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3Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino 10125, Italy
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Various factors may impact the processes of diversification of a clade. In the

marine realm, it has been shown that coral reef environments have promoted

diversification in various fish groups. With the exception of requiem sharks,

all the groups showing a higher level of diversity in reefs than in non-reef

habitats have diets based predominantly on plankton, algae or benthic invert-

ebrates. Here we explore the pattern of diversification of carangoid fishes, a

clade that includes numerous piscivorous species (e.g. trevallies, jacks and

dolphinfishes), using time-calibrated phylogenies as well as ecological and

morphological data from both extant and fossil species. The study of caran-

goid morphospace suggests that reef environments played a role in their

early radiation during the Eocene. However, contrary to the hypothesis of a

reef-association-promoting effect, we show that habitat shifts to non-reef

environments have increased the rates of morphological diversification (i.e.

size and body shape) in extant carangoids. Piscivory did not have a major

impact on the tempo of diversification of this group. Through the ecological

radiation of carangoid fishes, we demonstrate that non-reef environments

may sustain and promote processes of diversification of different marine

fish groups, at least those including a large proportion of piscivorous species.
1. Introduction
Many factors may influence diversification processes and it is particularly chal-

lenging to identify the major driving forces explaining the diversity of a clade.

Intrinsic factors such as body plan complexity [1] or genetic variance [2] can

drive the morphological diversification in a lineage. Additionally, various

intrinsic lineage characteristics may constitute novelties that shape the process

of diversification. For example, trophic specialization [3,4], locomotor strategy

[5,6] and anti-predatory defences [7] may influence lineage and phenotypic

diversification rates. Extrinsic factors such as the invasion of a competitor-free

region may also provide opportunities for a lineage to radiate into a variety

of untapped niches [8], whereas competition may constrain divergence in

resource use and thus limit diversification [9].

In the marine realm, tropical coral reefs have been shown to have promoted

diversification in several groups of teleost fishes [10–12] as well as requiem

sharks [13]. The ecological radiation of many fish families is clearly associated

with this highly productive and structurally complex habitat [14,15]. With the excep-

tion of requiem sharks, however, all the groups that were shown to possess higher

diversity in reef than non-reef environments have diets based mostly or exclusively

on plankton, algae or small benthic invertebrates. Little work has so far been

devoted to test the hypothesis that reef association may increase rates of diversifica-

tion in groups that include a large proportion of piscivorous species. Furthermore,

relatively few studies of marine ray-finned fishes have tested the hypothesis that
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other aquatic environments besides coral reefs may also provide

ecological opportunities and lead to increased diversification

rates. For example, various lineages of marine fishes have

colonized freshwater environments during their evolutionary

history, and several recent studies have shown that freshwaters

may provide open niche space sustaining their diversification,

even though the relationship between invasion of the new habi-

tat and the tempo of lineage diversification can be a complex one

[16,17]. Open seas have provided ecological opportunity for

multiple groups such as cephalopods [18] and cetaceans [19].

Recently, it has been suggested that open seas may have facili-

tated the radiation of some pelagic fishes [20], even though no

tests were performed to support such a conclusion.

Trophic specializations may also promote diversification.

For example, a switch to low-quality food sources such as

algae, detritus, sponges or corals was associated with higher

rates of lineage diversification in some reef fish families [21]. In

parrotfishes (Scarinae), the evolution of an intramandibular

joint on the lower jaw allows efficient scraping of hard corals

promoting morphological diversity in some genera [4]. With

regard to the diversity of fish forms, various ecomorphological

studies have revealed that the body shape is linked to swimming

performance, habitat preference or behaviour [22]. Body shape is

an ecologically relevant character and is therefore suited for

studying diversification patterns associated with habitat and

diet shifts. Recently, body shape analysis has become a powerful

tool to characterize changes in morphospace occupation during

the evolution of teleosts [23,24], and the quantitative analysis of

morphospace can shed light on how ecofunctional diversity

arises or changes over evolutionary time [25].

Carangoid fishes, including Carangidae (trevallies, pom-

panos and jacks), Echeneidae (remoras), Coryphaenidae

(dolphinfishes) and Rachycentridae (the cobia), represent a

successful group of about 159 species [26]. This marine fish

group, which originated during the Late Cretaceous and

experienced a major radiation during the Eocene [27],

includes both species living in and around reef ecosystems

(i.e. reef-associated species), as well as species found in

open water habitats or coastal non-reef environments (i.e.

non-reef-associated species). Most carangoids are powerful

swimmers and active predators constituting a major clade

of piscivorous species, whereas some species that feed on

zooplankton and remoras are opportunist feeders, eating

ectoparasites, shedding skin and scraps of food from the

meals of their hosts such as sharks, turtles or large teleosts

[28]. A recently published phylogenetic hypothesis suggests

multiple transitions from one habitat type to another and

dietary shifts across the evolutionary history of carangoids

[27]. Even though their evolutionary history has so far

received scant attention, carangoids provide an important

opportunity to test various hypotheses about both habitat

and diet shifts as promoter of taxonomic and morphological

diversification (i.e. body size and shape) in marine fishes.

On the basis of the current diversity of carangoid fishes,

and according to the hypothesis of ecological opportunity, we

anticipated that the rates of lineage and morphological diversi-

fication would vary between non-reef and reef habitats. We also

expected dietary specialization, such as piscivory, could induce

variation in the tempo or mode of diversification, as has been

observed in other fish groups [29]. Furthermore, carangoid

fishes have a rich fossil record dating to the earliest Eocene

[30], which allows us the opportunity to compare the pattern

of evolution within both extant and extinct lineages.
Here, we examine the pattern of diversification in carangoid

fishes. Using a morphological dataset that includes fossil and

extant species, we explore the variation in morphospace occu-

pation through time. We test the hypothesis that carangoid

lineages occupying non-reef environments have different

diversification rates compared with those occupying reef habi-

tats. We also test whether piscivorous lineages have different

diversification rates compared with non-piscivorous lineages.
2. Material and methods
(a) Morphological and ecological data
For the morphological analyses, we studied accessioned museum

specimens with additional photographs obtained from online

databases (electronic supplementary material, table S1). The

dataset contains 384 specimens from 178 carangoid species,

including 24 fossil species. Sample sizes within species ranged

between one and four individuals (median ¼ two individuals;

electronic supplementary material, table S1). We did not include

in this study the Eocene percomorph †Ductor, which has been

associated with Echeneoidei [31] and used by Friedman et al.
in their study on the evolutionary history of remoras [32]. In

this last study, the placement of †Ductor as a stem rachycentrid

was supported by characters that are broadly homoplastic

within percomorphs [32]. For this reason, we prefer to avoid

including this taxon until its carangoid affinities have been prop-

erly demonstrated with a comparative morphological study. The

majority of Miocene and Oligocene carangoid taxa were erected

on the basis of incomplete or fragmentary specimens. These

species were not included in our study. Only species represen-

ted by complete articulated specimens were included in our

morphometric analysis.

We used landmark-based geometric morphometrics [33] to

quantify fish body shape. The x, y coordinates of 16 homologous

landmarks (LMs) and 31 semi-landmarks (semi-LMs; figure 1)

were recorded using TPSDIG [34]. The chosen LMs allow the cap-

ture of variation related to body elongation (the ratio between

body length and body depth), which are well-known morpholo-

gical traits directly related to swimming performances, such as

manoeuvrability, acceleration rate and sustained swimming

[35,36]. Semi-LMs help to capture the curvature of the fish body,

especially for the cephalic region where extensive morphological

variation occurs in carangoids. Details about the generation of

shape data are provided in Frédérich et al. [37]. We used species

scores along a principal component axis for exploring phenotypic

diversification. In order to compare rates of shape evolution

among groups using the time-calibrated phylogenies (see details

hereafter), we recalculated PCA using a superimposition based

upon species included in the molecular sampling, thus excluding

the fossil species. In addition to the study of shape variation, we

used maximum body size (total length, TL) as a second morpho-

logical trait. We gathered size and ecological data from various

sources, including FishBase [28] and the primary literature [38].

For every species in our study, we scored two discrete variables

with two states each: (i) habitat type—reef (1) and non-reef (0);

(ii) feeding preference—piscivory (1) and non-piscivory (0). Con-

cerning the fossil species, it was not possible to define their diet,

whereas their habitat was identified using the sedimentological

features of the fossiliferous deposits and their associated fauna.

(b) Phylogeny, ancestral state reconstruction
and stochastic mapping

We used the time-calibrated phylogeny described by Santini &

Carnevale [27] (electronic supplementary material, figure S1).

From the Bayesian posterior distribution generated by BEAST
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Figure 1. The homologous landmarks (LMs) and semi-landmarks (semi-LMs) used in the analysis of the fish body variation illustrated in Alepes djedaba (image
modified under Creative Commons licence from original photographs by J. E. Randall, retrieved from http://pbs.bishopmuseum.org/images/JER/). Semi-LMs are
represented by solid rectangles, LMs by circles with crescent numeration starting from snout: (1) anterior tip of the snout (premaxilla), (2) posterior end of
the maxilla, (3) centre of the orbit, (4) anterodorsal origin of the opercle, (5) posterodorsal edge of the opercle, (6) ventral tip of the subopercle, (7) base of
the isthmus, (8) and (9) superior and inferior insertion of the pectoral fin, (10) anterior origin of the posterior lobe of the dorsal fin, (11) posterior insertion
of the dorsal fin, (12) insertion of first ray of dorsal lobe of the caudal fin, (13) insertion of first ray of ventral lobe of the caudal fin, (14) posterior insertion
of the anal fin, (15) anterior origin of the anal fin and (16) insertion of the pelvic fin.
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v. 1.8 [35], we randomly sampled 100 trees that we used through-

out the study as a way of including uncertainty in tree topology

and branch length into our phylogenetic comparative analyses.

We used stochastic character mapping [39] to infer possible

ecological histories. The stochastic mapping and the ancestral

state reconstruction was produced using the function make.simmap
in the phytools package (v. 0.5.0) [40] for R [41]. We then sampled

100 character histories allowing the incorporation of the uncer-

tainty associated with the timing of the transitions between

ecological states. For the parametrization of make.simmap, we

used the estimated ancestral state and the best model for the tran-

sition matrix from our empirical data. To assess the best model for

the transition matrix, we fitted a model with equal rate of tran-

sition between states and a model with all rates different using

the function ace in the R package ape [42]. The likelihood

of these two models was then compared using a likelihood

ratio test, which suggested the use of unequal rates for the diet

preference and equal rates for the habitat preference (see Results).
(c) Lineage diversification
As for the majority of marine teleost groups investigated to date

[14], we predicted that the tempo of lineage diversification

should be higher for reef-associated carangoid lineages. Simi-

larly, if specialization on piscivory mainly explains the success

of carangoid fishes, we predicted that the tempo of lineage diver-

sification should vary between trophic groups. We combined

binary state speciation and extinction (BiSSE) [43] and hidden

state speciation and extinction (HiSSE) [44] methods to test

whether the ecological shift to ‘piscivory’ and ‘reef-association’

triggers an elevated rate of speciation during the carangoid

evolution. BiSSE provides a likelihood-based test of whether a

discrete character influences the rate of lineage diversification.

HiSSE extends the BiSSE framework to account for the presence

of unmeasured factors (i.e. hidden states) that could impact

diversification rates estimated for the states of observed traits

[44]. Thus, for example, state 1 (e.g. piscivory) can take on two

states: 1A when the hidden state is absent and 1B when the

hidden state is present.

To assess the ecological factors acting on the tempo of lineage

diversification in carangoids, we compared the fit of 12 different

evolutionary models based on our empirical data (timetree and

character states at the tips). The extinction fraction (1) was

forced to be equal between states in every model, because cautions
are needed for the estimation of extinction from molecular

phylogenies [45], and we also aimed to reduce the number of

parameters. All models are described in table 1 and differ by

net turnover (t ¼ speciation l þ extinction m), transition rates (q),

and presence or absence of hidden states. As for the parametriza-

tion of stochastic mapping, we used the best model for the

transition matrix from our empirical data. We used Akaike’s infor-

mation criterion (AIC) scores and weights to compare the fit of the

models. A DAICc value of four or more was taken as an indication

of support for one model over the other following Burnham &

Anderson [46]. We performed analyses using functions from the

R package HiSSE [44], correcting for incompletely resolved phylo-

geny. Here, we assumed that the missing species are randomly

distributed on the phylogenetic tree.
(d) Morphological diversification
To test whether ecological changes (habitat and diet) induced

shifts in the tempo of morphological evolution (i.e. including

size and shape) throughout the evolutionary history of jacks

and allies, we fitted three different evolutionary models to the

data: a single-rate Brownian motion (BM) model (BM1), a BM

model with different rate parameters for species living in reef

environment and non-reef species (BMS_habitat), and a BM

model with different rate parameters for piscivorous and non-

piscivorous species (BMS_diet). We fitted these models of

continuous trait evolution using the OUwie package [47] for R

[41], and compared their fit using AIC scores and weights [46].

For these models fitting in OUwie, we ran the analyses using

the simmap trees.

In addition to the visual exploration of morphospace defined

by principal components of shape variables, we explored the

level of shape disparity and compared it among periods.

Additionally, we compared the levels of disparity between habi-

tat groups (reef versus non-reef). This analysis of morphospace

allowed a deeper interpretation of the evolution of morphologi-

cal diversity in carangoid fishes through time. We calculated

the level of shape disparity based on Procrustes variance [33]

and performed pairwise comparisons between groups (i.e.

permutation test, 9999 iterations) using the function morphol.dis-
parity in the R package geomorph [48]. We also used convex hulls

to compare the level of shape disparity among periods and

between environments in the Euclidean plane made by the first

http://pbs.bishopmuseum.org/images/JER/
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Table 1. Results from fitting lineage diversification models. The models are compared with AICc (small-sample corrected AIC) scores and Akaike weights
(wtAICc). DAICc scores indicate the difference between the candidate model and the best-fitting model. Parameters of the twelve models of lineage
diversification in the HiSSE and BiSSE frameworks are described. Habitat (0, non-reef; 1, reef ) and diet (0, non-piscivory; 1, piscivory) preferences were coded
by binary variables. Tau (t), epsilon (1) and q refer to ‘net turnover’ rate, extinction fraction and transition rates, respectively.

trait model hidden states t 1 q AICc DAICc wtAICc

habitat BiSSE 1 no hidden states equal equal equal 1202.87 1.85 0.12

BiSSE 2 no hidden states vary equal equal 1202.43 1.41 0.16

HiSSE 1 hidden state present for 0 and 1 all vary equal equal 1203.14 2.12 0.11

HiSSE 2 hidden state present for 0 all vary equal equal 1201.97 0.95 0.20

HiSSE 3 hidden state present for 1 all vary equal equal 1203.33 2.31 0.10

HiSSE 4 hidden state present for 0 and 1 only A and B vary equal equal 1201.02 0.00 0.31

diet BiSSE I no hidden states vary equal vary 1168.44 3.30 0.10

BiSSE II no hidden states equal equal vary 1166.71 1.57 0.24

HiSSE I hidden state present for 0 and 1 all vary equal vary 1165.14 0.00 0.54

HiSSE II hidden state present for 0 all vary equal vary 1172.04 6.90 0.02

HiSSE III hidden state present for 1 all vary equal vary 1177.36 12.21 0.00

HiSSE IV hidden state present for 0 and 1 only A and B vary equal vary 1168.54 3.40 0.10

diet habitat
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two PCs. Convex hull areas were calculated through nearest-

neighbour analysis in PAST v. 3.08 [49].
80 60 40 20 0

non-piscivory
piscivory

millions of years before present 

non-reef
reef

Figure 2. Summary of the ecological (diet and habitat) histories on the con-
sensus timetree of carangoid fishes using stochastic mapping. Shading keys
refer to ecological categories.
3. Results
(a) Ancestral state reconstruction and stochastic

mapping
The likelihood ratio tests asked for the use of equal rates for

habitat transition (q01 ¼ q10 ¼ 0.035; x2 ¼ 0.4, p ¼ 0.536) and

a matrix of unequal rates for diet preference for stochastic

mapping (x2 ¼ 7.9, p ¼ 0.005). The transition rate from

non-piscivory to piscivory (q01 ¼ 0.019) was two times

higher than the transition rate from piscivory to non-pisciv-

ory (q10 ¼ 0.009). The results of ecological reconstructions

suggested that the last common ancestor of all living caran-

goids was piscivorous (68% of likelihood), whereas the

habitat that this taxon inhabited is unknown (50% likelihood

for both reef and non-reef environment). Stochastic mapping

revealed two major transitions to non-reef environments, one

in the genus Trachurus and one in Selene, and at least six shifts to

a non-piscivorous diet (figure 2; electronic supplementary

material, figure S1).

(b) Lineage diversification
The best-fitting models of lineage diversification did not sup-

port the presence of hidden states acting on the rate of

speciation (table 1). Indeed, no HiSSE model fitted better on

the empirical data than BiSSE models. The comparison of

the fit of the diversification models failed to find strong sup-

port for one model over the others (table 1). Consequently, we

were unable to validate an effect of diet or habitat preference

on the tempo of lineage diversification.

(c) Morphological diversification
The shape variation along PCs is very similar with or

without the inclusion of fossil species (figure 3; electronic
supplementary material, S2). So, hereafter, we describe

shape variation within the morphospace defined by PC

axes including extant and Eocene species (figure 3). The prin-

cipal component analysis was summarized by 90 PC axes,

with the first three together accounting for about 90% of

the overall shape variance (PC1 ¼ 70.9%, PC2 ¼ 10.9% and

PC3 ¼ 8.2% of shape variation; electronic supplementary

material, table S2). PC1 mainly describes body elongation.

For example, negative scores are related to deep-bodied

carangoids (e.g. Selene vomer, †Ceratoichthys pinnatiformis),

whereas anteroposteriorly elongated species lie on positive

values (e.g. Phtheirichthys lineatus; figure 3). PC2 explains
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variation of the anatomical origin of the dorsal fin (posterior

lobe): extreme negative scores are related to taxa with

backward origin of the functional dorsal fin (e.g. Remora osteo-
chir), whereas species with a dorsal fin extending the length

of the body (e.g. Coryphaena hippurus; figure 3) have positive

scores. Along axis PC3, the main shape variation is related to
anal fin length: negative scores are related to taxa with long

anal fin (e.g. Oligoplites saliens, Parastromateus niger), whereas

positive values are associated with species with short anal fin

(e.g. Seriola fasciata). All the cited taxa of the extreme scores of

each PC axis lie on the periphery of morphospace and con-

tribute highly to the morphological variance. Conversely,
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the centre of morphospace is occupied by taxa with a more

generalized body plan, such as most members of the Carangini.

When using the convex Hulls metric, the extant taxa

showed the highest level of shape disparity in the morpho-

space made of the first two PCs (figure 4a). However, the

shape disparity level based on Procrustes variance was

higher for the Eocene taxa than the extant taxa ( p , 0.001;

figure 4b). This high level of shape disparity observed

during the Eocene was mainly explained by taxa from

Bolca, which probably inhabited a reef environment

(figure 4). For the extant taxa, however, species from non-

reef environments showed a significantly higher level of

disparity than reef group ( p ¼ 0.026; figure 4b). The disparity

level of extant taxa is mainly explained by non-reef species

(figure 4). The shift through time of shape disparity level

between environments is mainly explained by deep-bodied

carangoids living in non-reef habitats (figure 3c,d). Studied

taxa from Oligocene and Miocene were living in non-reef

environments (electronic supplementary material, table S1).

Even if their number was limited, we have calculated the

shape disparity level for the two periods (figure 4). Both

metrics suggested lower level of shape disparity than the

Eocene taxa ( p , 0.007), but their Procrustes variance did

not differ from extant taxa ( p . 0.25; figure 4b).

Habitat shifts, rather than diet, impact the morphological

evolutionary rates in carangoids. Indeed, BMS_habitat was

always among the best-supported models for all the studied

traits (i.e. size and shape; table 2). Brownian rate parameters

(s2) were always two times higher for the lineages living in a

non-reef environment than for reef-associated taxa (electronic

supplementary material, table S3).
4. Discussion
Our data show that reef environments probably affected the

carangoid diversification, especially during the early steps

of their evolutionary history. Subsequently, non-reef habitats
have promoted higher rates of morphological diversification

and these environments currently sustain the main extant

diversity of this group. Trophic shifts did not impact the

rates of lineage diversification, even though the tempo of

dietary shifts varies across the history of carangoids.

Several recent studies investigating the evolution of

marine fishes have shown that reef association has generally

triggered an increase of diversification rates in many teleost

groups and carcharhinid sharks [11–14]. Except for the

requiem sharks, the fish families showing the highest rates

of diversification in reefs are mostly formed by species that

feed on planktonic or small-to-medium benthic prey [11,12].

Here, we illustrate that non-reef environments may also

have promoted increased rates of diversification in a fish

clade where piscivory is common. Other species-rich

groups that include large proportions of piscivorous species,

such as groupers (Epinephelidae), emperors (Lethrinidae) or

snappers (Lutjanidae), could have experienced higher rates

of diversification in reef than in non-reef habitats, but this

has not yet been tested.

Our study suggests that the ancestral carangoid fish was

piscivorous, but we cannot state the origin of its habitat

(figure 2). The analyses of morphospace reveal that during

the Eocene the level of shape disparity was higher in reef

environments than in non-reef habitats. Consequently, we

hypothesize that during the Eocene carangoid fishes

observed a first major radiation in reef environments, even

though non-reef taxa were already present. This pattern sub-

sequently shifted during the last 35 Ma, and the level of

morphological diversity in non-reef environments is now

higher for the extant species. Unfortunately, the number of

Oligocene and Miocene taxa is currently limited and may

thus provide a biased picture of the dynamic of disparity

during these periods. While caution when interpreting

these data is warranted, all the available Oligocene and Mio-

cene taxa were associated with non-reef environments

(electronic supplementary material, table S1), tentatively

supporting a scenario of transition of diversity from reefs to

non-reef environments.

A general summary of the carangoid morphospace (figure 3;

electronic supplementary material, figure S2) shows that the

dominant axis of shape variation in extant and fossil carangoid

species is body elongation (PC1, figure 3), a pattern broadly

observed across many fish clades [50]. The high level of shape

disparity associated with extant non-reef environments is prob-

ably related to multiple invasions of non-reef habitats by

distantly related lineages (figure 3). For example, the extant

carangoids living in non-reef environments include powerful

swimmers with deep-bodied forms (e.g. Selene spp.) as well as

species with fusiform body shape with a dorsal fin extending

the length of the body (e.g. Coryphaena spp.), whereas the

fossil species living in non-reef environments mostly showed

an anteroposteriorly elongate body (e.g. †Archaeus oblongus
and †Seriola natgeosoc). The morphological diversification of

non-reef carangoids is probably related to the exploitation of

new ecological strategies and the filling of vacated functional

roles [25,51]. Indeed, the disappearance of many large predatory

fishes during the Late Cretaceous probably freed previously

occupied ecological space and resources for surviving lineages

[51]. The high rates of size and shape diversification for non-

reef carangoids are in agreement with this scenario. Trophic

resource partitioning in marine systems is often highly struc-

tured on the basis of body size [52], and we thus expect size



Table 2. Results from fitting morphological diversification models. For each studied morphological trait (body size and shape), the models are ranked from best
to worst, according to AICc (small-sample corrected AIC) scores and Akaike weights (wtAICc). DAICc scores indicate the difference between the candidate model
and the best-fitting model. Refer to text for model description.

morphological trait model AICc DAICc wtAICc

body size logTL BMS_habitat 58.65 0 1.00

BM1 71.96 13.31 0

BMS_diet 72.26 13.61 0

body shape PC1 BMS_habitat 2281.70 0 0.95

BMS_diet 2275.93 5.77 0.05

BM1 2264.37 17.33 0

PC2 BMS_diet 2504.30 0 0.62

BMS_habitat 2503.30 1.00 0.38

BM1 2495.11 9.19 0.01

PC3 BMS_habitat 2495.18 0 0.97

BMS_diet 2487.91 7.27 0.03

BM1 2468.32 26.86 0.00
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variation to be one of the main axes of ecological diversification

in zooplanktivorous and piscivorous fish species. The large size

variation among piscivorous carangoids (from 50 to 200 cm of

total length; electronic supplementary material, table S1) is

probably related to different trophic status [53]. Body shape

variation may reflect differences in swimming performance.

Efficient, economical swimming suited for pelagic habitats is

certainlyoptimized in streamlined and elongated-bodied Seriola,

Trachurus, Decapterus and Coryphaena [35]. All these tuna-like

species show a large anterior region separated from the caudal

fin by a caudal peduncle of reduced cross-section [35].

Deep-bodied forms (e.g. Selene and Trachinotus spp.) may

confer high acceleration performance, well suited for coastal

environments [54]. However, differences in the morphology of

efficient swimmers are not simply linked to locomotor perform-

ance, as other selective forces may have shaped their design [54].

Body forms probably represent a compromise between compet-

ing demands. Accordingly, large body depths of Selene might act

as a deterrent for predators that are gape-limited [55] or might

optimize the reflectance of their skin for camouflage [56]. The

evolution of the symbiotic suckerfishes (i.e. Remora, Echeneis
and Phtheirichthys) also had a profound impact on carangoid

morphofunctional diversity. These fishes evolved peculiar

body morphologies, with the first dorsal fin modified into an

oval, sucker-like organ with slat-like structures that open and

close to create suction [32,57] and take a firm hold against the

skin of large hosts. In our morphometric data, the variation of

the dorsal fins shape is mainly explained by PC2 (figure 3),

and the observed increase of morphological diversity between

fossil and extant groups living in non-reef environments is

mainly related to this axis.

Our analyses of model fitting reveal that habitat shifts

induced variation in the rates of body size and shape diversi-

fication but did not trigger an increase of speciation rates of

carangoids. One possible explanation for this pattern could

be that this clade experienced high levels of extinction that

erased the signal of a burst of speciation associated with habi-

tat shift. This scenario could be supported by the long stem

ages that lead to a number of carangoid subclades in the
timetree (electronic supplementary material, figure S1). The

rich carangoid fossil record is understudied and cannot cur-

rently be brought to bear on this question. There is however

evidence from other marine groups, such as cetaceans, that a

high level of extinction can produce such type of pattern [19].

Piscivory has been shown to affect the pattern of diversifi-

cation in some fishes [29]. Here, models of discrete trait

evolution support the idea that piscivory may also impact

the tempo of diversification. The evolutionary history of caran-

goid fishes suggests that a transition from non-piscivory to

piscivory seems easier than a shift in the opposite direction.

Various factors may explain this unbalanced pattern of trophic

diversification. First, extrinsic factors such as ecological oppor-

tunities probably allowed easy dietary shifts to piscivory. Since

the late Oligocene and Miocene, the global oceanographic

conditions changed and a massive increase in the amount of

food in the ocean occurred. This was mostly owing to geologi-

cal and climatic factors, such as the origin of Antarctic and

Arctic ice caps, which resulted in the origin of temperate

climatic belt and an increase nutrient input in the ocean

[58,59]. Consequently, an increased availability of food could

have promoted the rise of piscivory in carangoids, but

also in scombrids [60] and sparids [61], at this time. Second,

intrinsic lineage characteristics, such as the general body

plan of carangoids (e.g. large body size and wide gape),

probably allowed them to be competitive in the capture of

fast-swimming, energy-rich food such as other fishes.
5. Conclusion
To date, the promoting effect of reef environment on the

diversity of fish families that include large proportions of pis-

civorous species has been poorly documented. Our study

illustrates that some non-reef environments, such as open

waters or coastal soft-bottom habitats, may also promote

the tempo of diversification in some marine fish clades. We

show that habitat, rather than diet, influenced the diversity

of extant carangoid fishes. Reefs probably played a role
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during the first steps of the carangoid diversification during

the Eocene, while this important group underwent a major

radiation in non-reef environments during the last 35 Myr.
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