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Improving Estimation of Fiber 
Orientations in Diffusion MRI Using 
Inter-Subject Information Sharing
Geng Chen1,2, Pei Zhang2, Ke Li3, Chong-Yaw Wee2, Yafeng Wu1, Dinggang Shen2,4 &  
Pew-Thian Yap2

Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water 
molecules in the human brain. It provides information that is useful for tracing axonal bundles and 
inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional 
information provided by the orientation distribution functions (ODFs) estimated at each voxel. To 
accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are 
desired. This is however not always available in practice. In this paper, we propose to improve ODF 
estimation by using inter-subject image correlation. Specifically, we demonstrate that diffusion-
weighted images acquired from different subjects can be transformed to the space of a target subject to 
drastically increase the number of angular samples to improve ODF estimation. This is largely due to the 
incoherence of the angular samples generated when the diffusion signals are reoriented and warped to 
the target space. To reorient the diffusion signals, we propose a new spatial normalization method that 
directly acts on diffusion signals using local affine transforms. Experiments on both synthetic data and 
real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and 
yield more coherent orientations.

Diffusion magnetic resonance imaging (MRI)1 provides information on brain circuitry by observing the diffu-
sion patterns of water molecules in the human brain. To trace brain connections2, diffusion tractography algo-
rithms rely on information provided by local fiber orientations, which are often represented by a quantity called 
the orientation distribution function (ODF). The white matter pathways estimated by tractography provide 
valuable information for neuroscience studies investigating human brain development, aging, and disorders2–7. 
Tractography also provides surgeons with valuable information for surgical planning8. Accurate ODF estimation 
is key to successful tractography. Two major factors affect the estimation accuracy of ODFs: (1) The number 
of diffusion-sensitizing gradient directions used to acquire the diffusion data and (2) The signal-to-noise ratio 
(SNR) of the data. Figure 1 shows that ODF estimation improves when a sufficient number of gradient directions 
are used (top row) and gets worse with heavy noise (bottom row).

Varentsova et al.9 introduced a post-processing approach to increase the number of gradient directions for 
improving ODF estimation in an atlas. The key idea is to make use of the orientation incoherence of the diffu-
sion signals when they are reoriented and warped to a common space. This incoherence is a direct result of the 
variation of brain shape and the position of the head when scanned. A major drawback of this approach is that 
only rotation is considered when reorienting the diffusion signals. We show that this deteriorates ODF estimation 
when transformations such as shearing are involved. This approach is also limited due to its implicit assump-
tion that the images are perfectly aligned after spatial registration. This assumption almost never holds in the 
real-world scenario and will cause blurring of structures that are misaligned.

A number of methods for denoising the diffusion MRI data have been proposed10–15. These methods are effec-
tive for enhancing the signal SNR, but to improve the ODF estimation, removing noise is not sufficient – another 
important aspect is to enhance angular resolution. In this paper we seek to better estimate ODFs by concurrent 
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edge-preserving signal denoising and angular resolution enhancement. Signal denoising is carried out in a way 
similar to non-local means (NLM)16. NLM utilizes block matching to gather image self-similarity information 
and then performs weighted averaging to remove the noise. However, unlike the conventional NLM, our method 
leverages both self and inter-subject similarity. The underlying assumption is that the possibility of finding repeat-
ing structures from a collection of scans of different individuals is higher than a single scan from the same indi-
vidual. In transferring information from images of multiple individuals to the space of the target individual for 
denoising, we make available signals from incoherent gradient directions for improving ODF estimation. This is 
illustrated in Fig. 2, where we show that the effective number of gradient directions can be significantly increased 
by inter-subject information transfer. For this purpose, we propose a signal reorientation method that utilizes 
the full affine transform estimated locally from a non-linear deformation field. Our method differs from that 
of Varentsova et al.9, which only uses the rotation component of the affine transform. Moreover, inter-subject 

Figure 1.  Influence of the number of gradient directions and noise on ODF estimation. (A) Ground truth. 
(B–E) ODFs estimated using 6, 21, 81, and 321 gradient directions with 9% noise. (F–I) ODFs estimated using 
21 diffusion directions with 3%, 5%, 7%, and 9% noise. Gaussian noise (i.e  v p(0, ( /100))) is added in the 
complex domain of the signal, determined by the percentage p, where v is the maximum signal value (150 in our 
case).

Figure 2.  Angular resolution enhancement using inter-subject information transfer. The red points on the 
sphere indicate the original gradient directions. Transferring incoherent samples from 10 other scans increases 
the effective number of gradient directions, as indicated by the green points.
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misalignment, which is not taken into consideration in their work, is solved in our framework by block matching 
to mitigate the influence of mismatching structures. Finally, we integrate both block matching based denoising 
and angular resolution enhancement into a unified framework to improve ODF estimation. Our method is based 
on the assumption that the images are collected using a common imaging protocol, allowing information to be 
shared among subjects. This assumption is not particularly restrictive because in most studies images are typically 
scanned for a cohort of subjects with a common acquisition protocol. Part of this work has been reported in our 
recent workshop paper17. Herein, we provide additional examples, results, derivations, and insights that are not 
part of the workshop publication.

Results
Datasets.  Synthetic dataset.  A set of single pixel images were generated to evaluate the performance of our 
method in reconstructing ODFs from low angular resolution noisy data. Both single-direction and two-direction 
cases were considered. For the latter, the angular separation between two directions was set to 45°, 60° and 90°. 
Eight ground truth images for these two cases were generated using 6 and 21 gradient directions. Ten reoriented 
images were generated for each ground truth image by applying affine transformations to the principal directions 
of the tensors. The affine transformations include random rotation ([−​90°, 90°]) around the axis perpendicular to 
the image plane and shearing ([−​0.5, 0.5]) within the image plane. Four levels of Rician noise (3%, 5%, 7% and 9%)  
were added to the ground truth image and the reoriented images. The noise-perturbed ground truth image was 
used as the target image and the noisy reoriented images were the reference images.

Real dataset.  The real dataset consists of diffusion-weighted (DW) images from 9 subjects. One subject was 
used as the target and the other subjects as references. All images were acquired using a Siemens 3T TRIO MR 
scanner following a standard imaging protocol: 30 diffusion directions isotropically distributed on a hemisphere, 
b =​ 1,000 s/mm2, one image with no diffusion weighting, 128 ×​ 128 imaging matrix, voxel size of 2 ×​ 2 ×​ 2 ×​ mm3, 
TE =​ 81 ms, TR =​ 7,618 ms, 1 average. Informed written consent was obtained from the subjects and the exper-
imental protocols were approved by the Institutional Review Board of the University of North Carolina (UNC) 
School of Medicine. The study was carried out in accordance with the approved guidelines.

Experimental setting.  For the real dataset, the reference DW images were registered to the target space by 
diffeomorphic demons18 using the reference and target fractional anisotropy (FA) images. Based on the estimated 
deformation field, the reference DW images were warped to the target space using DW spatial warping19. The 
warped reference DW images were then used for multi-channel block matching with respect to the target DW 
images. Note that we performed block matching on the warped DW images instead of scalar images, such as those 
based on FA, or the non-diffusion-weighted image, resulting in more accurate matching of fiber orientations. For 
the synthetic dataset, block matching was ignored and reorientation was performed based on the affine matrix.

For quantitative evaluation, the Orientational Discrepancy (OD) metric20 was used. OD is a measure of the 
angular difference between two sets of directions. For OD calculation, the directions of the ODF peaks were 
detected and stored19. Let GT(x) be the set of directions at location x in the ground truth image and GS(x) be the 
set of corresponding directions in a comparison image. The OD is defined as
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The above equation consists of two symmetrical parts that represent both the points of view of the ground truth 
peaks and the comparison peaks. For example, the first part of (2) indicates the maximum angle discrepancy 
between two sets of directions as seen from the ground truth point of view:
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We also performed the evaluation based on fiber tracts. For this purpose, we use streamline tractography21,22 
to generate the fiber tracts. The number of detected peak directions of each ODF was limited to three. The voxels 
with FA values larger than 0.4 were selected as seeds. The stopping FA value was set to 0.2 and the maximum 
allowed turning angle is set to 60°.

Reorientation evaluation.  We first demonstrate that our reorientation method is producing correct results. 
Figure 3 indicates that the ODF estimated from the reoriented data is very close to the ground truth. In the figure, 
the OD values shown in the right corners confirms that the ODF peaks given by our method exactly matches 
those of the ground truth, whereas the rotation-only method9 results in an OD value of 10.79°. Both rotation and 
shearing were used to generate the test data.

Synthetic data experiment.  We repeatedly generated the synthetic data and ran the experiment 900 times. 
The mean and standard deviation of OD values were reported. Figure 4 shows that our method significantly 
reduces the mean OD on the two-direction crossing synthetic data. The small mean OD indicates that the esti-
mated peaks are close to the ground truth. Compared with the results given by using the target image only, the 
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maximum improvement is 27.99° when the noise level is 3%. This is for the case of 6 gradient directions, where 
each pair of directions are separated by an angle of 60°.

The ODF glyphs are shown for visual inspection in Fig. 5. The estimated ODF glyphs look very similar to the 
ground truth. We ran the same experiment by performing only rotation for reorientation, as done in Varentsova 

Figure 3.  Reorientation performance. ODF estimated using (A) ground truth data, (B) test data, (C) rotation 
only, and (D) the proposed method.

Figure 4.  Average OD comparison using two-direction synthetic data. Three cases were compared: (1) Using 
only the target image; (2) Using the proposed method; and (3) Using the proposed method but only rotation 
was used for reorientation. Four noise levels and two sets of gradient directions were involved. The error bars 
indicate the standard deviations. For the proposed method, 10 reference images were used.
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et al.’s method9. The results, shown in Fig. 5, indicate that this will cause spurious peaks that are not observed in 
the ground truth. The superiority of our method over the rotation-only approach is confirmed in Fig. 4.

Real data experiment.  For the real data, the ODFs are shown in three views in Figs 6, 7 and 8. We show the 
results for the target dataset, the NLM-denoised target dataset, the proposed method without block matching, 
and the full implementation of the proposed method. For NLM denoising, we used a multi-spectral version of 
the algorithm12. NLM denoising was first performed on the target dataset, and the denoised dataset was then 
used for ODF estimation. For evaluating the effectiveness of block matching, we referred to Varentsova et al.’s 
method9 and disabled the block-matching component in our method so that diffusion signals at the same spatial 
location of all scans are used for ODF estimation. We can observe from each view that, other than the proposed 
method, the ODFs estimated exhibit spurious peaks The ODFs are also not as coherent as those estimated using 
the proposed method.

Based on the ROIs described in Table 1, we extracted four representative tract bundles from the tracts given by 
whole brain tractography. The resulting tracts, shown in Fig. 9, indicate that the proposed method gives cleaner 
and richer fiber tracts compared with the other three methods. When block matching is not used, a significant 
amount of fiber tracts are missing. The proposed method gives fuller and smoother fiber tracts. Although NLM 
improves the quality of fiber tracts, we can still observe a lot of spurious fiber tracts resulting from inaccurate 
ODF estimation.

Figure 10 shows the histogram of the largest angular separation of the gradient directions associated with the 
measured DW signals. Compared with the large angular separation given by using only the target image (indi-
cated by the red line in the figure), the angular separation is significantly reduced by the proposed method. This 
result in greater angular resolution and hence improves ODF estimation and tractography.

Finally, the colored FA images, shown in Fig. 11, confirm the advantages of the proposed method. Sharp and 
clean FA image was obtained by our method. In contrast, when block matching in not used, as in Varentsova et al.’s  
method9, plenty of fuzzy structures were introduced. At locations affected by registration errors, the reference 

Figure 5.  Comparison of ODFs. To view the results in a better form, we randomly picked 9 sets of single pixel 
results and combined them together to form a 9 ×​ 9 ODF maps. (A) and (E) Ground truth ODFs. (B) and (F) ODFs 
estimated using only the target, which was generated using 5% noise and 6 gradient directions; (C) and (G) ODFs 
estimated using the proposed method with 5 reference images. (D) and (H) ODFs estimated using the proposed 
method with 10 reference images. (I) and (J) Results when only rotation was used for reorientation.
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diffusion signals often differ significantly from the target diffusion signals, therefore causing fuzziness. This can 
be overcome by block matching.

Figure 6.  Axial view of ODFs. (Far Left) Reference FA image. (Left to right) ODFs estimated using the target 
dataset, NLM-denoised target dataset, the proposed method but without block matching, and the proposed 
method.

Figure 7.  Coronal view of ODFs. Similar to Fig. 6, but in coronal view.
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Discussion
Although inspired by Varentsova et al.’s work9, our method presents important distinctions and overcomes some 
crucial drawbacks in their method. Similar to Varentsova et al.’s work9, samples from incoherent directions from 
different subjects are used to enhance angular resolution. However, dissimilar to Varentsova et al.’s work9, which 
aims to construct a diffusion atlas, the goal of our work is to improve ODF estimation based on the diffusion data 
of a single subject by borrowing information from other subjects.

Our method leverages block matching to mitigate registration error and to gather redundant information for 
improved ODF estimation. In practice, reference images cannot be perfectly aligned to the target image due to 
potential registration error. If information is transferred directly from the reference images to the target image 
without consideration of misalignment errors, as done in Varentsova et al.’s work9, plenty of artifacts due to 
mismatched structures will be introduced. As shown in Figs 6, 7, 8 and 9, spurious ODF peaks and fibers can be 
observed when block matching is not used.

In Varentsova et al.’s work9, only rotation is taken into account when the diffusion signals are reoriented. 
As shown in Figs 3 and 5, the rotation-only approach fails to consider factors such as shearing. We proposed a 
reorientation procedure that gives the following advantages: (1) Full affine transform is applied for reorientation. 
(2) Our method does not require fitting any model to the data, unlike some model-based methods23,24. (3) Our 
method performs reorientation based directly on the gradient directions, instead of ODF24, facilitating transfer-
ring of incoherent angular information to the target image. Better results are given by the proposed method as 
shown in Figs 4 and 5.

Our method is designed to work on a group of diffusion data acquired using the same imaging protocol. This 
basic requirement allows information to be shared across different subjects. This requirement can be relaxed 
by extending the method to work with different protocols. This implies that an even greater number of images 
can be used for further improving estimation. This can be achieved by first performing inter-protocol data 

Figure 8.  Sagittal view of ODFs. Similar to Fig. 6, but in sagittal view.

Bundle ROIs

CCtoM1 Precentral gyrus and corpus callosum

CST Precentral gyrus
Posterior limb of the internal capsule

FMAJOR Occipital cortex and corpus callosum

FMINOR Prefrontal cortex and corpus callosum

AF Posterior superior temporal gyrus
Inferior frontal gyrus and pars opercularis

Table 1.   ROIs used to extract fiber bundles.
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Figure 9.  Tractography. Four representative sets of tractography results using the target dataset, NLM-
denoised target dataset, the proposed method but without block matching, and the proposed method. The ROIs 
used in selecting target bundles are defined in Table 1.

Figure 10.  The angular-separation histogram. The angular separation of the target data is marked by the red 
line and is equal to 23.3°.
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harmonization25,26. Correction of the heterogeneity among images acquire using different protocols makes infor-
mation sharing between them feasible.

In summary, we have proposed a method for improving ODF estimation by borrowing information across 
subjects. Information is borrowed from multiple datasets to simultaneously remove noise and to enhance 
angular resolution. For information transfer between datasets, we proposed a reorientation method that 
directly acts on diffusion signals using the full affine transform. Extensive experiments on both synthetic and 
real data show improved ODF estimation, despite using noisy data with insufficient angular sampling. Further 
tractography-based validation demonstrates that our approach produces fiber tracts that are cleaner and 
smoother.

Method
Overview.  Suppose we have a group of reference images acquired from different individuals (possibly also 
including the target individual), the goal is to improve ODF estimation for the target image with the help of the 
reference images. This is achieved in three steps: (1) Block matching, (2) Reorientation, and (3) ODF estimation. 
Each step is detailed below. See Fig. 12 for an overview.

Block matching.  We first warp all the reference images to the target space. For each voxel in the target image, 
we then determine the matching voxels in the reference images via robust block matching, similar to that used 
in NLM16. A similarity weight is determined for each matching voxel and will be used for ODF estimation. NLM 
relies on repeating structures in an image. However, this might be challenging due to the complex anatomy of 
the human brain and fine unique structures might not find matching candidates. To address this issue, we extend 
NLM by performing block matching across images, significantly increasing the chance of finding similar struc-
tures. Gross misalignment between images is first dealt with using non-linear registration and residual misalign-
ment is then overcome using block matching.

Let x( )i  be a 3D block neighbourhood centered at ∈xi
3. The size of x( )i  is (2d +​ 1)3, where d is the 

neighborhood radius. Let  x( )k i  be the search volume centered at xi in reference image k. The size of  x( )k i  is 
(2m +​ 1)3, where m is the search radius. Let u(xi) be the intensity value at xi and u x( ( ))i  be a vector that repre-

Figure 11.  Colored FA. Direction-encoded color FA images given by the target dataset, NLM-denoised target 
dataset, the proposed method without block matching, and the proposed method.
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sents the intensity values of all voxels within  x( )i . The unnormalized weight, indicating similarity between the 
neighborhoods of a voxel, xi, in the target image, and a voxel, ∈x x( )j k i , in the reference image is computed as

=
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where x( )i  is the cardinality of  x( )i , β is a constant that is set to 1, σ̂i is an estimate of the standard deviation 
of the noise at xi, which is spatial-adaptively estimated28. In our case, we set block radius d =​ 1 voxel and search 
radius m =​ 2 voxels. Note that the search range of 5 ×​ 5 ×​ 5 is sufficient for the inter-subject mismatching correc-
tion due to the pre-registration of the DW images29.

For each voxel in the target image, block matching leads to a set of corresponding voxels and  
associated similarity weights in the reference images. Specifically, given xi in the target, we have 


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, where S(q, x; k), k >​ 0 is the diffusion- 

attenuated signal collected at xj with wavevector q in the k-th reference dataset, and S(q, xi; 0) is the signal meas-
ured in the target dataset.

Reorientation.  The diffusion signal S(q, xj) in Ω(xi) has to be reoriented before it can be used for ODF esti-
mation. A number of methods have been proposed for reorientation of diffusion data23,24,30–32. However, these 
methods perform reorientation on the ODFs rather than diffusion signals. That is, a diffusion model is first fitted 
to the data to estimate the ODFs, which are then reorientated according to locally estimated affine transforms. For 
the purpose of this work, we propose a new method for direct reorientation of the diffusion signals. Unlike 
Varentsova et al.’s reorientation method9, which only uses the rotation component of the affine transform, our 
method makes full use of the affine transform and hence results in more accurate results. The MR signal attenua-
tion is defined as E(q, xj) =​ S(q, xj)/S0(xj), where S0(xj) is the base signal without diffusion-sensitizing gradient. 
Then, the ODF ψ ′ˆ qu x( , , )j , contributed by the sampling shell with radius q′​ in q-space can be computed as ref. 33

∫ψ δ δ′ ≈ − ′ˆ ˆ ˆq E qu x q x q u q q( , , ) ( , ) ( ) ( )d , (5)j j
T

where ||·|| denotes the 2 norm, =q̂ q q/ , û is a unit vector that represents a spatial direction, and δ(·) is the 
Dirac delta function.

We note that the deformation field for warping a moving image to a fixed image is defined in the space of the 
fixed image. Hence, based on the observation that the integral of ODF must be maintained after transformation, 
we apply a local affine matrix A−1(xj) computed at xj to û and have
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1 , (6) becomes

Figure 12.  Overview. Three components of our method: (1) Block matching for identifying corresponding 
voxels from the reference images, (2) Reorientation of the reference diffusion signals, and (3) ODF estimation.
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then apply A−1(xj) to û on both sides of (5) and simplify the equation to
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we can see that the reorientation involves transforming the signal measured at q, i.e., E(q, xj) to 
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The reoriented signal is hence =ˆ ˆS E Sq x q x x( , ) ( , ) ( )j j j0 . We denote the reoriented version of Ω(xi) using Ω̂ x( )i .

ODF estimation.  To estimate the ODF at xi, Ω̂ x( )i  is decomposed into a linear combination of diffusion basis 
functions (DBFs)34. Dropping xi for simplicity, the decomposition is given by

∑α λ λ λ= |
=

S fq q( ) ( , , ),
(11)l

L

l l
0

1 2 3

where αl is the volume fraction associated with the l-th tensor DBF fl(·) and {λ1, λ2, λ3} are the three eigenvalues 
of the tensor. The DBF is defined as λ λ λ = − = − ˆ ˆf t bq q D q q D q( , , ) exp( ) exp( ),l l l1 2 3

T T  where Dl is a tensor 
defined by {λ1, λ2, λ3} and principal diffusion direction μl, t is the diffusion time, and b is the diffusion weighting. 
For 1 ≤​ l ≤​ L, the tensors are anisotropic with principal diffusion directions distributed uniformly on a unit 
sphere. For j =​ 0, the tensor is isotropic to model free water diffusion. In practical, we estimated the diffusivities 
of the anisotropic tensors λ1, λ2, λ3 from the corpus callosum. Those of the isotropic tensor were estimated from 
the ventricles. A total of 321 orientations, generated by subdividing the faces of an icosahedron three times and 
discarding antipodal symmetric directions, were used as the principal diffusion directions of the DBFs.

By representing each element of set Ω̂ x( )i  as (sn, wn) and each DBF as a column of matrix Fn, we can solve for 
the volume fraction vector α =​ [α0, ..., αL]T using 1-penalized weighted least-squares19:

∑ α α αγ





− +




. . ≥

α
w s F 0argmin ( ) s t ,

(12)n
n n n 2

2
1

where ǁ·ǁ is the 1-norm and γ ≥​ 0 is a tuning parameter (0.01 in our case). Fn is the DBF matrix corresponding to 
sn, computed based on its reoriented gradient directions. If no reorientation is applied, Fn is identical for all n. The 
ODF can then be computed as

∑ψ α φ= .
=

ˆ ˆ
S

u u D( ) 1 ( , )
(13)l

L

l l
0 0

When φ =
π

− − −ˆ ˆ ˆu D D u D u( , ) ( )l Z l l
1

4
T 11

2
1
2 , with Z being the normalization constant, we have the diffusion ODF33. 

When φ =
π

− − −ˆ ˆ ˆu D D u D u( , ) ( )l l l
1

4
T 11

2
3
2 , we have the constant-solid-angle diffusion ODF35. Finally, when 

φ δ= −ˆ ˆ ˆu D u v( , ) ( 1)l l
T , with v̂l being the eigenvector of Dl corresponding to the largest eigenvalue, we have 

the fiber ODF36,37.
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