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Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and a range of fitness in
fish, but little is known about the gut microbial community in Antarctic fish. In this study, the composition of intestinal microbial
community in four species of Antarctic fish was detected based on 16S rRNA gene sequencing. As a result, 1 004 639 sequences
were obtained from 13 samples identified into 36 phyla and 804 genera, in which Proteobacteria, Actinobacteria, Firmicutes,
Thermi, and Bacteroidetes were the dominant phyla, and Rhodococcus, Thermus, Acinetobacter, Propionibacterium, Streptococcus,
and Mycoplasma were the dominant genera. The number of common OTUs (operational taxonomic units) varied from 346 to
768, while unique OTUs varied from 84 to 694 in the four species of Antarctic fish. Moreover, intestinal bacterial communities
in individuals of each species were not really similar, and those in the four species were not absolutely different, suggesting that
bacterial communities might influence the physiological characteristics of Antarctic fish, and the common bacterial communities
might contribute to the fish survival ability in extreme Antarctic environment, while the different ones were related to the living
habits. All of these results could offer certain information for the future study of Antarctic fish physiological characteristics.

1. Introduction

Although the Southern Ocean occupies 10% of the world’s
ocean, only 322 species fishes in Antarctic Ocean were
recognized currently, considered so small comparing to the
global diversity approximately 25,000∼28,000 species, while
the benthic fish fauna includes 19 families of about 222 species
[1].

Antarctic fishes have been isolated for over 10 million
years. Besides, they have developed mechanisms to adapt
to and survive in the coldest and most thermally stable
environment now [2–5]. Antarctic water under the sea ice
possesses a very low and fairly constant temperature of about
−1.86∘C, and annual temperature fluctuations are in 1∘C;
Antarctic sea water is with a high oxygen concentration of
0.18–0.36mmol/L, which enables ice fish to live with no
haemoglobin [6–8].

Trematomus bernacchii (family Notothenioidei), Chion-
odraco hamatus, (family Channichthyidae), Gymnodraco

acuticeps (family Bathydraconidae), and Pagothenia borch-
grevinki (family Notothenioidei) are four Antarctic fish living
in the oxygen-rich coastal Antarctic Ocean with the equilib-
rium temperature at −1.86∘C year round [2, 9]. T. bernacchii,
C. hamatus, and G. acuticeps are benthic fish and always live
in the depth of more than 100m under the surface of the sea
ice, while P. borchgrevinki likely live in the water 1∼2m below
the ice [10–13].

Fish have stable microbiota in the gastrointestinal (GI)
tract, and the microbiota considered as an integral part of
the host is highly relevant to the digestion, nutrition, growth,
and reproduction and strongly affects fish health by assisting
the gut epithelium development and stimulating the innate
immune system [14, 15]. Furthermore, some papers have
provided that the microbes living in the fish intestines are
influenced by dietarymanipulations [16] while little is known
about the bacterial community composition of Antarctic fish
and whether the Antarctic fish gut bacterial community was
affected by extreme environmental conditions.
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16S rRNA-based molecular methodologies are now com-
monly used for identifying and classifying the bacterial
species within compounded microbial communities [17]. In
this study, we used IlluminaMiSeq platform and comparative
sequence analysis to determine the microbial diversity of T.
bernacchii, C. hamatus, G. acuticeps, and P. borchgrevinki.

2. Materials and Methods

2.1. Sample Collection and Preparation. A total of thirteen
fish belonging to four species, four of T. bernacchii, two of C.
hamatus, five ofG. acuticeps, and two of P. borchgrevinki,were
used. All of these fish were caught at 100–200m under the
ice by net near the location of 72∘55󸀠E and 67∘29󸀠S through
Chinese Antarctic research vessel Xue Long.

Experimental fish were randomly harvested with net and
then euthanized by an overdose of MS 222. After dissec-
tion, the intestines were removed aseptically from each fish
abdominal cavity; the contents were carefully collected and
labelled Tb1–Tb4 for T. bernacchii, Ch1–Ch5 for C. hamatus,
Ga1-Ga2 forG. acuticeps, and Pb1-Pb2 forP. borchgrevinki and
stored at −80∘C before transporting to the laboratory.

2.2. DNA Extraction. The intestinal content samples were
thawed on ice, and then genomic DNA were separately
extracted using the E.Z.N.A. Stool DNA kit (OMEGA, Bio-
Tek, USA) based on the manufacturer’s protocol and stored
at −80∘C. The integrity of the 13 DNA samples was assessed
visually using agarose gel (containing ethidium bromide)
electrophoresis on 1.0% and quantified using a Qubit v2.0
fluorometer (Life Technologies, Darmstadt, Germany). The
DNA concentration was determined by using a fluorescence
spectrophotometer (ES-2, Malcom, Japan).

2.3. PCR Amplification and Sequencing. The hypervariable
regions V4-V5 of the 16S rRNA gene were amplified using a
universal primer set 515 F (5-GTGCCAGCMGCCGCGG-3)
and 907 R (5-CCGTCAATTCMTTTRAGTTT-3). The PCRs
were performed in triplicate using 25 𝜇L reaction systemwith
1 𝜇L each primer (10 𝜇M), 2 𝜇L DNA template (20 ng/𝜇L),
5 𝜇L 5x Q5 reaction buffer, 5 𝜇L 5x Q5 GC high enhancer,
2 𝜇L dNTPs (2.5mM), and 0.25𝜇L Q5 polymerase (5U/𝜇l).
The PCR amplification conditions were 1 cycle of 98∘C for
3min (initial denaturation), followed by 25 cycles of 98∘C
for 15 s (denaturing), 50∘C for 30 s (annealing) and 72∘C
for 30 s (extension), and finally 1 cycle of 72∘C for 5min
(final extension).The amplified PCRproducts were examined
by 2% gel electrophoresis, purified by using the MinE-
lute Gel Extraction Kit (Qiagen) to remove the unspecific
DNA fragments and quantitated by using Bioanalyzer 2100
(Agilent Technologies, Waldbronn, Germany). The products
were pooled together with equal amount and sequenced
on the Illumina MiSeq platform (Roche Applied Science,
Indianapolis, IN, USA). And the length of paired-end reads
was 150 bp.

2.4. Data and Statistical Analysis. The raw sequences
obtained from Illumina MiSeq were firstly filtered for quality
control and reads with length <150 bp, ambiguous bases,

average base quality score of <20 in the tags were discarded.
Then FLASH (version 1.2.7, http://ccb.jhu.edu/software/FLASH/)
was used to merge read1 and read2 [18], and sequences with
overlap <10 andmismatches were removed. After that, Quan-
titative Insights Into Microbial Ecology (QIIME) (version
1.9.0, http://qiime.org/) [19] was used to the further quality
control and uchime of mothur (version 1.31.2) [20, 21] was
used for chimera checking.

Reads after quality control were delineated into opera-
tional taxonomic units (OTUs) with a 97% sequence sim-
ilarity using uclust of QIIME, and OTUs with abundance
less than 0.001% of the total sequences were discarded. The
taxonomic information of the representative sequence in each
OTU was obtained by matching sequence database using
BLAST of QIIME.

The rarefaction curves and bar graph of species distri-
bution for the 13 samples were constructed using QIIME
and the alpha-diversity indices (i.e., Chao1 estimator and
Shannon estimator) were calculated using mothur. The anal-
ysis of shared and unique operational taxonomy unit (OTU)
between the four species was conducted based on the OTU
table generated by the QIIME (v1.9.0).

To compare the similarity of the microbial community
composition among the 13 intestinal contents of the four
species of Antarctic fish, difference of microbial community
in each sample was calculated by the Principal Compo-
nents Analysis (PCA) and the heatmap associated with
evolutionary relationship among different samples was also
constructed and analyzed.

3. Results

3.1. The Microbial Complexity. A total of 1 061 710 sequences
were obtained from 13 samples with the number of sequences
ranging from 28 296 to 138 254 per individual after filter-
ing for quality. By removing chimeras, 26 978 to 119 888
sequences were collected from each sample, resulting in a
total of 1 004 639 sequences from all samples. Then all the
sequenceswere clustered into 2199OTUs at the 97% sequence
similarity value (Table 1).

The microbial complexities in the gut of T. bernacchii, C.
hamatus, G. acuticeps, and P. borchgrevinki were estimated
on the basis of alpha-diversity indices (Chao1 indices and
Shannon indices). The Chao1 was used to estimate species
richness, while Shannon’s index was used to indicate species
diversity. The results showed that C. hamatus samples had
the largest alpha-diversity indices followed by G. acuticeps, T.
bernacchii, and P. borchgrevinki (Table 2).

3.2. Microbial Community Composition. After sampling
20000 reads, with the sampled read number increasing, the
newly discovered OTUs reduced and the rarefaction curves
tended to attain the saturation plateau (Figure 1).This showed
that the libraries of the 13 samples were large enough to
estimate the phylotype richness and microbial community
diversity at the 97% similarity threshold.

All sequenceswere identified into 36 phyla, and only 0.6%
of the total sequences were assigned to unspecified microbial
phyla. Phyla with abundance >0.1% of the 13 samples were
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Table 1: Sequence and taxonomy number of individual sample.

Samples Effective sequence High quality sequence Phylum Class Order Family Genus
Tb1 39021 37534 433 432 427 373 236
Tb2 28296 27392 321 321 318 276 163
Tb3 52250 49982 662 659 652 581 352
Tb4 28698 26978 449 447 440 381 190
Pb1 53101 49930 527 525 514 452 249
Pb2 61641 59218 642 640 634 571 375
Ch1 49882 47539 719 717 698 612 413
Ch2 39837 36146 776 776 768 616 377
Ch3 75228 71669 865 863 855 677 401
Ch4 64234 60660 798 796 788 633 379
Ch5 40188 37524 616 614 606 538 350
Ga1 59050 57647 616 616 607 521 338
Ga2 29089 27200 335 335 333 301 207
Total 1061710 1004639

Table 2: The alpha indices of different samples.

Samples Chao1a ACE Simpson Shannon
Tb1 680.5789 590.8154 0.782606 3.728343
Tb2 593.1923 717.972 0.405413 2.07083
Tb3 862.28 827.5564 0.928014 5.277833
Tb4 664.5172 542.6397 0.955801 5.769862
Pb1 845.8936 734.8494 0.905419 4.801013
Pb2 890.375 847.3593 0.910085 5.060302
Ch1 908.3 867.9615 0.918179 5.479842
Ch2 891.25 850.9911 0.941227 6.02579
Ch3 1004 948.9715 0.894694 5.562919
Ch4 983.7581 927.8588 0.934068 6.029751
Ch5 886.8971 848.5095 0.927018 5.530419
Ga1 756.8333 706.2764 0.892472 4.79657
Ga2 551.7576 504.3151 0.800829 3.598119

clearly observed in the bar graph of species distribution
(Figure 2). Proteobacteria (30.8%), Actinobacteria (29.8%),
Firmicutes (13.7%), Thermi (7.6%), and Bacteroidetes (6%)
were the most dominant groups which accounted for 87.90%
of the reads and commonly observed in all 13 fish guts. Other
major phyla, including Tenericutes (3.6%), Crenarchaeota
(2.8%), and Cyanobacteria (1.8%), were also identified in
all fish samples, but Crenarchaeota, Parvarchaeota (1.6%),
and Euryarchaeota were the only three phyla belonging to
Archaea, and the latter two were only present in Chionodraco
hamatus. Though the major bacterial phyla in the 13-fish
intestinal content were similar, the relative abundance was
obviously different.

At the genus level, the sequences from 13 samples were
identified into 804 genera ranging from 102 to 210 per
individual. The gut content samples were dominated by
six major genera, representing approximately 49.3% of the
sequences, including Rhodococcus (19.5%), Thermus (7.5%),
Acinetobacter (7.1%), Propionibacterium (6.5%), Streptococcus

(5.1%), and Mycoplasma (3.6%). All above genus and
Corynebacterium (1.8%) and Flavobacterium (1.3%) were
present in all intestinal content samples.

3.3. Common andUniqueMicrobial Communities. Theanaly-
sis of the common and unique OTUs was conducted to inves-
tigate the gut microbial community in different fish through
a Venn diagram. Pairwise comparison was performed among
the four species fish via considering the sharedOTUs, as those
present in a certain percentage at least 30% or 40% of the
samples of each species fish gut, and the unique OTUs were
defined as those only present in more than 30% or 40% of
the samples taken from one species of fish gut sample and
unfound in the other three species of fish gut samples.

The number of common OTUs ranged from 346 to 768
and unique OTUs varied from 84 to 694 (Figure 3). Many
OTUs were uniquely present in only one species of fish gut
sample, especially in T. bernacchii (about 694), while the
common OTUs in the four species of fish gut were not a few
yet (over 346).
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Figure 1: Rarefaction curve.

3.4. The Similarity of Microbial Community Composition.
The similarity and difference of microbial community com-
positions of 13 intestinal content samples taken from the
four species of Antarctic fish (T. bernacchii, C. hamatus, G.
acuticeps, and P. borchgrevinki) were showed in PCA plot
with PC1 accounting for 38.78% of the total variation and
PC2 for 17.83%. As a result, no species, except 3 C. hamatus
samples and 1 T. bernacchii sample, formed a distinct cluster
and clearly separated from other three species (Figure 4).

The hierarchically clustered heatmap analysis associated
with the similarity of microbial community composition was
performed at the genus level disclosing the richness and
diversity of bacterial communities in the gut content of each
sample. The composition of intestine microbiota could not
show obvious similarity based on each species of Antarctic
fish, but for individual, Ph2, Ch1, Ch5, and Ga1 showed
higher similar, Ch2, Ch3, and Ch4 had higher similarity, Tb1,
Tb2, Tb3, and Ga2 had closer relationship, and Tb4 and Pb1
showed higher similarity (Figure 5).

4. Discussion

As is well known, the habitat is a key factor for the survival
of organisms, and living temperature represents a significant
driving force for biological evolution. Evolution of Southern
Ocean organism occurred accompanied by the striking albeit
intermittent temperature for about 60 million years [22]. The

habitatmodifications force the fish fauna to develop a number
of morphological and physiological adaptations in order to
survive in a cold, highly oxygenated environment without
hematocrit and hemoglobin [23, 24].

T. bernacchii, C. hamatus, G. acuticeps, and P. borch-
grevinki are four order Perciformes and important species
in the Antarctic Ocean. Although studies on fish intestinal
microbiota have been reported and the mechanisms of the
survival ability about Antarctic fish have been shown inmany
papers, little is still known about the intestinal microbial
community in Antarctic fish [25–29].

This study aims to detect the composition of intestinal
microbial community in four species of Antarctic fish based
on 16S rRNA gene sequence through Illumina MiSeq plat-
form. As a result, 1 004 639 sequences were obtained and
clustered into 2199 OTUs based on 97% sequence similarity
level and identified into 36 phyla and 804 genera for the 13
samples, showing a large microbial diversity in the Antarctic
fish. Actinobacteria, Proteobacteria, Firmicutes,Thermi, and
Bacteroidetes were the most dominant groups at phylum
level, and Rhodococcus,Thermus, Acinetobacter, Propionibac-
terium, Streptococcus, and Mycoplasma were more abundant
in the genus level. The result that Proteobacteria and Firmi-
cutes act as dominant groups at phylum level is consistent
with the previous finding [29]. Firmicutes and Bacteroidetes
contribute to carbohydrates and/or proteins fermentation in
the intestine to help the host acquire nutrients from the
diet [30]. Crenarchaeota was presented in the four species
and accounted for quite a proportion, which is similar to
Wilkins et al. [31] study about shaping factors of Southern
Oceanmicrobial assemblage, and thismight suggest that Cre-
narchaeota is related to Antarctic environment. In addition,
Actinobacteria and Gammaproteobacteria were two highly
abundant classes accounting for 29.4% and 16.4% of total
dataset, respectively, which is in accordance with the result
of Mosier Annika et al. study that Actinobacteria (42%)
dominated in the surface ice community and Gammapro-
teobacteria (52%) dominated in the deep ice community [32].

The Venn diagram showed that the four species of
Antarctic fish shared many OTUs and also each of them
had many unique OTUs which indicates that some similar
microbiota lives in intestine of the four species because of
the same living conditions, while different organisms are
parasitic in the gut for the reason of different life habits
and species. The PCA and heatmap presented no obvious
difference or similarity in the intestinalmicrobial community
composition among the four species, and we are speculating
that bacterial communities in Antarctic fish intestinal tract
might have an influence on the physiology of digestion as at
present there is no evidence for it.

5. Conclusion

The diet and the environment affect the intestinal microbiota
of fish andmammals [33, 34]. In the present study, individuals
of each species harbored not really similar intestinal bacterial
communities, and gut bacterial communities among the
four species were also not absolutely different, suggesting
that the common bacterial communities in Antarctic fish
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Figure 2: The bacterial community composition in different samples.
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the further study of the relationship between the intestinal
bacterial communities and physiological characteristics of
Antarctic fish.
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