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Statistical approaches to emergent knowledge have tended to focus on the

process by which experience of individual episodes accumulates into general-

izable experience across episodes. However, there is a seemingly opposite,

but equally critical, process that such experience affords: the process by

which, from a space of types (e.g. onions—a semantic class that develops

through exposure to individual episodes involving individual onions), we

can perceive or create, on-the-fly, a specific token (a specific onion, perhaps

one that is chopped) in the absence of any prior perceptual experience with

that specific token. This article reviews a selection of statistical learning studies

that lead to the speculation that this process—the generation, on the basis of

semantic memory, of a novel episodic representation—is itself an instance of

a statistical, in fact associative, process. The article concludes that the same pro-

cesses that enable statistical abstraction across individual episodes to form

semantic memories also enable the generation, from those semantic memories,

of representations that correspond to individual tokens, and of novel episodic

facts about those tokens. Statistical learning is a window onto these deeper

processes that underpin cognition.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
Statistical learning, as a field, has generally been concerned with mapping individ-

ual learning episodes onto abstract internal novel representations (or the labels that

refer to such representations). Here, we shall focus on the reverse issue: how, from

abstract (semantic) representations, we generate novel individual (episodic) rep-

resentations on-the-fly, during language comprehension. In the context of

cognition, more broadly, this corresponds to the generation of episodic ‘tokens’

from semantic ‘types’. The latter correspond to semantic representations of typical

things or the typical events that they take part in, such as the class of onions and

knowledge of the events they typically participate in (henceforth, the term ‘seman-

tic memory’ will be used in a narrow sense, to refer to what elsewhere is referred to

as conceptual knowledge; [1]). The former are the specific examples or instances of

events or things that we can perceive or create on-the-fly during language compre-

hension, such as the specific onion referred to in ‘she peeled an onion, and chopped

it finely’ (cf. the episodic/semantic distinction; [2]).

The term ‘statistical learning’ covers a number of diverse empirical phenom-

ena, domains of study and associated experimental paradigms. The article briefly

considers the role of abstraction in statistical learning before asking: What are the
consequences of statistical learning beyond simply acquiring knowledge of the statistics
of the input? Might the mechanisms underpinning statistical learning underpin the
relationship between semantic types and novel episodic tokens? The claim, building

also on concepts from research on episodic memory, will be that they do.
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The aim of this article is to identify the computational prin-
ciples that underpin our ability to construct, and indeed

experience, tokens on-the-fly (‘tokenization’—cf. [3]). Compu-

tational and behavioural data will be reviewed that bear on

the issue. It should be noted that not all of these data are

from models or behavioural explorations that were originally

intended to bear on episodic and/or semantic memory—

sometimes, they were; other times they were not (it should

be clear from the text which are which). But in the latter case,

what will count are the underlying principles or properties,

of the model or data, which combined together will provide

a conceptual model (as distinct from an implemented model) of

tokenization and the interplay between episodic and semantic

memory in (certain kinds of) language comprehension.
.R.Soc.B
372:20160060
2. Statistical learning, abstraction and the
distinction between episodic and semantic
knowledge

A hallmark of statistical learning is that experience of individual

episodes accumulates into emergent sensitivity to the statisti-

cal properties of the input contained within each episode.

Abstraction can be operationalized here as the emergence of

sensitivities that (probabilistically) reflect the contexts in

which each element of a stimulus occurs (and the frequency

with which each such element occurs). The term ‘abstraction’

is often used to refer to two different, but often related, con-

cepts: on the one hand, abstraction is the accumulation of

information across individual learning episodes that gives rise

to knowledge which, although not necessarily contained

within any one such episode, captures (statistical) regularities

across those episodes (what [4] refer to in their model of statisti-

cal learning as a process of ‘integration’; see [5]). Where such

regularities include co-occurrence or conditional statistics,

their encoding constitutes a probabilistic encoding of the con-

text in which a given element occurs. On the other hand,

‘abstraction’ is also commonly used to describe the process by

which individual details of an episode are lost (potentially

resulting in representations that are independent of the sensor-

imotor instantiation of each experience). For example, you

know what a dog is, but may not recall all instances of the

dogs you have encountered, nor the corresponding episodes,

which nonetheless have contributed to your concept of dogs.

In some computational formalisms (e.g. ‘emergentist’

approaches to cognition based on interactive activation and

competition; [6]), these two kinds of abstraction come about

through a single mechanism and are reflected in the nature of

the knowledge that is encoded within the system (see [7] for

explanation). Typically, such formalisms include computations

across (often distributed) representations of the input, based on

the principles of associative and error-driven learning, in

which input at time 1 predicts one or more inputs at time 2

or beyond in proportion to the frequency of those inputs and

of their co-occurrence (cf. connectionist accounts of statistical

learning; [8,9]). These formalisms are ‘emergentist’, because

internal representations develop, or emerge, gradually through

exposure to successive inputs. In other formalisms, such as the

instance-based approaches to episodic and semantic memory

([10,11]; both based on the Minerva framework; [12]), the emer-

gence of statistical regularities and the loss of detail come about

through distinct mechanisms. These formalisms often involve
memorization of fragments or ‘chunks’ which serve as the

basis for subsequent similarity matching ([13–15]; cf. [4]).

Within such approaches, statistical abstraction comes about

through properties of the retrieval process (which matches

retrieval cues against stored fragments) rather than, as in emer-

gentist approaches, properties of the encoding. Whereas the

encoded representations in emergentist systems gradually

evolve in response to subsequent input (reflecting a form of

fine-tuning of the developing semantic categories), encoded

representations in instance-based systems remain stable

(beyond any decay mechanism; see [15] for an example of a

chunking model in which the encoded chunks strengthen or

decay through associative learning mechanisms).

Abstraction and generalization (applying to novel

episodic content what has been learned from the training

input)1 can be related to the distinction between episodic

and semantic memory. Accounts of semantic memory (nar-

rowly defined—see above) typically assume an experiential

(and often statistical) basis for semantic knowledge [16,17].

Within such accounts (putting aside, for a moment, the

instance-based accounts), episodic experience (the input) is

abstracted over to generate semantic knowledge that captures

the statistical regularities of that experience. This semantic

knowledge is the basis for subsequent generalization. But

how does that process of abstraction proceed? The aim here

is not to detail all possible accounts of abstraction (or to

decide between the instance-based or emergentist approaches).

Instead, it is to identify a critical characteristic of episodic

experience that underpins both the route from episodic experi-

ence to semantic memory and, as we shall see, the reverse route

also—from semantic memory to episodic tokenization. To cut

the longer story short, it is the indiscriminate association of

each element in an episodic context with each other element

in that context (relational binding; cf. [18]). This characteristic

can be deduced from any study of statistical learning (how

can the cognitive system ‘know’ which statistical dependencies

matter if it does not evaluate, or at least sample from, all pos-

sible associations?). A study by Smith & Yu [19] exemplifies

this characteristic in the context of the acquisition of object–

label mappings, and the study’s simplicity most easily

reveals the utility of indiscriminate association as a basis

for abstraction and generalization.

Smith & Yu [19] asked how it could be that infants observe

many objects in the environment, simultaneously hear many

words potentially referring to those objects, and yet somehow

work out which words should be paired with which objects.

In effect, they asked how information abstracted across individ-

ual learning episodes could develop into specific object–label

mappings that could be applied in (i.e. generalized to) novel

episodic settings. Specifically, they asked whether knowledge

of individual object–label mappings would arise from the stat-

istics with which, across trials, multiple objects would co-occur

with multiple labels. In each learning trial of their study, a pair

of objects were shown to infants between 11 and 15 months of

age, accompanied by a pair of words. The problem was that, on

each trial, the infant could not possibly know which of the two

objects should be paired with which of the two words (the

‘Gavagai’ problem; [20]).

Smith & Yu [19] reasoned as follows: if in the first learning

trial, the two objects were a bat and a ball, and the two words

were ‘bat’ and ‘ball’ (in the study, nonsense objects and non-

sense words were in fact used), the ball could, in principle,

become associated both with ‘bat’ and with ‘ball’, and the bat
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could similarly become associated both with ‘bat and ‘ball’.

Thus, on the basis of a single trial, the infant could not know

which was the ‘correct’ pairing (given the potential to indiscri-

minately pair each object with each label). Consider, now, a

second trial in which the two objects were a dog and a ball,

and the two words were ‘ball’ and ‘dog’. In this case, analogous

to the first, the dog could, in principle, be associated with ‘ball’

and with ‘dog’, and the ball could also be associated with

‘ball’ and with ‘dog’. On a purely associative learning account

(there are others, but this is the most straightforward) in which

statistical learning occurs across trials, and critically, in

which each object would be indiscriminately associated with

each label (and vice versa), the ball would be associated with

the label ‘ball’ twice as often as any other object was associated

with this same label. The strength of this ball–‘ball’ association

would, therefore, be greater than any other association with

the ball or with the word ‘ball’. In the actual experiment,

a task after the learning phase revealed that infants had

indeed learned the cross-trial, i.e. cross-situational, statistical

associations between objects and their corresponding labels.

But what has this to do with the distinction between epi-

sodic and semantic memory? In Smith & Yu [19], each trial

constituted an episode, with the accumulation of statistical

(co-occurrence) information leading to a form of abstraction

in which the relationship between one particular label and

one particular object across trials presumably became more

salient than their relationships to other labels and the objects

with which they incidentally co-occurred on individual trials.

Abstraction can be operationalized here as an accumulation

of experience across trials which leads to generalizable

knowledge (the ‘correct’ object–label mappings) not avail-

able to the organism at the start of this accumulation, and

in which episode-specific details (including non-systematic,

accidental, co-occurrences, including the ‘incorrect’ object–

label pairings as well as the object–object and label–label

pairings) become less salient than more systematic details,

reflecting structure (or regularities) across episodes. More-

over, to the extent that object–label mappings are a part of

semantic memory (the mappings, once acquired, are rela-

tively constant, regardless of the episodic contexts in which

the objects and/or their corresponding labels occur—hence

‘semantic’), the transition in this study from individual epi-

sodes to semantic memory came about through a process of

statistical abstraction, with statistical regularities emerging

across successive trials.

In the following, we briefly consider a variety of com-

putational models of abstraction that embody this same

indiscriminate association of each ‘thing’ in an episodic context

with each other thing. Our theoretical treatment of tokeniza-

tion, which can be thought of as the ‘reverse’ of abstraction

(insofar as novel episodic representations are generated from

pre-established semantic representations), will rely heavily on

this same principle.
3. From episodic to semantic memory: (some)
computational principles

There exist a variety of computational and statistical models of

memory which embody principles relevant to abstraction and

the episodic/semantic distinction. In Lund & Burgess’s [21]

hyperspace analogue to language (HAL), a semantic space

was generated by calculating co-occurrences between all
words in a language corpus (within a sliding window of fixed

width) and treating the ensuing matrix as a high-dimensional

space that was then reduced using principal components analy-

sis to generate a semantic space in which proximity within the

space corresponded to semantic similarity. The contents of the

sliding window constituted the episodic context of each word

it contained, and the calculation of co-occurrence within the

window was a largely indiscriminate process that associated

each word with each other word. The principles of HAL are

not unlike those described in Elman’s work with simple recur-

rent networks (SRN: [22]): Elman’s network learned aspects of

the sequential co-occurrence statistics presented to it in short

language-like sequences. It did so by having to predict at each

moment in time what the input would be at the next moment

in time. The discrepancy between its prediction and the actual

input at that next moment drove changes to the weights on its

internal connections. The result of this error-driven learning

was the emergent encoding of a similarity space in which

words referring to similar objects or actions were located more

closely to one another than to words referring to dissimilar

objects or actions (see also [16]). Both HAL and the SRN pro-

duced reasonable similarity spaces because dependencies in

language map onto dependencies in the real world: e.g. the

kinds of words that occur after a verb such as ‘eat’ are going

to refer to the kinds of objects that in the real world can be

eaten; thus, capturing their dependency in language captures

the semantic similarity between their real-world referents.

Other corpus-based approaches (e.g. BEAGLE; [23]; LSA; [24])

capture such semantic similarities in similar ways (see [25]

for a brief review of distributional models of semantic

memory). In these cases, the dimensional reduction of the

corpus statistics to generate a semantic similarity space constitu-

tes the abstraction from individual episodes (of co-occurrence)

to generalizable experience encoded in a multidimensional

semantic space (semantic memory).

Altmann & Mirkovic [26] described how a modified

version of the SRN [27–29] might support the mapping from

unfolding language to event representation (see also

[30–32]). We claimed that this mapping manifests as the ability

to predict both how the language will unfold, and how the

real-world event described by that language would unfold if

it were being experienced directly.2 Whereas Elman’s network

consisted of a single set of input units, hidden (and copy-

through-time or recurrent) units, and output units, the

modified SRN contained two sets of input units (one for

each domain of input), two layers of hidden units (the

second connected to a recurrent layer that fed back into this

second layer) and two sets of output units (again, one for

each domain). Both sets of input units fed into the same

(first) hidden layer. We argued that the representational sub-

strate (the hidden layers) common to both the linguistic and

non-linguistic domains allowed the predictive process to

operate over variable time frames and variable levels of rep-

resentational abstraction. Here, like before, ‘abstraction’ refers

to the emergence of sensitivity to predictive contingencies

(i.e. distributional statistics) through time, but importantly,

it also includes sensitivity to contingencies through levels of

(emergent) hierarchical representation (in which higher-level

emergent representations can be composed of lower-level

representations that vary across shorter time frames; cf.

words-to-syllables-to-phonemes).

The relevance to the episodic/semantic distinction is

that the emergent ‘representations’ of the SRN are akin to
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semantic memory—they can be conceived as long-term,

potentially hierarchically organized, knowledge abstracted

across individual episodes of input (encoded in the weights

on the connections between individual units within the net-

works). Episodic memory in the SRN is a more complex

matter: input to the SRN feeds to the hidden layer(s) whose

input is not simply this current input, but also a copy of

its own immediately prior activation state. This prior acti-

vation state encodes not only the ‘echoes’ of prior states

(and their concurrent inputs), but also longer-term semantic

knowledge that emerged through gradual changes in the net-

work’s internal connection strengths (as determined by the

goodness-of-fit between the network’s output and, for

Elman’s prediction task, the next input). Episodic and seman-

tic knowledge are thus combined through time, with no clear

separation between the two. Short-term changes in connec-

tivity essentially encode the episodic context superimposed

on both the prior context and the longer-term encoding of

semantic memory, itself gradually evolving in response to

those individual episodes. But the critical principle here,

beyond the relationship between emergence and abstraction

in the SRN (which relies, again, on initially indiscriminate

associations; see [7] for discussion), is the idea, enshrined in

recurrence through time, that the current input and its

concurrent (episodic) context can become combined, or associ-

ated, not simply at a single moment in time, but across time with

prior inputs and prior episodic contexts. Moreover, modulated

by the network’s internal connectivity, everything in the cur-

rent input can potentially be associated with everything else

in the current input or elsewhere in the network’s represen-

tational space (a by-product of spreading activation across

time). Whether those associations have any impact on that

representational space (i.e. become more lastingly associated

with it or change it) depends on their statistical relationship

to the information encoded within that part of the space.

As a mechanism, this has the ingredients required to support

the transition, assumed to underpin the Smith & Yu [19]

data, from initially indiscriminate associations to subsequent

systematic cross-domain mapping.

The SRN is not, and was never intended to be, a model

of the relationship between human episodic and semantic

memory. Such models, typically based on complementary

learning systems (CLS: [36]), postulate a clearer distinction

between the two than is manifest in the SRN. Unlike the

SRN, these models tend to take inspiration from the neurobiol-

ogy of the neocortical and hippocampal structures in the brain

that support memory ([36–40]; see [41] for a non-connectionist

model of episodic and semantic memory that is also based on

hippocampal function). A basic tenet of CLS is that hippocam-

pal structures support the rapid encoding of distinct episodes

(i.e. episodic memory) through large changes in connectivity

both within hippocampus and between hippocampus and

neocortex, whereas smaller changes in connectivity within neo-

cortex support slow encoding of regularities encountered

across multiple episodes (i.e. semantic memory). The two

systems are also complementary in the sense that neocortex

captures similarity through pattern overlap, whereas hippo-

campus maintains the distinctiveness of episodes by

encoding them as more separate, sparse, patterns. Recently,

Kumaran & McClelland [38,40] have argued that ‘big loop’

recurrence between areas CA3 and CA1 (within ‘hippocampus

proper’) and entorhinal cortex (essentially, the input to, and

output from, hippocampus; the ‘interface’ to neocortex) is an
essential architectural ingredient for several of the hippocam-

pus’s abilities. These include (among others) its ability to

discover higher-order (i.e. abstract) structure across episodes;

to generalize (e.g. to form novel associations between items

that were not co-present—see also [40]); to encode individual

experience as arbitrary combinations of elements; and to arbi-

trarily recombine elements in memory during ‘constructive’

memory (cf. [42,43]). Interestingly, Kumaran & McClelland

[38] implemented their model of hippocampal function in

an architecture that has properties of both exemplar/

instance-based models and connectionist (error-driven

associative learning) models.

In the following, we revisit many of the phenomena and

principles described above, but the focus now shifts to con-

sideration of their application to the challenge of tokenization.
4. From semantic memory to episodic realization
The studies described thus far, like the majority of studies on

statistical learning (broadly construed), focus on the route

from input (i.e. episodes) to abstraction, i.e. the experiential

basis for abstract representations that can support generaliz-

ation of that prior experience to novel contexts. However,

there is one aspect of language comprehension that presents

a particular challenge to classical accounts of episodic/

semantic memory and abstract representation: we can use

language not simply to refer to an event that did occur, in

which case language serves as a cue to the retrieval from

memory of the appropriate episode, but to refer to an event

that did not, as in ‘the woman chopped an onion. Then,

she fried it’ (assuming that this does not correspond to any

specific memory the reader can recall). In this case, we instanti-

ate in the first sentence (and hence, in our mental representation

of the corresponding possible world) a woman, an onion and

changes in the state of the onion (for discussion of object state

change, see [44–46]). In the second sentence, we refer back to

that onion in the context of its chopped ‘version’ being fried.

Thus, when comprehending the first sentence and the corre-

sponding event, we need to access semantic memory to

instantiate as episodic entities bound in some temporary time-

frame the woman and the onion (at a minimum). How do we

do this?

Moreover, we have to bind the distinct states of the onion

into distinct temporally separated episodes (first the episode

that transforms its state from intact to chopped, and then

the episode that transforms it from raw to fried)3. Thus, whereas

language learning (and experience more generally) may

require the route from episodic experience to semantic

representation (via abstraction), language comprehension
requires the route from semantic to episodic representation.

Whereas the literature on episodic memory (see [48] for

review from a neuroscientific perspective) has focused on epi-

sodic representation as it applies to the encoding and

recollection of experienced events, here we focus on episodic

representation insofar as language can evoke novel episo-

dic instances, as in the chopping example above ([43] refer

to such evocation as ‘construction’ or ‘scene construction’).

In this regard, language is able to take the comprehender

beyond the confines of memory.

Can insights from statistical learning inform accounts of

this route from semantic memory to novel instantiation of epi-

sodic tokens? Studies with infants and with adults demonstrate
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that statistical learning can occur in the absence of any instruc-

tion to extract statistics or look for patterns (within or across

sensory modalities), and on the basis that, on any given trial

or exposure, it is not possible to know which dependencies/

patterns are critical and which are incidental; the learner

must, in effect, associate everything with everything else, with

the strength of each association changing, with continued

experience, to become a reflection of its utility in respect of pre-

dicting future associations. This is the associative learning

mechanism postulated by Smith & Yu [19] to explain their

results. This kind of indiscriminate association underpins

accounts of ‘relational memory’ and relational binding in episo-

dic memory ([18]; see e.g. [49] for review). As we shall now see,

it also underpins tokenization, whether through direct sensory

experience, memory retrieval, or language comprehension.

The challenge of tokenization, as set out above, is to

understand how, on hearing ‘The woman chopped an

onion. Then, she fried it’, we can instantiate novel episodic

representations corresponding to a woman and an onion in

its different states (intact, chopped, fried) even if we have

never experienced this particular woman and this particular

onion first-hand. But, in fact, the same instantiations of

these entities and their corresponding states have to be cre-

ated if we directly experience a woman (whom we may or

may not know) chopping an onion and then frying it: the epi-

sodic experience of the woman, in this case, consists of

perceptual features which are bound both to each other and

to semantic features (semantic memory) via hippocampal–

cortical interactions (see e.g. [48] for review). The perceptual

features are not just those of the woman, but of the spatial

context, and other elements also in that context. In effect,

discrete sets of perceptual features are associated with one

another despite the arbitrariness of their co-occurrence. So

in terms of direct (i.e. real-world) experience, the woman

becomes associated with incidental features of her context

in much the same way as the visual stimuli presented to

the infants in the Smith & Yu [19] study became associated

with whatever co-occurred with them (in that case, the two

spoken labels).

The perceptual features associated with the perceived

woman activate (and by association, bind to) the semantic

memory associated both with this particular woman (if

known to the viewer) and with women in general (although

as outlined in [50], only the contextually relevant details of

such general information will probably be activated). So, on

the one hand, tokenization relies on indiscriminate association

of perceptual (or other) features with other elements in those

features’ (sensorimotoric) contexts; and on the other hand, it

relies on more systematic associations between those features

and representations in semantic memory.4 However, there

is a third critical ingredient also: these distinct sets of associ-

ations have also to be grounded in time. This can be achieved if

we assume that the current context is accompanied by echoes

of contexts past, as afforded by recurrence through time (see

above for the discussion of models of hippocampal function

that include such recurrence). Recurrence through time

ensures that elements in the current context (i.e. discrete

sets of features, whether or not perceptually grounded) will

associate not simply with other elements in the shared con-

text, but with echoes of those (and other) elements from

previous contexts. A corollary of such recurrence is that as

time moves on, what had been the current context becomes

itself an echo with which elements in its future can also
associate. Conceptually, this is similar to the activation

dynamics across time seen in the SRN; the activation state

of the network reflects the modulation of activation owing

to the current input by activation owing to the prior inputs.

This, in turn, means that changes in connectivity at any

moment in time are due to the interactions between the

input at that time and the input at past times; in effect,

these interactions bind the network’s internal representations

at one moment in time with its internal representations at

prior moments in time.

When we directly perceive the onion, the account of how

it becomes a ‘token’ (i.e. an episodic instance of a semantic

category) is the same: we associate it with other things in

the concurrent context, and with these and other things

from prior, spatio-temporally contiguous, contexts. That is,

we ground it in space (defined through location relative to

other objects in the context) and time. These associations

are partly systematic (to the extent that there may be predic-

tive contingencies between e.g. onions and chopping boards

which are consistent with past experience) and partly non-

systematic (i.e. accidental co-occurrences between the

elements of the concurrent and past contexts; e.g. the onion

and the cat that had slouched out of the room). In addition,

our episodic experience of the onion includes the systematic

associations between the onion’s perceptual features and

our abstract knowledge of onions as a class of thing (i.e. the

semantic memory of what onions are). When we see the

woman fry the onion after it has been chopped, spatio-tem-

poral continuity across the different states of the onion

allows us to infer (to use the term informally) that what is

being fried is episodically related to what had been chopped

(i.e. the episodic experience of the intact onion is bound

through spatio-temporal continuity to the episodic experi-

ence of the chopped onion and, subsequently, to that of the

onion being fried; e.g. [53])5.

However, what if there has been no such direct experience

when hearing The woman chopped an onion. Then, she fried it? In

this case also, just like with the direct experience of the actual

real-world event, there is an episodic experience (i.e. bound in

space and time) comprising a set of perceptual features bound

both to each other and to semantic memory via, one might

suppose, similar hippocampal–cortical interactions. The per-

ceptual features associated with the phrase ‘the woman’ do

not just associate with one another and with the semantic

knowledge corresponding to the meaning of the phrase; they

also associate with the incidental features of the accompanying

linguistic and non-linguistic context—the location, time and

other incidental features co-occurring in contiguous space–

time with the experience of that phrase (whether spoken or

written). Similarly, for the onion. The associations with the cur-

rent context create the phenomenological experience of the

word ( just as in the directly experienced analogue, these associ-

ations provide the basis for the conscious experience of the

woman or the onion). The ensemble of associations that include

the perceptual/semantic characteristics elicited by each word,

and the co-occurrences with other features of the current con-

texts (and past echoes) within which the word is perceived,

constitute the constructed ‘token’ of the woman, or the onion.

In terms of mechanism, this is just the same as when actually

seeing a woman in a context ‘tokenizes’ her.

Earlier, we distinguished between a route from episodic

experience to semantic memory and the converse route, from

semantic representation to episodic realization. It turns out,
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however, that the routes are not so different after all: in terms of

the phenomenology of (episodic) experience, and specifically

the experience of objects as instances of things, and of words

as instances of reference to things, the route travelled is essen-

tially the same. Relational binding with the context, essentially

a fast-mapping (i.e. one trial) associative process, is the basis

for the distinction between types (as encoded in semantic

memory) and tokens (the products of episodic experience).
 hing.org
Phil.Trans.R.Soc.B

372:20160060
5. Conclusions: a role for statistical learning in
understanding memory systems

Where we have ended up, discussing types, tokens and the

phenomenology of experience, may at first blush appear a

far cry from our earlier discussion of the cross-situational

disambiguation of possible word–label pairings. However,

the associative processes that underpin statistical learning

are not so dissimilar from the processes that may control

the episodic–semantic interface whether during language

processing or cognition more generally. These processes

include the relational binding of the elements in immediate

experience; the mapping of associative relations in semantic

memory to these associative relations in immediate experi-

ence; the abstraction across experience as the stripping

away of non-systematic associative relations (cf. the represen-

tations that ‘emerge’ in Elman’s SRN); and the ability to

apply that experience to novel situations with novel relations

(i.e. to generalize). Equally, there are aspects of (some kinds

of) statistical learning that appear less critical; sequential

structure in statistical learning paradigms may be important

for its parallels with structure in spoken language (or with

sequential structure in the visual domain) but may be ‘just

another’ example of structure amenable to error-driven associ-

ative learning. The parallels between processes of statistical

learning and those underpinning the relationship between

episodic and semantic memory suggest that accidental co-

occurrences (whether in or across time) are as important to

statistical learning as are systematic co-occurrences. They are

not ‘noise’ but are critical not just because, initially, the

cognitive system cannot know what is systematic and what is

accidental, but because, subsequently, this indiscriminate

association of one thing with another is the very basis for our

ability to distinguish between different instances of the same

kind of object, or between one instance of an object and another

instance of that same object.

Theoretically, the account of tokenization developed above,

based on relational binding, offers a novel perspective on

action and event representation, as well as some challenges.

If a chopped onion is associated with its prior intact self,

through relational binding across time, then it carries with it

its own ‘history’—of its states and changes to its states across

time (cf. ‘perdurance’ theories of object persistence; see

[53,54] for review). This creates a challenge: when selecting a

representation of that onion, multiple representations of that

onion in different states may be available, but only the situa-

tionally appropriate one must be chosen (e.g. when referring

to that onion before it was chopped). Hence, referring to an

object when it has undergone a change in state requires a com-

petitive process that selects from among multiple possible

alternatives (selecting one at the expense of others). We have

found across a number of studies precisely such competition

[44–46]. Moreover, we observe competition only between
different states of the same object token; we do not find compe-

tition between different object states when they are associated

with different tokens [46]. There are theoretical consequences

also of an object carrying with it its own history: What is an

event if not the spatio-temporally intersecting histories of the

objects that participate in that event? If events are indeed rep-

resented through intersecting object representations (given

that these represent their changing states), actions can be con-

sidered emergent representations abstracted across those

intersecting object representations [55]. As such, actions are

not foundational primitives of event representation.

The account developed above also allows for an interesting

prediction. It relies on the same mechanisms that underpin

the relational memory approach to episodic recollection and

hippocampal function [18], namely those mechanisms that

enable the formation of arbitrary associations between the

elements within an individual experience. These are typically

assumed to be hippocampal in origin [48,56]. The prediction,

then, is that damage to hippocampus should impair the ability

to recognize entities as tokens, and specifically to track changes

to those tokens across time. Evidence from patients with hippo-

campal damage suggests that, in the domain of language at

least, there are impairments in the ability to refer to individual

tokens, both in respect of the processes that enable referential

continuity and coherence from one sentence to another [57]

and in respect of the processing of pronouns such as ‘it’ or

‘she’ which refer to specific individual tokens [58]. However,

further research is needed to establish whether hippocampal

damage also impairs the ability to recognize that, for example,

a chopped onion is the same onion as the one that was intact

beforehand. It is unclear to what extent such an impairment

would manifest in day-to-day function: typically, not very

much would be consequential on whether it was indeed the

same onion, or a different one, and for this reason, such deficits,

if they do occur, may not be so obvious in patients with

hippocampal damage. Importantly, whereas tokenization

relies on relational binding, other aspects of comprehension

do not; they rely instead on non-arbitrary binding to pre-

existing knowledge and are supported by a variety of distinct

brain regions other than the hippocampal complex. For

language comprehension, these include regions most typically

associated with the ‘language network’ (e.g. inferior frontal

gyrus, the superior and middle temporal gyri, and the angular

gyrus; [59]) as well as other regions associated with the

integration of semantic knowledge, such as medial prefron-

tal cortex (cf. [60]) and perirhinal cortex (cf. [61]). These other

kinds of binding—in essence, the non-arbitrary aspects

of language processing—enable essentially intact language

comprehension in the face of severe hippocampal damage.

Given the role of the hippocampus in associative learning, in

relational and episodic memory, and as an interface to semantic

memory, theories of hippocampal function will increasingly

inform accounts of statistical learning (cf. [40,62,63]). In this

respect, it is relevant that the hippocampus is not a homo-

geneous structure, but contains substructures that appear to

support a ‘gradient of abstraction’, with more perceptually

grounded, spatio-temporally fine-grained, representational

properties in more posterior parts and less grounded, coarser-

grained, and more abstract representation towards more

anterior parts [64,65]. This suggests that more detailed

analyses of hippocampal activity could even be diagnostic

of the kinds of emergent abstraction that develop during

statistical/error-driven associative learning, as well as of the
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kinds of representation that are constructed on-the-fly during

language processing.

Taking a broader perspective on statistical learning allows

more detailed probing of cognitive function; not from the per-

spective of trying to understand how language may be

acquired from individual learning episodes, or visual input

made sense of (cf. visual statistical learning), but from the per-

spective of trying to understand the relationship between the

different learning and memory systems that underpin experi-

ence and memory, and abstraction and generalization (see

[66,67] for an example of this broader perspective, in which

sleep takes on a central role in statistical learning). The distinc-

tion between semantic types and semantic tokens is just one

small component in a broader theoretical landscape populated

by a wealth of relevant behavioural, neuroscientific and

computational data. The challenge is to abstract across it all.
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Endnotes
1Henceforth, ‘generalization’ will be used to denote the application
of knowledge in novel situations, often manifesting as overt behav-
iour. Often, the term is used to denote what is, in fact, a process of
abstraction (e.g. ‘generalizing across instances to infer a common
characteristic’), but for the sake of consistency we limit generalization
here to the application of knowledge (in novel situational or episodic
contexts), and abstraction to a form of induction (across experience)
of new knowledge.
2The model had originally been developed to explain cross-domain
transfer effects in artificial grammar learning [33]. In these cases, par-
ticipants exposed to sequences of auditory monosyllabic non-words
were able to classify sequences of novel arbitrary visual (graphical)
symbols according to whether they obeyed the same ‘rules’ that gen-
erated the syllables they had heard previously. Tunney & Altmann
[34] demonstrated that there are two dissociable mechanisms that
afford such cross-domain transfer of knowledge: one based on
abstract analogy of ‘repetition structure’ [35], in which a sequence
such as ‘jix pel jix sog’ can be mapped onto ‘þ *þ¼’ (novel symbols
were used, not the mathematical symbols shown here), and impor-
tantly, another based solely on computing, and mapping between,
statistical distributions of non-repeating elements (e.g. ‘jix pel het
sog’ onto ‘þ *�¼’ – unlike abstract analogy, this process requires
statistical abstraction across multiple exemplars to induce the statisti-
cal distributions). The model was developed specifically to explain
this latter case, i.e. the mapping of statistical patterns in one
domain, onto statistical patterns in the other.
3It is unclear whether these episodes are, in fact, ‘temporally separ-
ated’. There is, necessarily, continuity from one episode to the next,
and most likely their representations overlap. Temporal discontinuity
may manifest in their encoding as discontinuities in predictability of
episodic state across time (cf. the computational instantiation of event
segmentation theory described in [47]).
4The current account of tokenization differs from that developed in
the context of visual perception by Bowman & Wyble [3]; they
used the term ‘tokenization’ to refer to the process by which ‘types’
of perceptual feature (e.g. colour and orientation) are bound together
to create perceptual ‘tokens’ (visual objects)—cf. Zimmer and Ecker
[51]. Theirs is a model of visual attention, (visual) working
memory, and the attentional blink [52], and is not intended to
address the semantic type—episodic token distinction as used here.
5In fact, spatio-temporal continuity is not required to explain object
persistence across change: if the transition from intact to chopped is
occluded, the onion in its chopped state will activate semantic knowl-
edge of onions, in general, which will re-activate the episodic
memory of the previously seen intact onion (its recency gives it pre-
potency in respect of its activation state). This latter representation
will, by virtue of its co-activation with the currently seen chopped
onion, become associated through time with the chopped onion.
This form of semantically mediated associative/relational binding
may be sufficient to support the experience of object persistence
across changes in which the distinct states of the object are
each recognizable as belonging to the same semantic type. More
generally, semantic mediation enables non-spatiotemporally contigu-
ous elements to become a part of the ‘context’ associated with an
individual episodic token.
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