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Objective: There is no consensus approach to covering

skull base meningeal reflections—and cerebrospinal fluid

(CSF) therein—of the posterior fossa cranial nerves (CNs

VII–XII) when planning radiotherapy (RT) for medullo-

blastoma and ependymoma. We sought to determine

whether MRI and specifically fast imaging employing

steady-state acquisition (FIESTA) sequences can answer

this anatomical question and guide RT planning.

Methods: 96 posterior fossa FIESTA sequences were

reviewed. Following exclusions, measurements were made

on the following scans for each foramen respectively (left,

right); internal acoustic meatus (IAM) (86, 84), jugular

foramen (JF) (83, 85) and hypoglossal canal (HC) (42, 45).

A protocol describesmeasurement procedure. Two observ-

ers measured distances for five cases and agreement was

assessed. One observer measured all the remaining cases.

Results: IAM and JF measurement interobserver vari-

ability was compared. Mean measurement difference

between observers was 20.275mm (standard

deviation 0.557). IAM and JF measurements were

normally distributed. Mean IAM distance was

12.2mm [95% confidence interval (CI) 8.8–15.6]; JF

was 7.3mm (95% CI 4.0–10.6). The HC was difficult to

visualize on many images and data followed a bimodal

distribution.

Conclusion: Dural reflections of posterior fossa CNs are

well demonstrated by FIESTA MRI. Measuring CSF

extension into these structures is feasible and robust;

mean CSF extension into IAM and JF was measured. We

plan further work to assess coverage of these structures

with photon and proton RT plans.

Advances in knowledge: We have described CSF exten-

sion beyond the internal table of the skull into the IAM, JF

and HC. Oncologists planning RT for patients with

medulloblastoma and ependymoma may use these data

to guide contouring.

INTRODUCTION
Clinical Setting
High-quality radiotherapy (RT) remains a crucial aspect of
treatment for medulloblastoma and there are clear data
linking inadequate technique to recurrence.1–5 These
tumours arise infratentorially within the cerebellum or in
the vicinity of the fourth ventricle. Their typical pattern of
spread is to meningeal surfaces, frequently locoregionally in
the posterior fossa.6,7 The RT approach reflects this biology
and current “gold standard” involves irradiation of the entire
craniospinal axis (CSI) with a boost to the posterior fossa
and tumour bed. Ependymomas are rare tumours arising
from glial cells (primary gliomas). In children, they tend to
occur intracranially in the region of the fourth ventricle
whereas in adults they are more frequently spinal. RT is
used, but in contrast to medulloblastoma, it is usually

delivered focally only to the tumour bed, depending on
factors such as histological characteristics and extent of re-
section on post-operative MRI.8 Where it does occur, over
90% of recurrences are local.9–12 CSI is used only for con-
firmed cerebrospinal fluid (CSF) dissemination.13

Techniques for delivering CSI have evolved significantly
over recent decades. The classical approach is to use
parallel-opposed lateral cranial fields matched to a direct
posterior field. The subsequent development of three-
dimensional (3D) conformal and intensity-modulated RT
has seen these solutions increasingly used to deliver CSI
and boost the posterior fossa,14–17 and there is increasing
interest in proton RT for both conditions, not least as re-
duced integral doses to normal structures may improve
toxicity and second malignancy rates.18
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Although minimizing toxicity is important, the primary treat-
ment objective must remain cure. Studies report the risk of
cribiform plate recurrence in patients undergoing CSI in the era
before this was considered to be part of the target volume, or
when it was underdosed owing to either inadequate technique or
deliberate shielding of the eyes.4,19–21 The same technical errors
also resulted in recurrences inferiorly in the frontal and tem-
poral lobes,21 and there is now a general consensus that these
structures should be included in the target volume however RT
is planned and delivered.

An unresolved issue is the CSF contained within the dural
reflections of the posterior fossa nerves [cranial nerves (CNs)
VII–XII] as they exit their respective skull base foramen. We
suspect that a conventional field-based CSI technique for me-
dulloblastoma will adequately cover these structures and their
meningeal surfaces.22 However, there is no consensus about how
to approach this problem when planning volume-based RT,
delivered with either photons or protons. A similar question is
posed for ependymoma treatment and we suggest that the in-
ternal acoustic meatus (IAM), jugular foramen (JF) and hypo-
glossal canal (HC) may provide a breach in the natural barrier to
local spread provided by the internal table of the skull.

The purpose of this study was therefore to investigate the
anatomy of CSF extension into the IAM, JF and HC and spe-
cifically how far CSF travels down these structures and away
from the natural line of the internal aspect of the skull and
a putative clinical target volume (CTV).

Figure 1. Fast imaging employing steady-state acquisition MR

images are showing cerebrospinal fluid and cranial nerves

evaginating into the left internal acoustic meatus (IAM) (a),

jugular foramen (JF) (b) and hypoglossal canal (HC) (c).

Figure 2. An example of measurement protocol—measurement

of cerebrospinal fluid into the right internal acoustic meatus.
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MRI of posterior fossa cranial nerves
MRI has been used to assess the anatomy of the central nervous
system and CSF for 30 years.23,24 Much work has gone into
establishing the optimal protocol for imaging CNs. Sequences
such as 3D Fourier transform and constructive interference in
steady state have been used to investigate trigeminal neuralgia,
hemifacial spasm and acoustic neuroma.25 Subsequent work
concluded that the 3D constructive interference in steady state
sequence (with a 1.5-Tmagnet) gave the best resolution for CNs
surrounded by CSF.26 One of the difficulties of imaging CSF
spaces with MRI is the artefact generated by natural fluid flow.
Thus, techniques that reduce scanning time should give better
image quality. Ciftci et al27 described the addition of a driven
equilibrium radiofrequency reset pulse to a T2 weighted turbo
spin-echo sequence. The driven equilibrium radiofrequency
reset sequences provided better image quality and performed
slightly better than the T2 weighted 3D turbo spin-echo
sequences in identifying individual nerves. The scan times
were also 25% shorter.

Fast imaging employing steady-state acquisition (FIESTA) MRI
uses ultrashort repetition time and echo time to obtain very fast
acquisition times. There is a high signal-to-noise ratio with
strong signal from fluid and suppression of background tissue
which gives good contrast and, importantly, anatomical details
of small structures. One study looked to map the cisternal seg-
ments of CNs IX–XI, using 3D balanced fast-field echo imaging—
the Phillips equivalent of FIESTA—to acquire detailed images of
these structures and to measure both the length and angle of their
intracisternal courses.28 They concluded that the quality of the
images obtained permitted very detailed and accurate anatomical
information to be recorded. More recently, CN imaging data
from a 7.0-Tmagnet concluded that true-fast imaging with steady
state precession sequences—another FIESTA equivalent—gave the
best spatial resolution and contrast29 and FIESTA MRI has been
successfully used to identify the glossopharyngeal nerve (CNIX),
vagus nerve (CNX) and accessory nerve (CNXI) within the JF,30

although no measurements of CSF extension were made in this
study. FIESTA images were therefore selected as the tool to
address this anatomical question.

METHODS AND MATERIALS
This project was registered as a service evaluation (Proposal No.
193) with the Addenbrooke Cancer Division and Haematology
Directorate and Audit Department and constituted part of an
MSc thesis project with the Institute of Cancer Research. It was
a retrospective analysis of images for service evaluation where all
imaging had been performed for clinical purposes and no fur-
ther ethical approval was required or sought.

Patients
An automated search of the Addenbrooke Radiology De-
partment archive for patients undergoing MRI which included
the word “FIESTA” was carried out. This produced 96 FIESTA
MRI examinations of the posterior fossa. Patients were pre-
dominantly adults (median age 49 years, range 1–90 years).
10 patients in our study were under the age of 10 years, the
remainder were adults. The three most common imaging indi-
cations were hearing loss (19%), hemifacial pain (19%) and
headache (14%). A full list of indications (some patients had
more than one) is given in Supplementary Figures and Tables.

Imaging
Imaging was performed on 1.5-T MR units (GE Signa Excite, GE
Discovery MR450). Imaging parameters were repetition time
6.5ms, echo time 1.05ms, field of view 22 cm, slice thickness
0.8mm, overlap 0.4mm and matrix 2563 256 pixels. Example
FIESTA images demonstrating the IAM, JM and HC CSF and
relevant CNs are shown in Figure 1. Examinations were ex-
cluded from analysis for the following reasons: abnormal anat-
omy, sagittal reconstructions only, poor image quality, limited
number of slices and no FIESTA images available. This left the
following number of scans for analysis for each foramen: 86
scans for left IAM, 84 scans for right IAM, 83 scans for left JF, 85
scans for right JF, 42 scans for left HC and 45 scans for right HC,
respectively.

Measurement
The procedure for measuring CSF extension into relevant fo-
ramen is described below, with a sample image shown in
Figure 2.

Table 1. Observer 1 and Observer 2 measurements of internal acoustic meatus (IAM) and jugular foramen (JF)

Case number Observer 1 IAM (mm) Observer 2 IAM (mm) Observer 1 JF (mm) Observer 2 JF (mm)

1 Right 13.5 13.4 9.7 11.1

2 Right 12.1 12.3 6.7 7.2

3 Right 12.9 13.3 6.9 6.4

4 Right 7.8 8.6 5.7 5.2

5 Right 14.3 14.7 11.9 11.9

1 Left 11.5 12 10 10.4

2 Left 11.8 13.3 6.5 6.3

3 Left 12 12 6.4 6.5

4 Left 8.1 8.4 5.5 4.9

5 Left 15.8 16 9 9.7
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(1) By careful visual inspection, identify the axial slice with the
furthest extension of CSF along the meatus.

(2) Measure the distance between the most prominent bony
landmarks on either side of the meatus (Figure 2a).

(3) Measure half of that distance (Figure 2b).
(4) Measure distance from this mid-point to the furthest CSF

extent along the meatus (Figure 2c).

This protocol was used by two independent observers to assess
reproducibility of the measurements made. Both Observer 1 (a
consultant neuroradiologist) and Observer 2 (a senior radiation
oncology trainee) measured distances for the first five patients
on the database. Measurements of the HC were excluded from
analysis for reasons that will be described in results, leaving 20

data points for comparison. Observer 2 subsequently assessed
the remaining 91 cases.

Statistics
Statistical analyses were performed using Microsoft Office Excel®
2010 (Microsoft, Redmond, WA). Interobserver variability was
assessed with Pearson product moment coefficient and a Bland–
Altman analysis.31 Data for the full cohort were plotted as histo-
grams and described with mean values and standard deviation (SD).

RESULTS
Anatomy—agreement
Interobserver data for the first five patients are shown in Table 1.
There were only two data points where the two measurements

Figure 3. A scatter plot of internal acoustic meatus and jugular foramen measurements by the two observers.

Figure 4. A scatter plot is showing differences between observations against mean measurement.
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Figure 5. Histograms are showing the distribution of cerebrospinal fluid extension into internal acoustic meatus (a), jugular foramen

(b) and hypoglossal canal (c).
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differed by .1mm. There appears to be good agreement. A
scatter plot (Figure 3) shows excellent correlation (r5 0.987)
but does not assess agreement; so, a Bland–Altman analysis was
undertaken. The difference between each data point was first
calculated and from this, both the mean difference and SD of those
differences within the sample were computed (Supplementary
Table A). Differences between measurements were then plotted
against the mean measurement for each data point (Figure 4).

The mean of the differences (d) of Observer 1 measurements vs
Observer 2 measurements was 20.275mm and the SD of dif-
ferences was 0.557. Further aspects of the Bland–Altman analysis
depend upon the distribution of the differences between meas-
urements. A histogram of these differences (Supplementary
Figure A) demonstrates a convincing normal distribution, de-
spite the small sample size.

If the assumption of normality is accepted, then 95% of the
measurements would be expected to lie in a range described by
the mean difference (bias) and 1.96 SDs either side of this;

20.2752 (1.963 0.557)521.36.

20.2751 (1.963 0.557)5 0.81.

This suggests that the limits of agreement for measuring the
IAM and JF on FIESTA MR images with this protocol are from
21.36 to 0.81mm. Therefore, 95% of the measurements made
by the two independent observers using this technique were
within 2.2mm of each other.

Anatomy—internal acoustic meatus
86 left and 84 right IAMs were measured, giving 170 measure-
ments in total. The data were normally distributed (Figure 5a).
The mean distance of CSF extension into the IAM was 12.2mm;
the SD was 1.75. It can therefore be inferred that in 95% of
cases, CSF extension into this structure will be 12.26
(1.963 1.75)mm, i.e. 8.8–15.6mm.

Anatomy—jugular foramen
83 left and 85 right JFs were analyzed, giving 168 measurements
in total. A normal distribution was assumed (Figure 5b).
The mean distance of CSF extension into the JF was 7.3mm.

The SD was 1.67. Using the same argument as seen for IAM,
7.36 (1.963 1.67)mm, it can be concluded that in this pop-
ulation, CSF extension into the JF will be between 4.0 and
10.6mm in 95% of cases.

Anatomy—hypoglossal canal
The HC was hard to identify and measure on many images. This
was largely due to the structure being at the inferior extent of the
scan. However, this was not universal and for some examina-
tions, the structure was clearly visible with a crisp interface
between the bone and CSF. An image of each circumstance is
shown in Figure 6. 42 left and 45 right HCs were measured and
the data were bimodally distributed (Figure 5c). The mean of
these data is 4.9mm, but given the distribution, this is mean-
ingless. Taking data only from scans where the structure was
clearly visible, we suggest that the “true” figure is in the region of
9–10mm. This is a tentative conclusion and will be considered
further in the discussion section.

Relevance for radiotherapy planning
These data are relevant for oncologists planning both CSI and
focal RT for ependymoma. Figure 7 is the RT planning CT of
a patient who underwent CSI at our centre and demonstrates
that these structures are well visualized on RT planning scans.

DISCUSSION
MRI techniques have been shown to accurately identify and
visualize CNs and their passage into respective foramen. The
detail achievable allows the precise anatomy of CSF evaginating
into Dorello’s canal with the abducent nerve to be seen and
measured.32 FIESTA MRI gives excellent images and permits
detailed analysis of the cisternal segments of posterior fossa
CNs.33–35 Our study is the first using FIESTA MRI to measure
CSF extension into the dural cuffs of posterior fossa CNs as they
exit the skull base. Interobserver variability shows good agree-
ment, with 95% of measurements within 2.2mm of each other.
A Bland–Altman approach has been used to assess interobserver
variability of MRI parameters across a range of conditions and
anatomical regions as varied as head and neck cancer, evaluation
of normal breast tissue and cerebral blood flow.36–38 To the best
of our knowledge, it has not been used previously in this con-
text. One group have quantified interobserver variability of
cross-sectional measurements of the cochlear and facial nerves.39

Figure 6. Examples of well (a) and poorly (b) visualized hypoglossal canals (HCs).
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They report correlation coefficients (0.974 and 0.987) very
similar to that which we report (0.987), but did not measure
agreement with a Bland–Altman analysis. We conclude that the
method described gives an accurate assessment of meningeal
and CSF extension into the relevant CN foramen.

The IAM data show that 97.5% of patients would be expected to
have CSF extension into this structure no further than 15.6mm

from the internal table of the skull. It is known that the dura
covers the bony surfaces of the IAM and that the neurovascular
contents of this structure are surrounded by circulating CSF up
to its fundus.40 It is therefore reasonable to suggest that the
internal aspect of the bone wall of the canal provides an excellent
surrogate for CSF and meningeal extension. As shown in
Figure 7a, the bone wall of the IAM is well visualized on a RT
planning CT, and the IAM should be specifically drawn as part
of the CTV if all CSF and meningeal surfaces are to be included.
Many RT planning software platforms permit fusion of the
planning CTand MR images; accurate fusion in this context may
facilitate precise measurement and optimize contouring.

For the JF, the mean distance is 7.3mm (95% confidence in-
terval 4.0–10.6). By similar logic, only 2.5% of people would be
expected to have CSF extension into this structure beyond
10.6mm. The JF has been described by one author as having
three compartments; a neural compartment containing CNs
IX–XI, a larger venous compartment containing the sigmoid
sinus (sigmoid part) and a smaller petrosal part containing the
inferior petrosal sinus (which drains the cavernous sinus into
the internal jugular vein).41 Others describe a division into two
parts by a fibrous or osseous bridge, with the anteromedial
compartment, the pars nervosa, containing the glossopharyngeal
nerve (IX) and the inferior petrosal sinus and the posterolateral
pars vascularis containing the vagus (X) and accessory (XI)
nerves and the jugular bulb.42

However, radiological and surgical cadaveric studies agree that
the anatomy of the JF is complex and varies significantly be-
tween individuals.43–45 Thus, whilst CT images demonstrate the
bony anatomy of the JF well,43,44 and as seen with the planning
CT example in Figure 7b, these data may be extremely useful to
an oncologist wishing to account for CSF in the structure and be
guided as to the likely extent of CSF extension. Again, it also
makes the more straightforward point that CSF is found beyond
the internal table of the skull in the JF and should be contoured
as part of the CTV if the intention is to treat all meninges
and CSF.

As described, fewer images permitted satisfactory measurement
of the HC and the data that were generated are less clear. Other
authors have successfully identified CN XII and the HC using
MRI but concede that visualizing different segments of nerve
segments depends upon using the right sequences.46–48 The
main reason for the difficulty we found is that the HC was often
at the inferior border of the scan and image quality was poor.
Another possible reason is the angle at which slices of the
structure were taken. Our impression, from the images reviewed
in this study, is that the HC runs anterolaterally but also cra-
nially across the occipital bone, as shown in Figure 8. This ob-
servation has not been quantified in our work, or elsewhere in
the literature. If this assertion is true, a true axial image would
not be parallel to the plane of the HC, which would therefore be
harder to identify. However, as FIESTA is a 3D sequence with no
gap, it would be possible to reconstruct imaging sequences with
an adequate field of view in the oblique plane to better visualize
this structure. It is also worth noting that the bony canal of the
HC is well shown on a RT planning CT, as shown in Figure 7c.

Figure 7. Radiotherapy planning CT images are clearly showing

the bony anatomy of the internal acoustic meatus (IAM) (a),

jugular foramen (JF) (b) and hypoglossal canal (HC) (c).
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The most apparent weakness of this study is the fact that the
radiological data were derived from a predominantly adult
population, whilst the tumour types of interest are most com-
mon in children. It is known that the head grows less over
childhood than torso and limbs and that adult body proportions
are brought about by differential growth of body segments.49 At
birth, head length is a quarter of total body length; at 25 years of
age, it is one-eighth.50 It must therefore be assumed that these
structures in young children will be smaller than they are in
adults, although precise ratios may be difficult to quantify. In
many ways, however, this is reassuring as the CSF data presented
may be a slight overestimate of the reality in a paediatric pop-
ulation. Provided the data are taken in context and interpreted

correctly, they can still act as a useful guide when planning RT
for paediatric cases.

This study has not addressed issues around how to manage CNs
I–VI. It is reasonable to assume that the olfactory nerve will be
contained within a CTV that includes the cribiform plate, and this
has already been discussed.4,19–21 We know that the optic nerves
are surrounded by CSF to the back of the globe and that some RT
planning techniques (tomotherapy) underdose this area unless it
is specifically contoured as part of the CTV.51 Neither our work
nor the literature investigates whether there are meningeal
reflections and CSF through the middle cranial fossa foramen,
superior orbital fissure, ovale, rotundum and spinosum and this
would be an interesting topic for further research.

CONCLUSION
This study has clearly shown that balanced fast-field echo MRI
sequences can accurately describe the microanatomy of the fo-
ramen of CNs VII–XII. Specifically, there is clear evidence that
CSF flows beyond the internal table of the skull base. This has
implications for RT delivery for both medulloblastoma and
ependymoma, which can spread to local meningeal surfaces
within the posterior fossa. We intend to use the data generated in
this study to pursue further work, which will examine whether or
not the CSF and meningeal surfaces within these structures are
adequately treated with both photon and proton RT solutions.
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