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Abstract

Necrotizing enterocolitis (NEC) is the most frequent and lethal disease of the gastrointestinal tract 

of preterm infants. At present, NEC is thought to develop in the premature host in the setting of 

bacterial colonization, often after administration of non-breast milk feeds, and disease onset is 

thought to be due in part to a baseline increased reactivity of the premature intestinal mucosa to 

microbial ligands as compared with the full-term intestinal mucosa. The increased reactivity leads 

to mucosal destruction and impaired mesenteric perfusion and partly reflects an increased 

expression of the bacterial receptor Toll-like receptor 4 (TLR4) in the premature gut, as well as 

other factors that predispose the intestine to a hyper-reactive state in response to colonizing 

microorganisms. The increased expression of TLR4 in the premature gut reflects a surprising role 

for this molecule in the regulation of normal intestinal development through its effects on the 

Notch signalling pathway. This Review will examine the current approach to the diagnosis and 

treatment of NEC, provide an overview of our current knowledge regarding its molecular 

underpinnings and highlight advances made within the past decade towards the development of 

specific preventive and treatment strategies for this devastating disease.
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enterocolitis and examines the progress made in our understanding of the molecular mechanisms 

of this disease as well as potential avenues for future treatment development.

Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in 

premature infants, affecting newborn babies at a rate of 1–3 per 1000 births per year in 

North America1,2, with an average total treatment cost of US$500,000 per patient in the 

USA in current charges3,4. Importantly, the mechanisms leading to the development of NEC 

in premature infants and the lessons learned from management of patients with NEC could 

have broad implications to other neonatal inflammatory processes5,6. Despite several 

decades of experience in treating patients with NEC5,6, the overall mortality and approach to 

treatment have remained largely unchanged since the initial descriptions of the disease 

several decades ago3,7. Intensive research efforts over the past decade have begun to 

elucidate the molecular underpinnings of NEC and have identified several promising 

biologic strategies targeting the specific signalling pathways involved, which could 

potentially prevent and/or treat this disease in premature infants. Here, we will discuss 

current approaches to the diagnosis and treatment of NEC, review the current knowledge 

regarding its molecular pathophysiology and explore the advances made towards the 

development of specific preventive and treatment strategies.

Definitions and epidemiology of NEC

Epidemiology and trends in the incidence of NEC

The current occurrence of NEC is in fact a manifestation of the tremendous success achieved 

by neonatologists in their ability to keep premature infants alive at ever earlier gestational 

ages, with current global estimates of as many as 15 million babies born preterm every year, 

accounting for 11% of live births worldwide1,2,8. In the USA alone, the rate of prematurity is 

about 10% of all births, with rates as high as 13.23% in black individuals of non-Hispanic 

origin9. Large, population-based and hospital-based multicentre studies coordinated by 

neonatal research networks in Europe, North America, Australia and New Zealand have 

determined the incidence of NEC to be up to 13% among infants born ≤33 weeks of 

gestation or whose birth weight is ≤2,500 g1,10–18. Interestingly, the incidence of NEC 

among extremely preterm neonates in US academic centres has seen either a stabilization or 

even a decline to about 9% in the past 5 years analysed1, a trend that might reflect increased 

vigilance and the implementation of standardized feeding strategies19. Despite the fact that 

no predilection for sex, race or ethnicity has been conclusively established for NEC, a higher 

disease incidence is observed in male babies of African American decent than in any other 

single demographic, which could be related to the higher incidence of prematurity in this 

demographic than in the general US population9,10,12,17,20. Modal disease onset occurs 

between 27–34 weeks after conception, with the highest incidence (13%) among infants 

with a birth weight <1,000 g1,7. Furthermore, overall survival has not changed in the past 

five decades and the average mortality from NEC is 20–30%, with mortality as high as 50% 

in those infants requiring surgical management21. Although the majority of cases of NEC 

occur among premature infants, a small subset of babies born at term or shortly before (that 

is, ≥35 weeks of gestation) develop NEC-like gastrointestinal signs and symptoms, 

frequently in association with other conditions22.
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Factors affecting the susceptibility for NEC development in premature infants

Despite the complex and multifactorial nature of the pathogenesis of NEC, three major risk 

factors have been implicated in its development: prematurity, bacterial colonization of the 

gut and formula-feeding23. Although no specific genetic predisposition has been clearly 

associated with NEC, studies evaluating concordance rates in monozygotic and dizygotic 

twins have found a familial predisposition for the disease24. Moreover, evidence suggests 

that genetic variants leading to upregulated expression of downstream signalling regulators 

of Toll-like receptor 4 (TLR4), an innate immune receptor that recognizes 

lipopolysaccharide found in Gram-negative bacteria, could lead to increased susceptibility to 

the disease. These signalling regulators include nuclear factor κB1 (REF. 25), single Ig IL-1-

related receptor26, the co-receptor molecule lymphocyte antigen 96 and the small glycolipid 

transport protein ganglioside GM2 activator27. In addition, a single nucleotide 

polymorphism in the promoter region of IL18 (REF. 28) and genetic variants encoding 

proteins linked to the regulation of the immune phenotype shift from type 1 to type 2 T 

helper cells29 could all influence the risk of NEC development. Other important clinical 

factors associated with NEC are summarized in BOX 1.

Diagnosis of NEC

Clinical and radiographic markers

The cornerstone of effective NEC treatment relies on accurately diagnosing the disease, 

which can usually be established on the basis of readily available clinical, radiographic and 

laboratory data. The typical neonate with NEC is a premature infant who is thriving, yet 

suddenly presents with feeding intolerance, abdominal distension, bloody stools and signs of 

sepsis (that is, changes in heart rate, respiratory rate, temperature and blood pressure)5,7. An 

important consideration in the diagnosis of NEC is the gestational age at which these 

symptoms present, owing to the existence of an inverse relationship between gestational age 

and the onset and severity of symptoms in patients with NEC30,31. Specifically, an infant 

born at ~27 weeks of gestation will typically present with NEC at ~4–5 weeks of age and 

has a substantially higher risk of NEC development than an infant born at closer to 37 weeks 

of gestation, for whom onset typically occurs within the first 2 weeks after birth13. A late 

onset of NEC in the most premature infants might be related to delayed microbial 

colonization of the gut and establishment of virulent microbial agents, in part owing to the 

use of broad-spectrum antibiotics and prolonged hospital stay32–34. Signs of sepsis can be 

associated with high gastric residuals (defined as the volume that remains in the stomach 

before the next enteral feeding35) of ≥2 ml/kg or >50% of the previous feeding volume, 

which could indicate the presence of feeding intolerance35,36. Although feeding intolerance 

is the most common early gastrointestinal symptom associated with NEC37, some 

controversy persists as to the use of gastric residuals as an objective measure and their 

predictive value in the context of the disease progression, owing to the inherent variability in 

sampling gastric contents through a small nasogastric or orogastric tube, as well as to the 

lack of standardization in the procedure of obtaining gastric aspirates36,38.

For descriptive purposes and for disease stratification, the Bell scoring system has been 

widely utilized, which assesses the degree of NEC severity as mild (Bell stage I), moderate 
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(Bell stage II) or severe (Bell stage III), as characterized in TABLE 1. The diagnosis of NEC 

can be established by plain abdominal radiography, which reveals intramural gas (so-called 

pneumatosis intestinalis) in the early stages of confirmed NEC (Bell stage II), whereas 

advanced cases of the disease have pneumoperitoneum (Bell stage III)5,39. Although no 

specific laboratory markers have been validated in making the diagnosis of NEC, 

neutropenia and thrombocytopenia are often present40–42. Consideration of alternative 

diagnoses is critical for infants who present with NEC and in whom overlapping signs and 

symptoms might be present, including those who have spontaneous intestinal perforation, 

ileus secondary to sepsis, sensitivity to cow milk, food protein intolerance, ischaemic bowel 

disease associated with heart disease or haematological disturbances (for example, 

polycythaemia).

Biomarkers and noninvasive testing for the diagnosis of NEC

The relative nonspecificity of the readily available clinical and radiographic tests described 

earlier in the article suggest the need for additional molecular markers to improve early 

diagnosis of NEC in premature infants. In this regard, the presence of several molecules that 

are detected in the blood have been assessed for their value in establishing the diagnosis of 

NEC43–45 and a number of them have shown considerable promise, including acute-phase 

reactants (such as C-reactive protein) and proinflammatory cytokines (for example, TNFα, 

IL-6 and IL-8)45. In addition, organ-specific biomarkers, such as those that would indicate 

enterocyte injury or intestinal barrier impairment, include intestinal fatty acid-binding 

protein, liver fatty acid-binding protein, faecal calprotectin, trefoil factor 3 and claudin-3 

(REFS 41,46). Among these circulating molecules, one of the most promising might be 

intestinal fatty acid-binding protein, a cytoplasmic protein involved in enterocyte lipid 

metabolism47,48 that is released into circulation and secreted into the urine after enterocyte 

damage, which has been suggested to be useful in the prediction of NEC development48 and 

to correlate with the extent of intestinal necrosis47. Furthermore, a promising strategy in the 

identification of progressive NEC that requires surgical intervention has been formulated as 

a novel algorithm combining 27 clinical parameters and three urine fibrinogen peptide 

biomarkers, FGA1826, FGA1883 and FGA2659. This algorithm was reported to accurately 

predict the need for surgery in infants with suspected NEC in 100% of the cases analysed as 

opposed to only 40.1% when using the clinical parameters alone49,50, but it remains to be 

validated independently and in larger population studies. These and other biomarkers, 

therefore, could be considered for use in association with noninvasive monitoring techniques 

that assess intestinal tissue perfusion (for example, near-infrared spectroscopy)51 to identify 

those infants at risk of developing NEC.

The use of Doppler ultrasonography to assess perfusion of the intestinal wall has been 

suggested to be an accurate screening tool to determine the need for surgical intervention by 

identifying the presence of bowel necrosis without perforation52,53. Although this strategy 

has the potential to be more sensitive and specific than detection of the presence of free air 

in the abdominal cavity by conventional radiology, the presence of intramural as well as 

intraluminal air might obscure a reliable interpretation of ultrasonographic images. 

Furthermore, available data regarding the use of Doppler ultrasonography remains confined 

to small clinical studies with sample sizes in the range of 26–62 patients52,53. This 
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diagnostic strategy and others discussed here are promising; however, they remain 

incompletely proven, so the development of highly sensitive and specific diagnostic tools for 

NEC continues to be one of the most crucial areas of need in the field.

Medical and surgical treatment

Despite considerable advances in neonatal care, NEC remains a devastating disease that 

lacks a cure. Current management is largely nonspecific and includes the administration of 

broad-spectrum antibiotics, initiation of bowel rest and the provision of fluid and inotropic 

support to maintain cardiorespiratory function2,5,39,54–56. Surgical intervention is required in 

up to 50% of the NEC cases in large, population-based and hospital-based multicentre 

studies coordinated by neonatal research networks3,13,16,17 and typically includes the 

removal of necrotic intestine. In rare cases, the placement of a peritoneal drain and 

abdominal irrigation might be sufficient. Although several studies have reported that patients 

undergoing peritoneal drainage and laparotomy could have similar outcomes3,56,57, 

importantly, spontaneous intestinal perforation might resemble the initial presentation of 

perforated NEC, thus obscuring the interpretation of the findings from these studies. Several 

surgical guidelines have been published56,58–60. Given that up to 74% of infants initially 

managed with peritoneal drainage will require a subsequent laparotomy3,59, a commonly 

accepted approach has been to reserve primary peritoneal drainage for those patients with 

substantially elevated intra-abdominal pressure that impairs ventilation, or for extremely 

small infants under 750 g. Additional information based upon the Bell clinical staging 

criteria is provided in TABLE 1 (REF 39).

Outcomes of infants with NEC

The outcome of children with NEC is characterized by high overall morbidity ranging from 

20–50%, as patients experience recurrence, intestinal strictures, short bowel syndrome, 

growth delay and neurodevelopmental impairment2,5. Infants with NEC have longer 

hospitalization stays, increased risk of death before discharge and accrue higher financial 

costs compared with premature infants without NEC3,10. In the long term, patients who 

survive NEC are frequently affected by neurodevelopmental impairment, demonstrated by 

their impaired performance in cognitive and developmental assessments such as the Bayley 

Scales of Infant Development, the Griffiths Quotient and the Stanford–Binet test61, 

underscoring the far-reaching sequelae of this disease6,62. A detailed list of complications 

and outcomes is presented in TABLE 2.

Pathogenesis of NEC

Considerable interest has been shown in advancing our understanding of the molecular 

mechanisms that lead to the development of NEC, to further the development of more 

precise diagnostic and treatment modalities for this devastating disease. The following 

paragraphs will review the current theories within the field that seek to explain how NEC 

develops, and will in particular highlight opportunities for drug discovery based upon the 

present understanding of its pathogenesis. On the basis of the work of many investigators, 

we now propose a unifying hypothesis for the development of NEC: that the intestine of the 
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premature neonate exists in a hyper-reactive state relative to the full-term intestine, which 

favours NEC development upon colonization with an appropriate microbial milieu in a 

patient with a permissive genetic background.

The preterm gut: a susceptible environment for the development of NEC

To understand the reasons for which premature infants are at a particularly high risk of 

developing NEC compared with full-term infants, investigators have focused their efforts on 

comprehending the differences between the premature and the full-term intestinal tract. 

These studies have outlined important differences in bacterial colonization, micro-

circulatory perfusion and the maturity of the gastrointestinal immune system5,63. 

Importantly, although none of these factors alone can completely explain the reasons for 

which NEC develops, taken together they provide a picture that explains the pathogenesis of 

this disease. These studies also suggest the possibility that a molecular determinant might 

have a role in distinguishing the premature from the full-term intestine. In this regard, 

increasing evidence suggests that TLR4 is expressed at higher levels in the premature than 

the full-term intestine in mice, humans and other species64. Activation of TLR4 on the lining 

of the premature intestine by the Gram-negative bacteria that colonize the premature gut 

leads to a number of deleterious effects, including increased enterocyte apoptosis, impaired 

mucosal healing and enhanced proinflammatory cytokine release, which in aggregate lead to 

the development of NEC65. Moreover, the translocation of Gram-negative bacteria through 

the gut mucosa leads to activation of TLR4 on the lining of the endothelium of the 

premature bowel mesentery, resulting in a reduction in blood flow and the development of 

intestinal ischaemia and necrosis66. In additional studies, the elevated expression of TLR4 in 

the premature gut is reflective of the surprising function TLR4 exhibits in the regulation of 

normal gut development in utero via its effects on the Notch signalling pathway and through 

its expression on intestinal stem cells positive for the leucine-rich repeat-containing G-

protein coupled receptor 5 (REF. 64). As a consequence of this critical role in normal gut 

epithelial development, TLR4 is expressed at high levels in the developing gut; therefore, in 

the setting of a premature birth, intestinal TLR4 levels remain elevated67 as a consequence 

of the gut not having completed its full development, as well as perhaps through the ongoing 

activation by luminal microorganisms. Upon subsequent colonization of the gut by bacteria 

in the postnatal period, the deleterious consequences of exaggerated TLR4 signalling occur, 

leading to the development of NEC. We term this explanation for the pathogenesis of NEC, 

in which in utero TLR4 signalling that is required for gut differentiation becomes deleterious 

in the postnatal period, ‘the cross-switching hypothesis’. This hypothesis partially explains 

the reasons for which the premature infant is at risk of NEC development and why the 

disease occurs upon bacterial colonization. In further support of a role for TLR4 in NEC 

development, pharmacological inhibitors of TLR4 prevent NEC ex vivo in mice and human 

tissue68 and breast milk — which is long-known to be an effective preventive agent for 

patients at risk of NEC development69,70 (discussed in detail later in the article) — is a 

potent inhibitor of TLR4 signalling71.

Although TLR4 signalling offers an attractive pathway to explain the development of NEC, 

additional factors are known to differ between the premature and full-term host that might 

contribute to this disease. A comprehensive list of factors related to prematurity that increase 
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the susceptibility and influence the pathogenesis of NEC are presented in BOX 2. The 

characteristics that predispose the premature intestine to NEC include increased molecular 

expression and signalling activity of key mediators such as TLR4 (REFS 65,72–75), 

immaturity of cellular and physiological processes such as decreased digestion and 

absorption of nutrients76,77 and impaired intestinal motility78–80. These factors have been 

identified both in humans with NEC and in experimental animal models of the disease, 

discussed later in this section. Among the most critical factors is the high baseline level of 

cellular endoplasmic reticulum stress within the premature intestine, which increases the 

likelihood of apoptosis in the epithelial lining compared with the intestinal epithelium of 

full-term infants81. In addition, the decreased number of mucus-producing goblet cells in the 

premature intestine results in deficient mechanical protection that leads to increased 

exposure of the vulnerable epithelia to pathogenic bacteria and toxic luminal contents64,82. 

The potential for injury resulting from insufficient mucus layer protection is heightened by 

the impaired clearance of luminal contents, owing to decreased motility78–80,83 and 

decreased digestion and absorption as a result of enterocyte immaturity76,77. Other important 

differences in the intestine of premature infants compared with full-term infants include 

increased microvascular tone within the intestinal mesentery66,84 and the presence of 

immature tight junctions85,86, all of which can render the bowel at risk of proinflammatory 

signalling, bacterial translocation and NEC development74,78,84. Notably, some of these 

important factors are linked to TLR4 signalling. For instance, TLR4 hyperactivation in the 

setting of prematurity leads to reduced goblet cell signalling via activated Notch pathways, 

and TLR4 activation also reduces endothelial nitric oxide synthase protein levels and activity 

within the vascular endothelium, leading to reduced mesenteric perfusion and potentially 

reduced motility66,84. Furthermore, T lymphocytes have been shown to participate in the 

adaptation of the premature intestinal mucosa to bacterial colonization and contribute to 

NEC development87–89. NEC is associated with lymphocyte imbalance within the intestinal 

mucosa, as TLR4 signalling in the intestinal epithelium leads to an upregulation of 

proinflammatory T helper 17 cells and a reduction in protective T regulatory cells, which 

can be reversed through the administration of retinoic acid in the diet89.

Although TLR4 is likely to have a critical role in the pathogenesis of NEC, other pathways 

have been shown to be important. Specifically, various investigators have identified roles for 

the increased expression and function of platelet-activating factor in the mucosal injury and 

barrier dysfunction associated with NEC74,90,91, whereas inhibitors of platelet-activating 

factor protect against NEC development in mouse and rat models74,92. Furthermore, the 

expression levels of the receptor for platelet-activating factor were also increased in mouse 

and rat ileum90,91. Infants with NEC have high circulating levels of platelet-activating 

factor90,93, associated with the increased expression of this protein as well as with deficient 

activity of platelet-activating factor acetylhydrolase, the enzyme involved in its 

degradation93,94. Consequently, the presence of this enzyme in human breast milk95 has 

been suggested to contribute to the protective effect associated with breastfeeding90. 

Additionally, platelet-activating factor has been demonstrated to induce TLR4 expression 

and signalling74,92.

Studies using isolated tissue from infants with NEC as well as from experimental mouse 

models have implicated a role for intestinal macrophages in the pathogenesis of NEC96. 
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Incomplete development of macrophage tolerance to bacterial products within the intestinal 

lumen, which could breach the barrier as a result of injury to the mucosal epithelia, have 

been postulated to predispose the preterm human intestine to the development of the 

disease96. Specifically, intestinal macrophages present in the healthy intestinal mucosa of 

term infants have increased phagocytic and bactericidal activity, but do not produce 

inflammatory cytokines when challenged by bacterial products, an effect that has been 

ascribed to the inflammatory downregulation orchestrated by transforming growth factor β2 

(REF. 96). On the other hand, macrophages present within NEC injury lesions are 

characterized by a highly inflammatory phenotype, resulting from increased expression of 

mothers against decapentaplegic homologue 7, an inhibitor of transforming growth factor β2 

signalling97,98. Further studies have suggested a role for impaired Paneth cell function in the 

development of NEC99. Paneth cells are highly specialized secretory cells located within the 

intestinal crypts of Lieberkühn and are key components of the innate immune system of the 

small intestine through their release of antimicrobial peptides into the intestinal lumen100. 

Evidence from studies in animal models indicates that Paneth cell depletion in the presence 

of Klebsiella pneumonia can induce NEC-like pathology67,101–103. However, given that the 

newborn gut is reasonably deficient in Paneth cells at baseline, it is unclear what the 

functional relevance of Paneth cells might be in the disease pathogenesis, although 

additional studies into this potential cellular mechanism of NEC are clearly warranted.

The gut microbiota in NEC pathogenesis

Linking alterations in the intestinal microflora with the development of various 

gastrointestinal diseases, including NEC, has received tremendous interest32,104. An 

important factor to consider in the context of NEC is that colonization of the gut in the early 

neonatal period happens in two waves105. The first wave, which is similar in both term and 

preterm infants, is predominantly dependent upon the mode of childbirth105,106. The second 

wave of colonization in term infants is determined by feeding type, namely breastfeeding, 

which is rich in bifidobacteria and Bacteroides, or formula-feeding, which predominantly 

comprises streptococci, staphylococci and lactobacilli106. In the case of preterm infants the 

second wave of colonization is less influenced by the type of feeding and is characterized by 

high numbers of Clostridiaceae and Enterobacteriaceae and very low relative numbers of 

bifidobacteria and Bacteroidetes, in contrast with term infants105. In fact, 16S ribosomal 

RNA gene pyrosequencing has shown that the single most important determinant factor of 

the composition of the premature gut microbiota is the degree of prematurity107. A 

discernible patterned progression of colonizers from Bacilli to Gammaproteobacteria to 

Clostridium characterizes gut colonization in premature infants but the rate of assembly of 

the microbial population is dependent upon gestational age: that is, the more premature the 

infant, the slower the progression of bacterial colonization, yet the same pattern of 

colonization is followed107. These findings demonstrate that host biology is an essential 

modulator of microbiota composition and equilibrium, rather than a passive culture 

environment. Several investigators have shown a link between an abnormal gut microbiota in 

premature infants and the development of NEC32,85,105,108–111. Additionally, multiple 

reports have suggested that functional expression of TLRs is critical in the dynamic 

interaction between the host epithelium and the microbiota that enables successful intestinal 

adaptation to the commensal microbiota112–114. Furthermore, microbial colonization of the 
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gut is required for the development of NEC115,116, as NEC occurs only after this event5 and 

can be treated in humans and animal models with broad-spectrum antibiotics that target 

enteric microorganisms2. However, whether abnormal bacteria represent a cause as opposed 

to a consequence of NEC is yet to be resolved115,117. Despite multiple reports of NEC 

outbreaks associated with certain bacteria, identification of a specific pathogen as the main 

aetiological factor remains elusive108,115. Several studies have shown that there is decreased 

diversity in the gut microbiota of infants diagnosed with NEC when compared with age-

matched controls, although without a unified pattern except for the overabundance of strict 

anaerobes108,118,119.

Many of the studies described in the preceding paragraphs have been performed in animal 

models of NEC and validation of these results in human tissue wherever possible is 

important. Experimental models of NEC in mice and rats that employ a combination of 

hypoxia, administration of formula supplemented with bacteria isolated from human NEC 

stool and exposure to hypothermia have been the mainstay of many such studies and are 

roughly comparable to the human disease. Other animal model studies, involving clamping 

of the mesenteric artery or ablation of Paneth cells101,102, have relevance in certain scientific 

circumstances and are technically easier to perform. Larger animal models, especially the 

piglet model, share greater similarity to human NEC, but are technically more demanding 

and costlier to perform120. The benefits, drawbacks and challenges of individual models 

have been reviewed elsewhere120.

Strategies for NEC prevention

Given that NEC occurs in a well-defined population of patients — that is, those who are 

premature — there might be benefit in identifying specific preventive strategies that, if 

administered successfully to the appropriate patients, could reduce the incidence of NEC. In 

this regard, there has been tremendous interest in developing specific nutritional and 

pharmacological strategies to reduce the incidence of NEC. The most relevant and effective 

will be reviewed here.

Nutritional approaches for NEC prevention: the use of breast milk

Multiple randomized clinical trials have now validated the empirical observation that breast 

milk statistically significantly reduces the incidence of NEC69,121. Human milk contains a 

variety of beneficial bioactive factors, among which several have been shown to reduce NEC 

incidence and progression69,122. In BOX 3 we present a list of human milk components and 

the experimental evidence supporting their protective effects. Considerable research efforts 

have been deployed to identify these critical factors in the hope that new preventive 

strategies can be developed121. Although the precise mechanisms by which breast milk 

protects against NEC are not yet fully understood, emerging experimental evidence suggests 

that breast milk inhibits TLR4 signalling by preventing glycogen synthase kinase 3β 
activity71. Consequently, breast-milk-mediated downregulation of TLR4 signalling can 

reverse the inhibition in intestinal stem cell proliferation and mucosal healing, which are 

themselves inhibited by TLR464,71,123. Moreover, these effects were shown to be partially 

dependent upon activation of epidermal growth factor receptor signalling71. Whether the 
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development of NEC in association with formula feeding represents the presence of an 

injurious component in infant formula, or the deficiency of a protective agent only present in 

breast milk remains to be determined37,69,124. The lack of availability of human breast milk 

(which can arise for a number of reasons, such as insufficient production by the mother of an 

infant) remains a major challenge in neonatal care37,69, and has led to the use of donor breast 

milk as a potential substitute or supplement to formula-feeding. Multiple reports support the 

use of donor human milk as a potentially effective strategy for reducing the incidence of 

NEC70,125. For those instances in which no human breast milk is available, emphasis has 

been placed on determining the best evidence-based strategies for formula-feeding37. 

Although no specific feeding regimen (that is, composition, volume and rate of feeding) has 

been validated to prevent NEC37, the use of standardized feeding guidelines (for example, 

patient-specific orders with set thresholds to manage feeding intolerance)126 have been 

implemented in multiple centres and have been proven to be effective to reduce the 

incidence and severity of the disease126.

Probiotics in the prevention of NEC

Probiotics are defined as live microorganisms that provide a health benefit to the host127,128. 

These agents have been shown to protect against NEC and reduce disease severity and 

overall mortality in premature infants127,128. The finding that a degree of perturbation in the 

normal gut microbial flora exists in patients with NEC supports a rationale of using 

probiotics to treat and prevent this disease105,115,116. Considering the vulnerability of 

premature infants, routine administration of probiotic agents has elicited substantial 

controversy regarding the type of agent to be used, dosing and timing128,129. A systematic 

review, analysing 24 trials, evaluated the efficacy and safety of probiotics for preventing 

NEC130 and suggested that oral administration of probiotics decreases all-cause mortality 

and incidence of severe NEC in preterm infants; however, the precise probiotic agent, timing 

and length of therapy still remains to be established128,130. Emerging consensus is that the 

use of probiotics in NEC could be effective in reducing the incidence of the disease without 

increasing rates of sepsis or other adverse events56,131,132. Mechanistic insights supporting 

the use of probiotics are scarce but are starting to emerge. Administration of the probiotic 

bacteria Lactobacillus rhamnosus was shown to increase enterocyte proliferation and 

differentiation of Paneth cells in enteroids grown in a 3D bioscaffold133. Furthermore, 

treatment with CpG-containing bacterial DNA, which bypasses the potential adverse effects 

of live bacteria, is effective against experimental NEC in mice and piglets, and acts by 

activating TLR9 and inhibiting TLR4 (REF. 134), providing a potential alternative to the use 

of live probiotics.

Novel pharmacological approaches

Certain biologic agents could have a role in preventing NEC or in treating NEC once the 

disease is established. Heparin-binding EGF-like growth factor has been identified as a 

biologic agent capable of preventing NEC in various animal models and of reversing the 

effects of established NEC, via positive effects on mucosal healing135, intestinal stem cell 

function136 and vascular perfusion84,137. A readily absorbed and nontoxic oligosaccharide 

that inhibits TLR4 was shown to prevent NEC in mice and piglets and to reduce intestinal 

inflammation in ex vivo human intestine obtained during the treatment of NEC68. Other 
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investigators have established an important role for human milk oligosaccharides in NEC 

prevention and treatment138,139. Additionally, we and others showed that the administration 

of a simulated amniotic fluid might have benefit for the prevention or treatment of NEC, on 

the basis of the mucosal protection offered by amniotic fluid, which is rich in growth factors, 

and exerts anti-TLR4 effects140–142. A summary of biological approaches for the prevention 

of NEC is presented in FIG. 1. Randomized clinical trials are underway to determine the 

potential therapeutic and/or preventive strategies of some of these approaches. In particular, 

clinical trial NCT00437567 has been designed to evaluate the effect of the prebiotic galacto-

oligosaccharide, a component of human milk, in the prevention of NEC143. Additionally, 

clinical trial NCT02405637 aims to evaluate the efficacy of synthetic amniotic fluid in 

preventing NEC among very-low-birth-weight infants144. Emerging evidence also suggests a 

prophylactic benefit against the development of NEC by oral administration of lactoferrin 

with or without probiotics to preterm infants at risk of NEC (gestational age <32 weeks or 

birth weight <1,500 g)121. Although these findings are encouraging, widespread use of these 

therapies cannot be recommended at this point, as the current evidence has been determined 

to be of moderate-to-low quality121 awaiting the completion of ongoing clinical trials145–147.

Conclusions

NEC is the most common and lethal gastrointestinal pathology that afflicts premature 

infants. Characterized by high morbidity and mortality, complex pathogenesis and 

devastating short-term and long-term sequelae, it has been dreaded by health-care providers 

and families for over a century. Only within the past decade have substantial strides been 

made in the understanding of the molecular mechanisms that determine NEC pathogenesis. 

These advances undoubtedly hold the promise to improve the development of effective 

preventive and diagnostic strategies to curtail the devastating consequences of the disease. 

Although substantial challenges lie ahead to translate the lessons learned at the experimental 

level, continued translational research efforts will certainly provide avenues to alleviate the 

healthcare and financial burden attributed to NEC.
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Box 1

Factors linked to increased NEC incidence

Factors related to the infant

• Prematurity (highest risk with lowest gestational age)1,16

• Very low birth weight (<1,500 g)1,10,148

• Low Apgar score at 5 min148

• Formula feeding37,125,149,150

• Mechanical ventilation148

• Congenital defects

- Congenital heart disease151

- Patent ductus arteriosus152

- Gastroschisis153,154

• Pharmacological interventions

- Indomethacin152,155

- Histamine H2 receptor antagonists11

- Prolonged empirical antibiotic use (≥5 days)156

- Concomitant use of indomethacin and glucocorticoids148

- Indomethacin tocolysis157

• Anaemia158

Factors related to the mother

• HIV-positive status159,160

• Illicit drug abuse (including opiates, cannabinoids and cocaine)161

• Chorioamnionitis162

• Vaginal delivery148

NEC, necrotizing enterocolitis.
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Box 2

Factors related to prematurity that increase the susceptibility to NEC

• Increased expression of the innate immune receptor Toll-like receptor 4 

(TLR4) in the apical surface of enterocytes65,72–75 and within intestinal 

stem cells81,123

• Increased baseline levels of endoplasmic reticulum (ER) stress within 

intestinal crypts81

• Decreased number of mucus-producing goblet cells181

• Impaired intestinal motility78–80

• Decreased digestion and absorption76,77

• Enterocyte immaturity76,77

• Impaired regulation of microcirculatory perfusion of the gut66,84

• Increased bile acid levels and decreased bile acid-binding protein in the 

intestinal lumen182

• Tight junction immaturity and impairment85,86

• Inefficient antigen processing and presentation183

• Impaired intestinal regeneration and healing75

• Discontinuation of gut exposure to amniotic fluid

• Increased levels of platelet-activating factor (increased production and 

decreased degradation)74,90,91 and increased expression of its receptor 

in the ileum90,91

• Decreased FOXP3+ regulatory T cell levels in the small 

intestine87,89,184

• Decreased levels of intraepithelial lymphocytes expressing the T cell 

receptor γδ88

• Decreased intestinal expression of transforming growth factor β240,96
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Box 3

NEC-protective factors in human milk

• Nitrate and/or nitrite and antioxidant factors66,163

• L-arginine164,165

• Human milk oligosaccharides and prebiotics138,139,166–168

• Lactoferrin121,169–172

• Secretory IgA173

• Platelet-activating factor acetylhydrolase90,95

• Growth factors:

- Epidermal growth factor174–176

- Heparin-binding EGF-like growth factor177–179

- Transforming growth factor β296

- Erythropoietin180

NEC, necrotizing enterocolitis.
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Key points

• Necrotizing enterocolitis (NEC) is the most common and devastating 

gastrointestinal disease affecting premature infants; overall NEC 

mortality remains unchanged over the past 30 years owing to a lack of 

treatment options

• The main risk factors for the development of NEC are prematurity, 

bacterial colonization and administration of formula feeds

• The premature intestinal epithelium is predisposed to mounting an 

exaggerated inflammatory response to colonizing bacteria, leading to 

mucosal destruction and impaired mesenteric perfusion in the 

pathogenesis of NEC

• The exaggerated inflammatory response is partially due to the 

increased expression of Toll-like receptor 4 (TLR4), which is expressed 

at high levels on the premature newborn intestinal epithelium

• Increased expression of TLR4 in the intestinal epithelium of the 

premature gut reflects the surprising function that TLR4 plays in the 

regulation of normal gut development through effects on Notch 

signalling

• Although no specific treatment for NEC exists, several potential 

biological targets have been identified, including growth factors, 

modifiers of perfusion and novel TLR4 inhibitors with potential 

translational importance
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Figure 1. Factors that attenuate or prevent the development of NEC in experimental models
Activation of the innate immune receptor Toll-like receptor 4 (TLR4) plays an essential part 

in the development of necrotizing enterocolitis (NEC) by increasing enterocyte and intestinal 

stem cell apoptosis and impairing mucosal healing through decreased restitution and 

proliferation. These events lead to disruption of the epithelial barrier, which allows luminal 

bacteria to translocate and trigger a systemic inflammatory response, sepsis, multiple organ 

failure and death. Counter-regulatory factors can be exploited in order to dampen TLR4 

signalling and expression to prevent the development of NEC. Natural factors include: 

epidermal growth factor (EGF)71,140,185,186, heparin-binding EGF-like growth factor (HB-

EGF)186–188, nod-like receptor 2 (NOD2)189, Toll-like receptor 9 (TLR9)67,190, Platelet-

activating factor acetylhydrolase (PAF-AH)90. Exogenous factors include: the small-

molecule TLR4 inhibitor C34 (REF. 68), bacterial (CpG) DNA67,190, muramyl dipeptide 

(MDP)189, sodium nitrate66, glutamine191, celastrol (also known as tripterine)192 and 

dibenzazepine73. EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide 

synthase; Hsp70, heat shock protein 70; PAF, platelet-activating factor; SMAC, second 

mitochondria-derived activator of caspase (also known as Diablo homolog, mitochondrial).
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Table 1

Bell’s staging and suggested management for NEC

Bell’s stage Severity Clinical signs and symptoms Radiological Treatment

I Mild NEC, 
suspected NEC

Mild systemic signs and intestinal signs Nonspecific • Close clinical 
observation

• Discontinuation 
of enteral 
feeding

II Moderate NEC • Moderate systemic 
signs with 
prominent 
abdominal 
distension, 
abdominal 
tenderness and 
wall oedema

• Thrombocytopenia 
and metabolic 
acidosis

Pneumatosis 
intestinalis, portal 
venous gas

• Medical 
management, 
such as 
nasograstric 
decompression, 
intravenous 
fluids and 
broad-spectrum 
antibiotics

• Close clinical, 
laboratory and 
radiographic 
observation

III Advanced NEC • Worsening stage II 
signs and 
symptoms plus 
hypotension

• Signs of peritonitis

• Severe metabolic 
acidosis and shock.

Pneumoperitoneum • Exploratory 
laparotomy and 
resection of 
necrotic bowel

• Peritoneal 
drainage in 
selected cases 
(abdominal 
compartment 
syndrome or 
weight <750 g)

NEC, necrotizing enterocolitis. Table compiled from REFS 5,39,193.
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Table 2

Complications and outcomes in patients with NEC

Type of complication or outcome Incidence Associated factors

Recurrence 4–10%56,194,195 Nonoperative management, congenital heart disease2,56

Mortality 15–63%3,196 • Main predictor is gestational age

• Patients managed surgically have the highest mortality3

Intestinal strictures 12–35%197 • Most frequent in patients managed medically

• Affects colon in up to 80%198

Stoma complications 50%199 • Most common include: prolapse, stricture and retraction

• Proximal jejunostomies can cause substantial electrolyte and 
fluid losses, impaired weight gain and peristomal skin 
complications198

Short Bowel Syndrome 20–35%200 • Relative risk up to 85.9 (95% CI 45.8–160.9)201

• Increased risk associated with a residual intestinal length <25% 
of predicted for gestational age200

Neurodevelopmental impairment 30–50%202,203 NEC vs. no NEC (OR: 1.82). Surgical NEC versus medical NEC (OR: 2.34)202–204

Growth delay 10%62,201 • Affected children fall below 50th percentile for weight and 
height

• Problem more severe in patients with short bowel syndrome 
after NEC compared with age-matched controls without 
NEC201

NEC, necrotizing enterocolitis.
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