Skip to main content
. Author manuscript; available in PMC: 2017 Dec 1.
Published in final edited form as: Am J Obstet Gynecol. 2016 Jul 22;215(6):795.e1–795.e14. doi: 10.1016/j.ajog.2016.07.039

Table 5. Importance of variables in multivariable spline regression models.

Omitted Covariates Rank AIC Difference of AIC -2(Log Likelihood) LRT df P-value
Severe Morbidity Model
Full model 3207536.0 3207442.0
Comorbidity Index 1 3359890.7 152354.7 3359798.7 152356.7 1 <0.0001
Hospital 2 3279247.0 71711.0 3279157.0 71715.0 1 <0.0001
Age 3 3213189.0 5653.0 3213103.0 5661.0 4 <0.0001
Race 4 3209238.9 1702.9 3209150.9 1708.9 3 <0.0001
Insurance status 5 3209068.8 1532.8 3208984.8 1542.8 5 <0.0001
Year 6 3208904.8 1368.8 3208834.8 1392.8 12 <0.0001
Household income 7 3207615.2 79.2 3207529.2 87.2 4 <0.0001
Hospital bed size 8 3207613.0 77.0 3207523.0 81.0 2 <0.0001
Hospital Region 9 3207597.6 61.6 3207509.6 67.6 3 <0.0001
Hospital Ownership 10 3207586.3 50.3 3207498.3 56.3 3 <0.0001
Annualized delivery volume 11 3207583.9 47.9 3207497.9 55.9 4 <0.0001
Hospital Teaching 12 3207551.8 15.8 3207461.8 19.8 2 <0.0001
Hospital Location 13 3207542.0 6.0 3207450.0 8.0 1 0.005

Failure to Rescue Model

Full model 26401.5 26307.5
Hospital 1 29990.5 3589.0 29900.5 3593.0 1 <0.0001
Age 2 26512.5 111.0 26426.5 119.0 4 <0.0001
Race 3 26482.8 81.3 26394.8 87.3 3 <0.0001
Year 4 26474.1 72.6 26404.1 96.6 12 <0.0001
Comorbidity Index 5 26459.9 58.4 26367.9 60.4 1 0.0002
Insurance status 6 26431.0 29.5 26347.0 39.5 5 <0.0001
Household income 7 26420.6 19.1 26334.6 27.1 4 <0.0001
Hospital Teaching 8 26412.1 10.6 26322.1 14.6 2 0.0007
Hospital bed size 9 26407.3 5.8 26317.3 9.8 2 0.007
Annualized delivery volume 10 26405.0 3.5 26319.0 11.5 4 0.02
Hospital Region 11 26404.7 3.2 26316.7 9.2 3 0.03
Hospital Ownership 12 26401.5 0.0 26313.5 6.0 3 0.11
Hospital Location 13 26399.5 -2.0 26307.5 0.0 1 1

AIC, Alkaike information criterion. LRT, likelihood ratio test. The LRT compares the full model (including all variables) with a reduced model omitting 1 variable at a time. AIC was calculated as minus twice log likelihood plus 2 degrees of freedom. The higher the AIC, the greater importance of the omitted variable.