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Abstract

There is a sufficient body of work documenting the distribution of 3-hydroxy oxylipins in 

microbes. However, there is limited information on the role of these compounds in microbial 

pathogenesis. When derived from mammalian cells, these compounds regulate patho-biological 

processes, thus an understanding of 3-hydroxy oxylipin function and metabolism could prove 

important in shedding light on how these compounds mediate cellular pathology and physiology. 

This could present 3-hydroxy oxylipin biosynthetic pathways as targets for drug development. In 

this minireview, we interrogate the relevant yeast and bacterial 3-hydroxy oxylipin literature in 

order to appreciate how these compounds may influence the inflammatory response leading to 

disease development.
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1. Biochemistry: definition, occurence and biosynthesis

The word “oxylipin” describes a group of secondary metabolites that originate from the 

oxidation or further conversion of polyunsaturated fatty acids [1]. These lipid-based 

molecules are pivotal signal molecules documented to act in a hormone-like manner where 

they mediate a number of complex biological processes across a number of life domains. In 

terrestrial higher plants, oxylipins play a role in host defence mechanisms against pathogens 

and pests [2]. In mammalian cells, these molecules regulate cellular homeostasis and 
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immune responses [3–5]. In marine algae, it is hypothesised that they may be involved in 

defence mechanisms [6], while in bacteria and fungi they may regulate virulence, biofilm 

formation via quorum-sensing mechanism [7,8], and play a role in sexual and asexual 

development [9]. Oxylipins constitute among others the eicosanoids and hydroxy oxylipins 

[9]. Given the broad scope of oxylipins, their distribution and function, this minireview is 

dedicated to hydroxy oxylipins and in particular, 3-hydroxy oxylipins in fungi and bacteria. 

The reader is referred to excellent reviews paying special attention to other oxylipins and 

lipid mediators that regulate important biological processes in cellular physiology and 

pathology [1,2,9–13].

3-Hydroxy oxylipins (3-OH oxylipins) are fatty acid-based molecules characterised by a 

hydroxyl group on the beta-carbon atom, from the carboxylic group (Fig. 1). The carbon 

chain of 3-OH oxylipins may be branched and may vary considerably in length as well as in 

the degree of desaturation [9,14,15]. 3-Hydroxy oxylipins are also widely distributed in 

nature, occurring in mammals, bacteria and yeasts, including medically important pathogens 

[7,16–20]. In mammalian systems, production of 3-hydroxy oxylipins is mainly attributed to 

fatty acid oxidation disorders. Accumulation of these molecules in the blood is regarded as a 

major metabolic indicator of long chain hydroxyacyl coenzyme A dehydrogenase (LCHAD) 

deficiency in newborns and patients with liver failure [20].

The biosynthetic pathways for 3-OH oxylipins vary and although some remain poorly 

described, three generally accepted enzymatic routes have been reported (Fig. 2):

a. fatty acid synthase (FAS) enzyme-system [21,22]. Here, the NADPH-

dependent beta-ketoacyl-ACP reductase carries out the reduction of beta-

ketoacyl-ACP to beta-hydroxyacyl-ACP,

b. an enzymatic pattern similar to mitochondrial beta oxidation, however, 

incomplete [23]. The oxygen of the hydroxyl group inserted in the fatty 

acid chain originates from water. In this case, the produced 3-D 

hydroxyacyl-CoA enantiomer, cannot be, or is poorly, metabolised further 

by 3-hydroxyacyl-CoA dehydrogenase [24], and consequently 

accumulates inside the mitochondria. This compound is then excreted as a 

3-D hydroxy oxylipin [25],

c. direct hydroxylation of the fatty acid via a cytochrome P450 enzyme 

[26,27], with the oxygen molecule originating from the air.

2. Patho-biological functions of microbial 3-hydroxy oxylipins

Microbial cell walls perform two critical roles in immunity, namely to provide protection 

from the extracellular environment, and interaction with the environment [28]. 3-Hydroxy 

oxylipins have been reported to be closely associated with cell walls of pathogens 

[7,16,18,19]. In bacteria, they are attached or bound to cell wall components, whereas in 

yeasts, they are mainly in a free form - coating or deposited on cell wall surfaces. Literature 

suggests that during infection, microbial cell wall components mediate key processes that 

could modulate the immune response leading to development of disease [29–31]. This 

minireview pays special attention to the role of 3-OH oxylipins in modulating the 
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inflammatory response. Inflammation, usually a result of cytokine production, is a complex 

biological response that attempts to clear and heal vascular tissue of infection or other forms 

of damage [32,33]. Disease outcome may determine a shift in the balance maintained by 

both pro-inflammatory and anti-inflammatory cytokines.

2.1. Bacterial 3-hydroxy oxylipins

3-Hydroxy oxylipins occur as unique structural components of the sepsis-causing endotoxin 

(lipopolysaccharide layer; LPS), which is characteristic of Gram-negative bacteria [34]. The 

3-OH oxylipin-containing Lipid A fraction is documented to be responsible for the toxic and 

immuno-modulating properties of LPS [30,35,36]. Upon shedding, the endotoxin triggers an 

innate immune response characterised by cytokine production. Here, the endotoxin is first 

recognised by receptor protein i.e. cluster of differentiation (CD)-14 and in turn, presented to 

toll-like receptor (TLR)-4 on surfaces of innate cells resulting in intracellular signalling 

[37,38]. This leads to the production of pro-inflammatory cytokines, i.e. interleukin (IL-) 1 

and tumour necrosis factor alpha (TNF-alpha), and activation of mononuclear cells. These 

cytokines can then induce synthesis of mediator molecules viz. cyclo-oxygenase 2, 

phospholipase A2 and nitric oxide (NO) synthase - which up regulate inflammation [32,39]. 

Subsequently, these cytokines together with mediator molecules, acting through specific G-

protein-coupled receptors, promote inflammation, causing widespread endothelial injury and 

platelet activation [40,41], and at high endotoxin levels, septic shock can be induced [41].

Interestingly, 3-hydroxy oxylipins are used as biomarkers for estimating the amount of 

endotoxins and Gram-negative bacteria in atmospheric bioaerosols [42]. Inhalation of 

bioaerosols-containing 3-hydroxy oxylipins i.e. entotoxin, can also initiate infectious 

processes that elicit allergenic and immunological responses [43,44]. Peden et al. [45] 

reported that a nasal challenge with LPS causes an eosinophil influx in nasal airways of 

atopic subjects, suggesting exposure may increase allergen-induced bronchial inflammation 

in asthmatics [43].

3-OH oxylipins from Porphyromonas gingivalis constitute a major component of bioactive 

lipids reported to potentiate interleukin-1b-mediated secretory response in gingival 

fibroblasts. This organism is thought to be a major periodontal pathogen associated with 

inflammatory periodontal disease in adults [46].

3-Hydroxy oxylipins also occur as complex molecules such as mycolic acid, which are 3-

OH oxylipins with long alpha alkyl branched chains [22]. Here too, 3-OH oxylipins are 

associated with pathogenicity of Mycobacterium tuberculosis, the causative agent of 

tuberculosis. These compounds confer the pathogen with the ability to grow within 

macrophages and to avoid detection [47]. When this bacterium is lysed, mycolic acid is 

released from the cell wall. Regarded as pathogen-associated molecular patterns (PAMP), 

the released mycolic acid may then invoke an immune response [48–51]. Most of the 

damage in the lungs during tuberculosis is thought to be due to the up regulated 

inflammatory response. Here, it is hypothesised that IL-1, TNF-alpha and NO may induce 

oxidative damage to mitochondria by inhibiting the electron transport chain [41]. This 

inhibitory action results in less cellular energy and dysoxia.
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2.2. Yeast 3-hydroxy oxylipins

The lipopolysaccharide layer is not limited to bacteria. The presence of this cell wall 

component has been reported in a medically important higher basidiomycete, Antrodia 
camphorata [52]. Interestingly, this fungal LPS reverses immuno-regulating properties 

exerted by bacterial LPS.

Nigam and co-workers were the first to provide evidence concerning the biological function 

of 3-OH oxylipins in mammalian cells [53]. In their study, 3-OH oxylipins were observed to 

act as a strong chemotactic agent - the potency of which is comparable with those of 

leukotriene B4 or fMet-Leu-Phe. In addition, 3-OH oxylipins affected signal transduction 

processes in human neutrophils and tumour cells in multiple ways, possibly via a G-protein 

receptor.

Fluorescence studies conducted using a specific immunological probe against 3-OH 

oxylipins, revealed these compounds to be deposited on hyphal cell surfaces of the pathogen, 

Candida albicans, the causative agent of candidiasis [16,54,55]. In 2005, Ciccoli and co-

workers elucidated a novel acetylsalicylic acid (ASA; aspirin) sensitive patho-biological 

process in C. albicans [17]. They found that this yeast converts arachidonic acid, released 

from infected host cells, to a 3-OH oxylipin i.e. 3-hydroxy eicosatetraenoic acid (3-HETE) 

via incomplete mitochondrial beta-oxidation. This 3-OH oxylipin, which is stereo-

chemically similar to arachidonic acid, then acts as substrate for the host cyclooxygenase-2 

(COX-2), leading to the production of potent pro-inflammatory 3-OH prostaglandin E2 (3-

OH-PG E2) (Fig. 3). This novel compound could signal the expression of IL-6 gene, via the 

EP 3 receptor (PGE2 receptor 3) and raise cAMP levels via the EP 4 receptor. These results 

led this group of researchers to conclude that, these compounds have strong biological 

activities similar to and in some cases even more potent than those of the normally produced 

mammalian eicosanoids. This organism can also employ its own endogenously produced PG 

E2 to mediate pathogenesis [12,56].

Recently, the Nigam group also showed that 3-OH oxylipins can effect quorum sensing in C. 
albicans [8], a function used by microorganisms to measure population density and to 

regulate pathogenicity [8,57]. This group demonstrated that this yeast utilises 3-OH 

oxylipins, i.e. 3-OH-14:2 produced from 18:2, as a signal for expression of genes 

responsible for accelerating cell morphogenesis at a certain population density.

Bio-prospecting studies into the presence of these compounds in other pathogenic yeasts led 

to the discovery of 3-OH oxylipins in capsules of Cryptococcus neoformans [18]. The 

cryptococcal capsule can inhibit phagocytosis and influence cytokine production, functions 

crucial for mounting an efficient immune response [58–60]. The study by Sebolai and co-

workers [18,25] revealed a novel release mechanism of these compounds as “oily-droplets” 

into the surrounding environment. The release mechanism involved the participation of cell 

wall components namely, capsule and spiky capsular protuberances, as well mitochondria. 

This release mechanism was inhibited by ASA in a dose dependent manner. However, the 

function of these compounds upon release remains unknown. Could they also act as 

virulence factors alone or in association with the glucuronoxylomannans (GXM)? It has 

been established that GXM induces inflammation by activating TLRs [61,62].
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3. Concluding remarks and perspectives

Over the years, microbial lipids have been shown to have bioactive functions mediating a 

number of cellular processes [10–13,63]. Most of our knowledge on 3-OH oxylipins stems 

from extensive studies conducted in non-pathogenic yeasts and studies focusing on bacterial 

endotoxins [9,35,64]. In yeast studies, the biological functions of these compounds were 

defined based on their role in facilitating cell aggregation, possibly for protection purposes 

[65], or for facilitating spore release from asci following sexual reproduction [9]. In 

addition, these molecules act as “toxins” secreted by lactic acid bacteria, where they are 

employed to appropriate environmental advantage against yeasts and molds in the bio-

preserve of fermentation products [66]. As analysed in this minireview, we now can 

appreciate the role of 3-OH oxylipins, mainly associated with cell wall components or 

surfaces of medically important pathogens, as signal molecules, triggering inflammatory 

responses.

The role of mitochondria in cancer development and programmed-cell death is well 

established [67–70]. As reported in literature, microbial mitochondria “house” enzymatic 

pathways that catalyse the biosynthesis of patho-biologically active 3-OH oxylipins 

[17,21,23,24]. This exposes mitochondria as targets for controlling biosynthesis and effects 

of 3-OH oxylipins, hence further highlighting the critical role of this organelle in cellular 

pathogenesis. Since the study by Ciccoli et al. [17] demonstrated that during infection, 

mammalian cyclooxygenases can serve as additional enzymes catalysing synthesis of 3-OH 

oxylipins, further contributing to inflammation, it will be interesting to determine if infected 

host cell’s mitochondria could serve as another 3-OH oxylipin production site particularly, 

in persons without fatty acid oxidation disorders [20].

Other questions that need to be answered are, could the actions of aspirin, a known anti-

mitochondrial and anti-fungal [25,71–76], now be extended to control bacterial infections 

caused by the highly aerobic M. tuberculosis? Can aspirin inhibit the production of mycolic 

acids based on the structural similarities between aspirin and acyl-portions of the FAS 

biosynthetic pathway? In answering these questions, consideration should be taken in order 

to realise efficacy against pathogens without adversely affecting human mitochondria.

In higher eukaryotic cell systems such as in humans, mitochondria are responsible for 

generation of cellular energy under strictly aerobic conditions [77,78], hence colonisation of 

lungs by highly aerobic pathogens such as M. tuberculosis and C. neoformans. During 

pulmonary cryptococcosis, cryptococcal phospholipase can degrade the phospholipid 

component of lung surfactants leading to increased inflammation via the production of 

eicosanoids [12]. And unlike in some lower eukaryotic cell systems, humans cannot switch 

to fermentation when oxygen is depleted thus mitochondrial damage can prove deadly.

Could the change in form and complexity of 3-OH oxylipins from bacteria (bound or 

attached to cell wall components) to yeasts (in a “free” form and deposited onto cell walls) 

be indicative of an evolutionary development? According to the endosymbiotic theory, it is 

proposed that mitochondria are descendents of ancient bacteria [79]. Therefore, is it possible 

that the present day mitochondria, ancestral descendant of ancient sepsis-causing bacteria 
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through this theory, adapted and found a novel way to shed virulence factors i.e. 3-OH 

oxylipins, from a safe or protected environment within eukaryotic cells? Though the theory 

is controversial, there is molecular evidence including phylogeny studies, in support of the 

theory [80]. Therefore, it would be interesting to determine if genes encoding enzymes 

involved in the biosynthesis of mitochondrially-produced 3-OH oxylipins are related or even 

conserved in both yeasts and bacteria.
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Fig. 1. 
The chemical structures of a typical 3-hydroxy oxylipin. (a) Depicts the R-enantiomer while; 

(b) depicts the S-enantiomer. Obtained with permission from Kock et al. [64].
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Fig. 2. 
Biosynthetic pathways catalysing 3-hydroxy oxylipin production. (a) and (b) Depict 

enzymatic route similar to fatty acid synthase and beta oxidation, respectively while; (c) 

depicts direct hydroxylation of a fatty acid molecule.
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Fig. 3. 
A diagram showing the formation of potent inflammatory 3-hydroxy prostaglandins in host 

cells from 3-HETE produced via incomplete beta-oxidation from host-released arachidonic 

acid (AA) by the yeast Candida albicans. ASA, acetyl-salicylic acid; COX-2, 

cyclooxygenase-2; 3(R)-HETE, 3(R) hydroxyeicosatetraenoic acid; 3-OH PGs, 3-hydroxy 

prostaglandins.

Obtained with permission from Kock et al. [64].
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