statistics, tasks such as contextual cuing require

registering the distribution of stimuli to learn the repeated pat-

terns, whereas tasks such as AGL involve both learning of units

defined by transitional statistics (see, e.g. [73]), as well as their

distributional statistics [43].

So far, we have advocated a research strategy that requires

researchers to be very explicit about what specific compu-

tations are involved in a given SL task and their predicted

outcomes. However, if the target of research is to assess the

overall SL capacity of an individual as defined by the mapping

sentence, as well as its predictive validity, the proposed map-

ping sentence provides specific guidelines for developing

novel SL tasks to cover a wide range of SL components.

Here, we propose that if SL is indeed a multi-faceted construct

involving different types of computations with substantial

non-overlapping variance, then this capacity should be

measured and assessed by a variety of different tasks. Much

like in the measurement of other complex constructs (e.g. the

g factor measured by WAIS [74]), accurate estimation of

multi-faceted constructs involves a large battery of tasks,

each covering different parts of the variance. But note that in

contrast with general intelligence, which has been mapped

through decades of extensive research, the dimensions of SL

as an individual ability are yet to be empirically established.

Our mapping sentence attempts to offer a preliminary approxi-

mation of the possible facets of SL, serving as springboard for

such research. At this point, we argue that current evidence

points to SL as a multi-faceted individual ability. Selecting

tasks as proxies for this ability thus requires an integrative

approach with explicit discussions of the specific components

that are being tapped.
4. Are standard task test scores a good proxy of
statistical learning ability?

The vast majority of studies tracking individual differences in

SL employ the same tasks that were originally designed for

group-level studies. Here, the underlying assumption is that

the outcome measure of performance in the task would

serve as a good proxy or indicator of the theoretical construct:

individual SL ability. We see two problems with this assump-

tion. First, from a methodological perspective, although the

typical SL tasks can reliably estimate the mean performance

of the sample as a whole, they are often not sensitive

enough to estimate a given individual’s SL ability. Second,

as we outline below, from a theoretical perspective, the struc-

ture of the tasks often intermixes outputs of different SL

computations. This practice is likely to confound cognitive

capacities that are orthogonal to SL, while also potentially

lead to interference effects that mask the true capacity of SL.

(a) Psychometric weakness
A task that is suitable for measuring individual capacity must

show substantial between-individual variance and this
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Figure 1. The factors contributing to SL task performance, as measured by standard offline measures. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160059

6

variance must be highly reliable. If not, the task cannot differen-

tiate between good and bad learners, and cannot reliably

predict other cognitive capacities. As we have recently argued

[12], most SL tasks that have been used for group-level studies

do not withstand psychometric scrutiny. This is owing to a

number of shortcomings, such as insufficient number of test

trials or the difficulty of the task, which result in a large part

of the sample performing at chance, and the lack of variability

in test item difficulty. Together, these psychometric weaknesses

lead to tasks tapping mainly error variance rather than variance

related to SL capacity (see [12] for extended discussion and

possible solutions). Although this state of affairs did not

hinder demonstrations of learning across a full sample of par-

ticipants, it constitutes a formidable obstacle to individual

differences studies.
(b) Structural confounds
At present, most SL tasks are based on a passive familiarization

phase, in which stimuli representing a set of regularities are

presented to participants (e.g. a continuous stream of shapes

or syllables organized in pairs or triplets in visual and auditory

SL, a sequence of ‘grammatical’ sequences in AGL, etc.). Once

the familiarization phase is over, it is followed by a test phase

that estimates participants’ learning of the statistical properties

of the previously presented stream, typically through a series

of 2AFC responses. We will refer to these measures as offline
measures of performance, as they do not track the discovery of

regularities from the stream while it unfolds, but attempt to

assess the extent of learning once it is over.

The theoretical challenges that offline measures implicate are

presented in figure 1, which outlines the components of

individual performance in the classical visual SL (VSL) task

(e.g. [3,17,36,75,76]; see [77] for a related approach).

As an example, consider a common variant of the VSL

task, in which 24 abstract shapes are organized into eight

triplets. During a familiarization phase, these triplets are

repeatedly presented in a continuous stream. The only

source of information regarding the composition of the tri-

plets in the stream lies in the TPs between the shapes in the

sequence: TPs between shapes within a triplet is 1, whereas

TPs of shapes between triplets is 1/7, for 8 triplets without

immediate repetition of a triplet. Following familiarization,

the test phase begins. It consists of a series of 2AFC trials,
each contrasting one of the triplets presented during learning

with a ‘foil’, a group of three shapes that never appeared

together in the familiarization phase (TPs ¼ 0). In each trial

of the test, one foil and one triplet are presented, and partici-

pants are asked to decide which group of shapes appears

more familiar, given the stream they have seen. The final

score that represents SL individual ability is the number of

correct responses in the test phase.

Figure 1 depicts a coarse-grained account of possible

factors and processes underlying the final observed perform-

ance in the task. On the left side of the figure (in blue), we

describe the processes involved in the familiarization phase,

while on the right side (in red) we list several additional factors

affecting the outcome of the test phase. Considering the com-

putation of regularities, we note that participants first have to

perceive and encode the individual elements of the stream

(factor A). As individuals substantially differ in the resolution

of their perceptual system, their differential ability to generate

perceptual representations under specific exposure constraints,

would inevitably contribute to the variance of performance in

the subsequent test phase (see also [11,45]). While encoding the

individual events, participants further have to discover the

statistical regularities in the stream (factor B), which is, in our

present context, the most central factor for SL research. These

two factors in combination (A and B) may result in sufficient

sensitivity to the statistical regularities to perform above

chance in the test phase. In addition, some experiments include

instructions or other demand characteristics that may lead par-

ticipants to try to detect repeated patterns (here, triplets) and

memorize them for later recollection. Although this type of

strategy is not required for successful SL, such additional expli-

cit memorization efforts will add yet another task component

(factor C) with considerable individual differences (e.g. [78];

see [79] for discussion).

Critically, the underlying implicit assumption behind the use
of offline measures is that the accurate signature of learning can
be retroactively traced, so that the test score would reflect the

two, possibly three factors (A, B and C ) contributing to SL

abilities, and these only. However, as we will argue, similar

to many offline tests in other fields in cognitive science

(e.g. [80]), the testing phase in SL tasks inevitably interferes

with what was learnt during familiarization, obscuring the

ability to accurately measure the net SL ability. Here, we

label this the interference component (factor i). This leads
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us to the following operationalization of measuring perform-

ance in the VSL task, using offline measures:

task performance ¼ f ðA� B½�C� � iÞ:

By this formula, performance in the VSL task would be

some function of the multiplication of the ability to encode

shapes (A), the ability to encode their co-occurrences (B),

and, in some cases, the ability to store the extracted triplets

(or patterns) in memory (C), minus (i), the degree of test

interference. We opted for multiplication of the first two/

three factors A, B, C, rather than simple additivity, because

zero ability in any of the components (inability to encode

shapes, inability to extract regularities, or inability to store

items in memory) would inevitably result in zero learning.

Note that this operationalization applies not only to the

VSL task, but can be generalized (with some obvious modifi-

cations given the exact task design) to other SL tasks

involving offline measurements. It enables us, however, to

explicate the critical shortcomings of this method to assess

SL capacity.
 0059
5. Shortcomings of current offline measures
The first problem that arises is that performance in offline

tests intermixes encoding efficiency, learning statistical regu-

larities and possibly individual memory constraints. As the

offline test is administered only after the learning phase in

which those processes occur, it cannot differentiate between

the relative contribution of these factors to the final learning

score. Naturally, one could dismiss this caveat arguing that

SL capacity inherently reflects the joint contribution of these

components. However, in terms of predictive validity, in

order to theoretically tie SL performance to specific cognitive

abilities, knowing where exactly a potential weakness lies

(encoding, learning or explicit memorization) is crucial.

This is especially critical for an explanatory theory regarding

how SL results in specific cognitive impairments, such as SLI,

dyslexia, etc.

The second problem is that offline measures, being set at

the end of learning, do not provide any information regarding the
learning dynamics across time. As no data are collected during

the learning phase, offline measures simply miss a large part

of the action (this is a key part of the motivation for the AGL-

SRT task developed by [20,31]; see also [81] for an individual-

differences SRT study). Learning dynamics are important for

two reasons. First, they provide insights regarding the speed

of learning (i.e. how fast a given individual is in picking-up

the statistical properties of the input), in addition to the

extent of his/her learning (i.e. how much of the underlying

structure did he/she learn in a pre-defined time period?)

From a theoretical perspective, both speed and degree of

learning are useful markers of a participant’s SL ability. In

addition, learning dynamics can provide valuable insights

regarding the shape of the learning trajectory—for example,

it can be used to examine whether knowledge is acquired

gradually (reflected by a linear/logarithmic learning trajec-

tory), or whether learning is characterized by a sudden

burst in performance (i.e. step function).

The third problem is that the post hoc nature of the offline test
inevitably introduces testing interference and confounds. For

example, to allow for sufficient test items and to improve the

resolution of performance scores, patterns and foils are
typically repeated throughout the test phase several times.

These repetitions effects interfere with learning, thereby blur-

ring the methodological separation between intended

learning during familiarization and unintended learning that

occurs during the test phase.8 It is impossible to know

whether responses reflect information acquired during learn-

ing or of overriding information presented by the repeated

test items (see [12] for discussion).
6. The promise of online measures
The main motivation for using online measures is to track learn-

ing throughout the familiarization phase as it unfolds, which

alleviates most of the caveats introduced by offline measures.

As such, online measures of SL carry the promise of better resol-

ution on multiple levels. First, from a theoretical perspective,

they can differentiate cognitive processes that relate to the per-

ceptual encoding of input elements and the learning of their

distributional properties, from processes that use this infor-

mation during a subsequent test. This makes it possible to

identify the contribution of each of these components to SL per-

formance. Second, online measures provide information

regarding learning dynamics, reflecting how fast each individual

learns the statistical properties of a stream, as well as indicating

his/her learning trajectory. Third, by gathering a maximal

amount of information (by tapping the full learning session)

and by avoiding the interference introduced by the test phase,

online measures have the promise of higher ‘psychometric

resolution’, resulting in more reliable measurements.

Operationally, we define online measures as examining

participants’ responses throughout the learning process.

A typical example is the classic SRT task, where implicit learn-

ing of a repeated sequence of digits is monitored. The online

measure, the time taken to press a given key corresponding to

a given digit, reflects the underlying assumption that faster

motor responses are expected for predicted sequences com-

pared with random ones. As predicted events result in faster

responses, the trajectory of learning can be traced in this task.

These principles, however, can be easily applied to classi-

cal SL tasks. Consider for example the above VSL task.

A simple modification can be introduced into the task to

yield useful online information (see [83] for an action-

sequence version, and [84] for visual AGL). Rather than

asking participants to passively watch a stream of visual

shapes, which appeared on the screen at a fixed rate of pres-

entation, they are asked to advance the stream of shapes by

themselves, at their own pace, by pressing the spacebar

(much like in the self-paced reading paradigm [85]). The

assumption is that learning the TPs between shapes in the tri-

plets will result in faster bar pressing for predicted shapes

(second and third shapes of the triplet) relative to unpre-

dicted shapes (the first shape of each triplet). This makes it

possible to track the detailed time-course of learning. RT

differences between predicted and unpredicted stimuli have

also been demonstrated in other tasks in auditory [86] and

audio-visual SL [20,31,32,56]. Importantly, online measures

of SL have been found to correlate with sentence processing

in L1 [20,31], providing preliminary evidence regarding its

predictive validity.

But note that the development of online measures of SL still

requires extensive research. First, it is yet to be shown whether

the existing online measures of learning provide reliable
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measures of individual performance, because no studies to date

have examined the reliability of such measures (see by contrast,

the reliability coefficients of offline measures recently reported

in [34]). Second, existing studies present mixed reports regard-

ing the correlations between online and the standard offline

measures of SL (high correlations reported in [84], but zero cor-

relations reported in [20,86,87]). Low correlations between

offline and online measures in the same task could reflect

theoretical issues (e.g. tapping explicit versus implicit knowl-

edge [88], or tapping different components of SL variance

[20]). However, such a state of affairs might also be owing to

an inherent low reliability of online measures, either because

they are unstable or inaccurate. A third issue in the develop-

ment of online measures is that some online tasks may

actually contaminate learning—for example, it was shown

that in the SL click-detection paradigm (first proposed in

[86]), the mere presence of clicks in the familiarization stream

hinders learning owing to its taxation on attentional resources

[87]. These issues need to be resolved by further research if

the promise of the higher-resolution online measures is to be

realized in future SL studies.
9

7. Concluding remarks
The theoretical interest in SL originally emerged as a potential

domain-general alternative to domain-specific approaches to

language. Rather than assuming an innate and modular

human capacity for processing linguistic information, SL was

offered as a general mechanism for learning and processing

any type of sensory input. In line with this view, individual

performance in SL tasks was systematically shown to correlate

with an array of linguistic abilities. Here, we have suggested

that further advances in this research enterprise require a

deep mechanistic understanding of the precise interrelation-

ship(s) between linguistic performance and SL ability, where

SL as a theoretical construct is unpacked, no longer treated as

a unified ‘black-box’ entity. On this view, empirical and mod-

elling work should provide a priori hypotheses regarding the

set of computations that underlie the learning of specific stat-

istical regularities, within different types of input, in different

modalities, taking into account their neurobiological con-

straints. This will allow for clear and testable fine-grained

predictions that tie particular linguistic (and potentially other

cognitive) abilities to specific SL computations. In the same

vein, different experimental tasks impose different constraints

on learning, thereby implicating different learning mechanisms.

Transparent discussions regarding the specific computations

involved in each SL task, its relations to other SL paradigms

and the strategies that learners might use to learn a given stat-

istical structure are necessary for establishing the theoretical

link between performance in the task and the cognitive function

it is supposed to predict. On the methodological level, such
finer-grained hypotheses would call for more refined measures

of SL that track SL performance more directly, providing a

richer set of data regarding the processes involved in SL. In

line with these aims, this paper offers a preliminary

taxonomy of SL phenomena and outlines methodological

guidelines that can serve such future research.
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Endnotes
1Admittedly, some coarse-grained taxonomy between AGL and SL
tasks exists, so that AGL tasks are typically selected to examine syn-
tactic abilities (e.g. [19]).
2That learners display sensitivity to TPs does not necessarily entail that
the underlying computational mechanism of SL explicitly represents
TPs between sequential elements. Indeed, alternative theoretical
accounts assume that the seeming sensitivity to transitional statistics
emerges from chunking due to the repetition of groups of elements
(e.g. [32,46–48]; see also [49]).
3Importantly, though, comparing potentially different kinds of com-
putations in correlational designs requires careful attention to the
detailed probability structure of such computations. For instance,
when controlling for probability of occurrence between dependen-
cies, Vuong, Meyer & Christiansen [56] found that adjacent and
non-adjacent dependencies could be learned simultaneously.
4Note that computations related to different values within a facet of SL
mayoperate in parallel. Indeed, there is compelling evidence that learners
can exploit more than one source of statistical information at the same
time (e.g. [55,56,59]), although sometimes at the cost of interference [60].
5Because sensory information related to SL phenomena is mostly
visual or auditory, the tactile modality is omitted for the sake of
simplicity.
6Here we do not argue that verbal stimuli are special in the sense that
they require a hardwired specific neurobiological mechanism. Rather,
verbal stimuli (e.g. syllables) differ from non-verbal stimuli (e.g.
tones) in the sense that they involve extensive prior exposure,
which inevitably effects learning.
7Note that distributional and transitional statistics overlap given that to
compute transitional probabilities (e.g. between phonemes), the learner
needs to keep track of the frequency of phonemes and phoneme pairs
(or bigrams). For example, the forward transitional probability of pho-
neme Y following phoneme X is computed as frequency (XY)/
frequency (X), requiring the learner to register both the distribution
of biphone pairs (XY) and that of the individual phonemes (X).
8The potential for learning during test has long been known in the implicit
learning literature and thus a number of AGL studies have employed
no-learning control groups to factor out potential effects of such learning
on test performance (e.g. [4]). Note also that in some paradigms research-
ers have tried to mitigate the effect of learning/interference during the test
phase by interleaving several tests with re-familiarization phases (e.g. in
perceptional adaptation paradigms, see [82]).
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