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The question of why males of many species produce elaborate mating dis-

plays has now been largely resolved: females prefer to mate with males

that produce such displays. However, the question of why females prefer

such displays has been controversial, with an emerging consensus that

such displays often provide information to females about the direct fitness

benefits that males provide to females and/or the indirect fitness benefits

provided to offspring. Alternative explanations, such as production of arbi-

trarily attractive sons or innate pre-existing female sensory or perceptual

bias, have also received support in certain taxa. Here, we describe multi-

variate female preference functions for male acoustic traits in two chirping

species of field crickets with slow pulse rates; our data reveal cryptic

female preferences for long trills that have not previously been observed

in other chirping species. The trill preferences are evolutionarily pre-existing

in the sense that males have not (yet?) exploited them, and they coexist with

chirp preferences as alternative stable states within female song preference

space. We discuss escape from neuronal adaptation as a possible mechanism

underlying such latent preferences.
1. Introduction
Nearly 150 years after being proposed by Darwin [1], the idea that female

preferences have driven the evolution of male mating display characters is

now supported by a large and diverse scientific literature [2]. Whether or not

female preferences are adaptive has been the subject of contentious debate

[3]. Adaptive explanations have broad support in diverse taxa and include

both direct (i.e. fecundity) [4] and indirect (i.e. genetic) benefits [5]. Arbitrary

‘Fisherian’ or sexy-son models have also received support [6], as have models

in which female sensory or perceptual biases evolutionarily pre-date male dis-

play traits [7]. Taxa for which pre-existing biases have been well characterized

often reveal that the biases themselves were under selection in other contexts,

e.g. foraging [7]; examples in which the bias is likely a by-product of basic prin-

ciples of neural processing are relatively rare [8,9]. This may reflect the fact that

neural mechanisms of signal processing in females are generally not well

characterized in most kinds of organisms.

The mechanisms underlying female processing of male sexual signals are

only partially understood in crickets. Nonetheless, crickets have become a

model system for understanding the neurological basis of signal processing,

and signal processing in crickets is among the best understood of all taxa

[10–12]. Female crickets process male song signals both at the peripheral audi-

tory tympana and centrally in the brain. Amplitude and frequency are coded

similarly as numbers of neural spikes per unit time: louder sounds result in

more neural spikes, and frequencies that best match cricket hearing are encoded

as louder, i.e. with more spikes, than frequencies that less closely match cricket

hearing [13]. Unlike in anurans, there is no separate central nervous system pro-

cessing of frequency information [13,14], thus acoustic multivariate female

preference functions in crickets are multivariate in the temporal domain only,
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without complex interactions between frequency and tem-

poral pattern as observed in Hyla frogs [15]. The resultant

spike trains are evaluated in brain circuits for temporal struc-

ture on both the pulse and chirp timescales [16]. Individual

neurons and their connections have been identified which

collectively represent a neural filter tuned to male pulse

rates [17]. The output of such a pulse rate filter can be inte-

grated over longer timescales, i.e. chirps or trills, such that

overall signal attractiveness reflects the proportion of sound

in the signal space (i.e. chirp or trill duty cycle) conditional

on an attractive pulse rate. Such integration across pulse

and chirp timescales can often successfully be modelled

with linear–nonlinear models using Gabor functions, and

such models can often predict female phonotactic responses

across diverse species [16].

Multivariate tests of female preference functions are

well suited to reveal the complexity of signal processing

[15,18–21]. As examples, multivariate preference functions

can test: (i) the relative weighting of different traits (i.e. impor-

tance of trait A versus trait B), (ii) non-additive effects

(i.e. attractiveness of variants of trait A conditional on specific

values of trait B) and (iii) signal integration across timescales

and/or sensory modalities. Although univariate preference

tests can reveal unexpected properties of female preference

space [22], given the multivariate and often multimodal

nature of many sexual signalling systems [23,24], a multivariate

approach is more likely to reveal otherwise hidden features in

female preference space. Here we explore the signal recognition

space of female crickets in an effort to better understand signal

processing and the integration of pulse and chirp timescales,

building upon our prior work with both chirping and trilling

species [19,20].

We characterized female preference functions in two

chirping species of Gryllus field crickets with unusually

slow pulse rates (electronic supplementary material, figure

S1a,b): G. firmus Scudder 1902, and an undescribed species,

we refer to here as G#13. As an aid to continuity in the litera-

ture we note that G#13 will be named ‘G. longicercus’ in

an upcoming revision of North American Gryllus (DB

Weissman, DA Gray 2001–2016, unpublished data); per

Article 8.3 of the ICZN the manuscript name ‘G. longicercus’
is disclaimed as ‘not available’. Gryllus firmus occurs along

the southeastern USA Atlantic and Gulf coast regions

[25,26]; G#13 occurs in portions of the Sonoran and

Chihuahuan deserts of the western USA and Mexico (DB

Weissman, DA Gray 2001–2016, unpublished data). Within

Gryllus, the two species are not close relatives (electronic sup-

plementary material, figure S2), but both typically call with a

three to five pulse chirp at unusually slow pulse rates: at

248C, G. firmus average about 18 p s21 [27], whereas G#13

average about 10 p s21 (DA Gray 2005, unpublished data);

these are among the slowest pulse rates in North American

Gryllus. Because pulse rate is consistently a principal song

feature important in cricket song recognition [16,28], examin-

ation of species with low pulse rates might reveal unexpected

effects of signal processing.
2. Material and methods
(a) Animals
Experiments were performed using primarily first- and second-

generation virgin adult female crickets from laboratory cultures
held at 25+28C with ad libitum food and water. The G. firmus cul-

ture was initiated with ca 20–30 females collected in Gainesville,

Lake City, and Live Oak, FL, USA; the G#13 culture was initiated

with ca 15–20 females collected in the KOFA National Wildlife

Refuge, Arizona, USA.

(b) Female preference functions
Female preferences were tested at 24–268C, using a trackball

system as described previously [19,20]. In brief, the trackball

was a hollow 1.2–1.8 g sphere (100 mm diam.) supported by

an air column in an acoustically insulated box. Two loudspeakers

(Piezo Horntweeter PH8) placed 908 apart played custom synthe-

tic stimuli at 80 dB (re. 2 � 1025 Pa) as measured at the female

crickets’ position (Bruel & Kjaer 2231 meter with Bruel & Kjaer

4133 half-inch condenser microphone).

As the crickets turned on the sphere, the x–y movements of

the sphere were recorded by optical sensors. All test series

included four controls (silent, tone and an attractive stimulus at

the beginning and end of a test series) and eight test patterns

in random order. For each test signal, the lateral deviation of a

female relative to each of the two speakers was averaged and

normalized with respect to an attractive control signal in order

to obtain comparable data across test series. Phonotaxis scores

were therefore typically between 0 (no orientation towards the

sound signal) and 1 (strong orientation towards the signal),

although negative scores (orientation away from the test signal)

and scores higher than 1 (orientation towards the test signal

stronger than towards the control) were possible (see [19] for

additional details).

Sample sizes ranged from six to 30 individual females for any

given test pattern (mean+ s.d. ¼ 19+ 6.5). Test patterns were

designed to assess female response to temporal features of

male song, given an attractive frequency. To determine those

song frequencies, we first tested female response to songs with

species-typical pulse patterns but with frequencies ranging

from 2.5 to 7 kHz. We then used attractive frequencies to create

stimuli that tested responses over a large parameter space for

pulse and chirp timescales.

Integration across timescales was tested with a ‘transfer func-

tion’ that assesses response to stimuli at the short (pulse)

timescale in the absence of information at the longer (chirp) time-

scale, and vice versa. For these tests, females were presented with

a continuous series of sound pulses separated by silent intervals

at a constant duty cycle. Very slow rates thus correspond to the

temporal structure of chirps in the absence of pulse rate infor-

mation (e.g. 0.5 s sound pulse followed by 0.5 s silence,

repeated continuously), whereas faster rates correspond to the

temporal structure of pulses in the absence of chirp rate infor-

mation (e.g. 50 ms sound pulse followed by 50 ms silence,

repeated continuously).
3. Results
(a) Frequency
Both species showed clear preferences for 4.5–5 kHz song

(figure 1a,b) and responded well to frequencies up to

6 kHz. Based on these results, subsequent tests used either

5 or 5.5 kHz for G#13 and either 4 or 4.5 kHz for G. firmus.

(b) Pulse and chirp profiles
Bivariate preference functions for both species are presented

in figure 2a–d. Each panel shows female response as a func-

tion of the duration of pauses between stimuli (pulse or

chirp) and as a function of the duration of the stimulus



–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 3 4 5 6 7
frequency (kHz) frequency (kHz)

ph
on

ot
ax

is
 s

co
re

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 3 4 5 6 7

G#13 G. firmus
(a) (b)

Figure 1. Female response as a function of carrier frequency in G#13 (a) and G. firmus (b). Error bars are s.e. (N ¼ 27 G#13 and 28 G. firmus females). Inset black
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Figure 2. Bivariate preference functions at the pulse (a,c) and chirp (b,d) timescales for G#13 (a,b) and G. firmus (c,d). Black squares with lines at the axes represent
typical male song values.
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itself (pulse or chirp). Transects from the upper left to the

lower right thus increase in duty cycle (i.e. sound energy)

for a given rate, whereas transects from the upper right to

the lower left increase in rate for a given duty cycle.

Both species exhibit short timescale pulse filters closely

matched to male song pulse rates and pulse duty cycles

(figure 2a,c and electronic supplementary material, figure

S3a–d). Both species also respond well to conspecific chirp

patterns; however, the overall profiles of the chirp filters of

both species are unusual (figure 2b,d). The G#13 chirp filter

(figure 2b) appears to favour high chirp duty cycles, i.e.

long chirps and short pauses, with the greatest response to

discrete chirps 787 ms in duration with 400 ms pauses

between chirps (corresponding to 10 pulses chirp21 with

22 ms pulses and 63 ms pulse pauses, i.e. 11.8 p s21) or to

chirp pause durations approaching zero (i.e. a continuous

trill). The G. firmus chirp filter (figure 2d ) more closely
matches male song but is clearly bimodal with strongest

responses to either ca 189 ms chirps coupled with ca 243 ms

chirp pauses or to chirp pauses approaching zero, i.e. a con-

tinuous trill. Both chirp duration and chirp pause contribute

to stimulus attractiveness. This can be visualized when the

bivariate chirp preference surfaces are decomposed to uni-

variate preference functions (electronic supplementary

material, figure S4a,b).
(c) Transfer function
Both species failed to respond to continuous trills with pulse

rates faster or slower than their normal pulse rate (figure 3).

However, both species responded strongly to continuous

trills given the correct pulse rate, pulse duty cycle and fre-

quency. G#13 response to continuous trills of 5.5 kHz

pulses at 12 p s21 was very strong (figure 3a), provided the
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pulse duty cycle was 25% or 50%. The mean+ s.e. response

to 5.5 kHz, 25% DC, 12 p s21 was 1.11+0.12, significantly

different from zero, Z ¼ 9.57, p , 0.00001, but not from 1

(i.e. the positive control consisting of species-typical pulse

and chirp pattern), Z ¼ 0.92, p� 0:05. However, G#13

response was not different from zero even for attractive

pulse rates if the DC was increased to 75%. Gryllus firmus
likewise showed a strong response to continuously presented

pulses (figure 3b), with maximal response to 4.5 kHz, 50%

DC, and 14 p s21. Mean+ s.e. response was 0.82+0.10, signifi-

cantly different from zero, Z ¼ 8.37, p , 0.00001, and nearly as

strong as to the positive control, Z ¼ 21.89, p ¼ 0.06. Neither

species responded to longer sound pulses presented at low

rates (i.e. , 5 p s21) representative of a continuous series of

chirps in the absence of pulse rate modulation (figure 3). The

dependence of response upon pulse duty cycle matches univari-

ate pulse duty cycle preferences (electronic supplementary

material, figure S3b,d).
4. Discussion
These two species have unusually slow pulse rates for Gryllus
crickets yet the pulse rate filters documented here correspond

to the pulse rate filters known in congeners [19,20,29,30].

What is highly unusual about these two species is their

responses to song pattern variation on the chirp timescale.

Gryllus crickets evidently evaluate the chirp duty cycle

given a correct pulse rate. This is effectively an integration

step across timescales: positive pulse recognition output

(short timescale) is evaluated over a given time window cor-

responding to chirp evaluation (long timescale) [12,16].

Females of several chirping and trilling species show prefer-

ences for chirp (or trill) duty cycles which are greater than

conspecific males tend to produce, with duty cycle preference
functions in chirping species often ‘closed’ (i.e. unimodal

convex) [31,32], whereas duty cycle preference functions in

trilling species are often ‘open-ended’ [19]. In transfer func-

tion tests, the trilling species respond well to continuous

pulses at an appropriate pulse rate, whereas chirping species

do not or only to a limited extent [19,20,31–34]. Gryllus firmus
and G#13 studied here are the first chirping Gryllus known to

respond strongly to continuous trills with species-typical

pulse rates, although females of both Hyla and Tettigonia
have been shown to respond well to pulse and interpulse

durations well beyond natural male variation [35]. The

strong female response to trills can be seen in our results

both for the chirp profile (figure 2b,d) and the transfer func-

tion (figure 3a,b), which are independent test series.

Responses to continuous trills nearly equal (G. firmus) or

even slightly exceed (G#13) responses to their respective

species-specific (chirped) control songs. These responses

thus represent strong latent biases within the female signal

recognition system of these species.

If we consider the bivariate chirp preference surface as a

fitness landscape, it is apparent that males of both species

currently occupy one of several possible fitness peaks, i.e.

alternative stable states coexist within female preference

space. Transitions to an alternative peak might occur rapidly

if the fitness valley were crossed, i.e. if males evolved to

exploit the pre-existing female perceptual biases identified

here. G#13 appears to have a relatively shallow fitness

valley (figure 2b and electronic supplementary material,

figure S4a). In contrast, G. firmus appears to show a steeper

fitness valley as preference with respect to chirp pause is

strongly bimodal with a sharp decrease in attractiveness at

70–135 ms pauses (figure 2d and electronic supplementary

material, figure S4b). Could males evolve to exploit the

female bias and evolve long trills? This would require suffi-

cient phenotypic and genetic variation, often observed in

crickets [36,37], and available acoustic niche space. Both

G. firmus and G#13 are sympatric with other Gryllus that pro-

duce long trills, which in theory could limit the sound space

available to them. However, G. rubens and G. texensis (sympa-

tric with G. firmus) call with ca 50–60 and ca 60–80 p s21

trills, respectively [19,38,39], and an undescribed regular

trilling species (‘G#14’), sympatric with G#13, calls with ca
35–45 p s21 [19,40], all well faster than G. firmus and G#13.

The question arises, why these chirping species exhibit

latent preference profiles for chirp patterns (figure 2b,d)

more similar to those of trilling species [19] when compared

with chirping species [20,29,31,32]. In terms of physiological

mechanisms, the phenomenon of neuronal adaptation (NA)

appears as a prime candidate (‘adaptation’ used here in

the neurobiological sense, indicating a decreased response

to repeated stimuli, without any implications regarding

evolutionary fitness or history of selection). NA is a funda-

mental feature of neural systems, and a common property

of both vertebrate and invertebrate sensory processing [41].

Despite its pervasive nature, the negative feedback

imposed by NA has significant complexity and variability

as the time constants characterizing the rate of decreased

neural firing can range from tens of milliseconds to several

seconds [41,42].

The contribution of NA to song pattern selectivity is

supported by direct neurophysiological evidence in the

cricket Gryllus bimaculatus, in which pulse rate recognition

is based on a small neuronal network consisting of five well
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characterized neurons [10,17]. Three of these five neurons

show the signatures of NA as their response levels decrease

with consecutive pulses in a chirp (see figure 2 in [17]). There-

fore, a system already equipped with NA at the level of pulse

recognition will cease to respond to longer trill-like pulse

trains as it requires recovery from adaptation for a full

response. Our results with these two species show that

female phonotactic response does not diminish with repeated

pulses presented as continuous trills, therefore, we conclude

that NA does not eliminate neural spiking for these species.

Potentially, the pulse rates of these species are sufficiently

low as to escape the 40–60 ms NA time constants described

in the auditory pathway of crickets [43]. Interestingly, in the

katydid Neoconocephalus triops, Prešern et al. [44] have recently

shown strong NA at the neuronal level to fast (140 p s21)

sound pulses but a lack of NA to slow (7 p s21) sound

pulses. It is also possible that the slow pulse rate does not

play an important role, and these species simply show

reduced or absent NA for other unknown reasons. Regardless

of the mechanism for diminished NA, in the two species

examined here, NA seems not to dampen female response

to long trills.

Our results differ in some important ways from the orig-

inal pre-existing sensory bias model [45]. That model

originally focused on two central criteria: the female prefer-

ence for the novel trait phylogenetically pre-dating the

origin of the trait, and the preference for the novel trait

exceeding the preference for the standard trait. With respect

to the origin of the bias, in our Gryllus system, a strong

female response to trills could be an evolutionary holdover

from an ancestral preference for trills in ancestral species

with trills, rather than representing a derived bias. We

cannot completely rule out this possibility, however given

what is known of the phylogeny of Gryllus, the distribution

of chirping and trilling species, as well as evidence from

five species of chirping Gryllus which do not respond

strongly to continuous trills (see electronic supplementary

material, figure S2), we conclude that this is unlikely. With

respect to the strength of the bias, here we show that the

preference for trills is equivalent to the preference for

species-typical chirps, but does not significantly exceed it;

that is, we identify alternative stable states, or preference sur-

face peaks, that coexist within the female perceptual system.

Anagenesis as envisioned by the original pre-existing sensory

bias model would likely require the preference based on

the pre-existing bias to exceed the preference based on the
current male trait. However, with alternative but equivalent

preference states, the potential for latent perceptual biases

to contribute to cladogenesis is highlighted. In our view,

this significantly enriches the sensory bias model, already

significantly broadened from its original formulation [7].

Finally, we note that many animal mating signals are

comprised of simple units repeated at a characteristic rate

and often at a more complex, higher-order temporal pattern.

Such signals are found in some birds, certain fish, most anur-

ans and many divergent insect groups, e.g. crickets and

katydids, lacewings, cicadas, treehoppers, even some true

flies and wasps. Such repetitive mating signals are likely sub-

ject to diminishing female responses, i.e. habituation at the

organismal level [46,47] or NA at the neural level [48]. The

presence, strength or absence of NA may therefore account

for some of the higher-order pattern selectivity in a wide

range of communication systems across different modalities;

however, NA alone is unlikely to explain all aspects of com-

plex signal responses, e.g. differences in efficacy of signal

components when presented in different temporal order

[49]. Nonetheless, evolutionary changes in NA may have

profound effects on signal evolution in diverse taxa, and

might promote signal diversification, especially if changes

in NA cause female signal preference space to have multiple

pre-existing fitness peaks.
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