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Autism spectrum disorder (ASD) is a constellation of neurodevelopmental presentations with high heritability and both phenotypic and
genetic heterogeneity. To date, mutations in hundreds of genes have been associated to varying degrees with increased ASD risk. A better
understanding of the functions of these genes and whether they fit together in functional groups or impact similar neuronal circuits is
needed to develop rational treatment strategies. We will review current areas of emphasis in ASD research, starting from human genetics
and exploring how mouse models of human mutations have helped identify specific molecular pathways (protein synthesis and degra-
dation, chromatin remodeling, intracellular signaling), which are linked to alterations in circuit function and cognitive/social behavior.
We will conclude by discussing how we can leverage the findings on molecular and cellular alterations found in ASD to develop therapies
for neurodevelopmental disorders.
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Introduction
Independent studies have consistently demonstrated that autism
spectrum disorder (ASD) has a strong genetic component (Abra-
hams and Geschwind, 2008; Sandin et al., 2014; Colvert et al.,
2015; Geschwind and State, 2015). Despite this genetic contribu-
tion, finding high-confidence ASD risk genes has been extremely
vexing until recently. The notable exception being the realization
that individuals with mutations in genes leading to syndromes
once considered independent: FMR1 for Fragile X syndrome
(FXS), TSC1/2 for Tuberous Sclerosis Complex (TSC), MECP2
for Rett syndrome (RTT), often met criteria for an ASD diagno-
sis. The major source of difficulty for gene discovery in ASD, and
indeed other complex disorders, is the wide spectrum of genetic
and phenotypic heterogeneity observed. The genetic architecture
of ASD at a population level is so complex that risk is most likely
conferred by rare mutations and common variants at hundreds
of independent loci (Fig. 1). Dominant, recessive, oligogenic/

polygenic, and gene � environment mechanisms all clearly play a
role; however, their individual contributions in different ASD
subpopulations are still to be fully elucidated.

Animal models for rare monogenic syndromes, such as FXS,
TSC, and RTT, have been critical to study the pathophysiology of
ASD and to discover that there are multiple neurobiological pro-
cesses that, when perturbed, increase the risk of autism (Zoghbi and
Bear, 2012). Here, we will review how advances in the human genet-
ics of ASD and corresponding murine models are pointing to key
cellular mechanisms, including protein synthesis and degradation,
chromatin regulation, and disrupted activity within specific brain
circuits. We will discuss the benefits and challenges of studying hu-
man genetic mutations using rodents, with additional focus on the
skewed male/female ratio in ASD. We will conclude with examples
of how mechanistic understanding in ASD from patients and animal
models can help develop new strategies to identify therapeutic tar-
gets leading to clinical trials (Fig. 1).

The complex genetics of ASD
Recent advances, including genome-wide copy number arrays,
massively parallel sequencing, new analysis paradigms, and inno-
vative cohorts, have begun to unravel the genetic complexity in
ASD. The transformative technology of whole-exome sequencing
(WES) has identified novel high-confidence “idiopathic” ASD
risk genes for arguably the first time. Starting in 2009, the tech-
nology to selectively sequence all of the protein-coding regions
(exons) of the genome (i.e., the “exome”) became widely avail-
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able. This allowed for unbiased genome-wide discovery of coding
variants or mutations contributing to a disorder’s risk at single-
base resolution. Several groups began piloting WES in different
neurodevelopmental/psychiatric disorders using a trio (father,
mother, affected child/individual) or other family design, specif-
ically in families with no previous family history of the disorder,
also called simplex or sporadic families (Vissers et al., 2010; Gi-
rard et al., 2011; O’Roak et al., 2011; Xu et al., 2011). The working
hypothesis of these studies was that, in some fraction of these
simplex families, there may be a new or “de novo” mutation (not
present in either parent) that coappeared with the disorder in the
affected individual. These studies showed the feasibility of this
approach to detect the �1 true expected de novo mutation and a
large fraction of “possible” candidate gene mutations (Veltman
and Brunner, 2012).

These early proof-of-concept studies emboldened several
groups to expand these efforts with four large WES studies pub-
lished in 2012 on �900 combined independent families (Iossifov
et al., 2012; Neale et al., 2012; O’Roak et al., 2012a; Sanders et al.,
2012), and culminating in 2014 with two large-scale studies, in-
cluding �4000 affected children (De Rubeis et al., 2014; Iossifov
et al., 2014). Data from the family-based Simons Simplex Collec-
tion suggests that �30% of all probands have a de novo mutation

of major effect that contributes to their diagnosis, which may be
up to 50% of girls (Iossifov et al., 2014). Estimates suggest that the
de novo events in these genes can substantially increase the risk for
ASD (odds ratio: �20) (De Rubeis et al., 2014). Furthermore,
based on WES and targeted sequencing approaches, 49 different
genes no longer merely represent “candidate” ASD genes, but are
now mid- to high-confidence genes based on their recurrent dis-
ruption by de novo mutations in unrelated probands (O’Roak et
al., 2012b, 2014; De Rubeis et al., 2014; Iossifov et al., 2014).
Genes with de novo mutations also show strong enrichment for
fragile X mental retardation protein targets, chromatin modifiers
(e.g., CHD8, CHD2, ARID1B), embryonically expressed genes
(e.g., TBR1, DYRK1A, PTEN), and nominal enrichment for post-
synaptic density proteins (e.g., GRIN2B, GABRB3, SHANK3).
Additionally, networks constructed using these high-confidence
ASD risk genes as seeds reveal a converging molecular biology
that includes translational control and chromatin regulation as
key players disrupted in ASD (O’Roak et al., 2012a; Parikshak et
al., 2013; Willsey et al., 2013; Hormozdiari et al., 2015).

In addition to rare de novo mutations, recent WES studies
have also identified a role for rare inherited variants in ASD risk;
including maternally transmitted predicted loss-of-function
(LoF) variants (�10%) and recessive/hemizygous LoF variants

Figure 1. The complex path from gene identification to therapy development in ASD. Although the ideal path from gene identification to therapy development via animal models appears linear
(A), genetic and phenotypic heterogeneity prevents therapeutic advances in ASD and other complex disorders. Possible therapies will need to be customized based on the specific underlying
molecular changes for subcategories that are still in the process of being defined (B). Combination approaches (e.g., multiple compounds targeting different mechanisms or endophenotypes) may
also be necessary.
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(�5%) (Chahrour et al., 2012; Novarino et al., 2012; Lim et al.,
2013; Yu et al., 2013; Krumm et al., 2015). The overall impact of
inherited variants on ASD risk will likely be higher when taking
into account missense variants, whose possible impact is cur-
rently difficult to quantify. Furthermore, it is possible that reces-
sive mutations might contribute to ASD susceptibility and
phenotype penetrance as either protective or risk-conferring al-
leles. Studies focusing on consanguineous and nonconsanguine-
ous families have shown that rare recessive ASD mutations have
as much or more heterogeneity in molecular mechanisms as
shown by de novo mutations. Examples of ASD genes with reces-
sive LoF mutations identified in families with autism, intellectual
disability (ID), and epilepsy include: CNTNAP2 (Strauss et al.,
2006), SLC9A9/NHE9 (Morrow et al., 2008), BCKDK (Novarino
et al., 2012), and CC2D1A (Manzini et al., 2014). Some recessive
ASD mutations are hypomorphic alleles (retaining partial activ-
ity) of genes whose complete inactivation causes severe neurolog-
ical syndromes (Yu et al., 2013). UBE3B was identified as a
candidate ASD gene (Chahrour et al., 2012) and was subse-
quently associated with a syndrome of ID and microcephaly
(Basel-Vanagaite et al., 2012). Hypomorphic missense variants in
genes encoding AMT, PEX7, and VPS13B were identified in con-
sanguineous families with ASD. However, complete LoF of these
genes will lead, respectively, to nonketotic hyperglycinemia, rhi-
zomelic chondrodysplasia punctata, and Cohen syndrome (Yu et
al., 2013).

While large-scale sequencing efforts to date have contributed
to our understanding of the complex architecture of ASD genet-
ics, multiple challenges remain. As hundreds of additional ge-
nes may be mutated in only a handful of cases, larger and larger
cohorts need to be studied. One such effort, Simons Foundation
Powering Autism Research for Knowledge (SPARK), aims at
partnering with families, clinicians, researchers, and community
organizations to build a cohort of 50,000 individuals with ASD
over the next 3 years. We still have incomplete understanding of
the role of different types of variants/mutations and their impact
in individuals and different subpopulations of ASD (e.g., females
and older adults with ASD). Moreover, our understanding of
how multiple variants might act in concert in a single individual
and the risk from noncoding variation and gene � environment
interactions are still in their infancy. The next emerging phase in
the field is the development of high-throughput functional vali-
dation screens to assess the impact of identified variants on pro-
tein function and phenotype development. Functional validation
is especially important for missense variants that are currently
largely ignored unless they occur in known disease-causing genes.
Several bioinformatic tools that predict the deleteriousness of
genomic variants have been developed (e.g., SIFT, PolyPhen-2,
and CADD among others) (Kumar et al., 2009; Adzhubei et al.,
2010, 2013; Kircher et al., 2014). Despite the value of these tools
in prioritizing variants from large sequencing data, functional
validation remains essential to test the biological impact of
identified variants.

Modeling features of ASD using the laboratory rodent
Well-controlled in vivo studies in a tractable model organism
with a high degree of genetic conservation relative to humans
have been instrumental to our current understanding of ASD
pathogenesis, with the most useful mouse models having high
construct and face validities (Crawley, 2007). Although forging
definitive links between genetic alterations and behavioral im-
pairments is challenging, validated neurobehavioral tests for ro-
dents provide an opportunity to gain insight into how specific

genetic mutations impact the core behavioral features of ASD.
Social-communication deficits and restricted, repetitive behav-
iors can be tested in ASD mouse models using well-established
assays (for review, see Silverman et al., 2010; Kazdoba et al.,
2016). Conservative analyses through reductionist strategies,
such as the “endo-phenotype” approach to study simplified com-
ponents of complex neuropsychiatric and neurodevelopmental
disorders are critical to avoid anthropomorphization of rodent
behavior (Gottesman and Gould, 2003).

Interestingly, converging lines of evidence from genetically
modified mice, especially models of monogenic disorders and
disease-causing copy number variants, such as Phelan-McDermid
syndrome (PMDS) (Jiang and Ehlers, 2013), TSC (Sundberg and
Sahin, 2015), and RTT (Chahrour and Zoghbi, 2007), support the
hypothesis of a shared underlying pathophysiology of ASD involving
alterations in cellular properties that result in abnormalities in neural
network activity and behavioral deficits (Zoghbi, 2003). If models of
different genetic mutations show similar alterations, these findings
may broadly influence current perspectives on the generalizability of
therapeutic interventions for ASD with seemingly disparate genetic
etiologies. It may be possible to encourage “repurposing” of existing
compounds and interventions shown to have therapeutic benefit in
one category of ASD (e.g., rapamycin and rapalogues for TSC) (Cu-
ratolo et al., 2015) and deep brain stimulation for RTT (Hao et al.,
2015a), to either other clinical indications or other ASD categories.

As with many disease models, the laboratory mouse has limi-
tations. It remains debatable that behavioral phenotypes in the
mouse, including those modeling ASD-like features, accurately
depict the human condition (face validity). There is an increasing
need to identify behavioral phenotypes that are robust and
disease-relevant leading to reliable preclinical outcome measures
(Landis et al., 2012). Relying on the laboratory mouse alone may
also contribute to difficulties in translating findings in the mouse
to the clinic. For example, the mouse model of FXS displays be-
havioral phenotypes that are opposite of what may have been
predicted based on observed features in FXS patients (Peier et al.,
2000; Spencer et al., 2011), and initial clinical trials targeting
mGluR5 signaling in FXS did not result in phenotypic reversal as
seen in the mouse model (Dölen et al., 2007; Berry-Kravis et al.,
2016). However, genetic ASD rat models (Hamilton et al., 2014;
Patterson et al., 2016; Veeraragavan et al., 2016) may serve as
complementary mammalian rodent tools, and comparative stud-
ies in both mouse and rat would likely strengthen the predictive
validity of potential preclinical outcome measures. In addition,
multiple other vertebrate and invertebrate model organisms have
been used to recapitulate molecular, cellular, and/or behavioral
phenotypes linked to ASD (for review, see McCammon and Sive,
2015). Among these, the zebrafish is emerging as a model for
rapidly testing the pathogenicity of human genetic variants
(Deciphering Developmental Disorders, 2015; Turner et al.,
2015) and for drug screening (Hoffman et al., 2016). In general,
whether each ASD animal model replicates the human disease
and whether they are appropriate for the scientific question being
asked must be carefully assessed when considering translation to
the clinic. Finally, a combination of both genetic and environ-
mental factors, including gene � environment interactions, must
be considered to reconcile the relatively high heritability with the
rising prevalence estimates of ASD (Sandin et al., 2014).

Emerging molecular defects in ASD: protein synthesis
and degradation
One of the clusters of genes that when mutated give rise to forms
of syndromic autism are the ones encoding for proteins involved
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in regulating protein synthesis, such as FMR1, TSC1/2, and
PTEN. Deletions or LoF mutations in these genes lead to altera-
tion of the translational control machinery ultimately resulting in
exaggerated protein synthesis in the brain. Accordingly, studies
using animal models showed increased protein synthesis in the
brain, such as the investigations on mice with deletion of Fmr1
(Qin et al., 2005; Dölen et al., 2007). Importantly, enhanced pro-
tein synthesis was also demonstrated in lymphoblastoid cells of
patients affected by FXS (Gross and Bassell, 2012). Moreover,
mice with genetic deletion of Fmr1, Tsc1, Tsc2, or Pten displayed
behavioral impairments and synaptic alterations consistent with
ASD (Kelleher and Bear, 2008; Bourgeron, 2009; Ebert and
Greenberg, 2013; Santini and Klann, 2014). Finally, mice with
genetic deletion of Tsc1, Tsc2, or Pten showed a normalization of
the ASD-like behaviors after treatment with rapamycin (Eh-
ninger et al., 2008; Meikle et al., 2008; Zhou et al., 2009; Tsai et al.,
2012), a potent inhibitor of mTORC1, the macromolecular com-
plex central to the regulation of translation in eukaryotes (Santini
and Klann, 2011). Overall, these studies suggest a correlation
between dysregulated protein synthesis and the occurrence of
behavioral and synaptic defects consistent with ASD.

Novel mouse models of ASD engineered from rare genetic
mutations discovered in patients (Yonan et al., 2003) were im-
portant to establish a causal relation between dysregulated trans-
lation and the appearance of ASD-like behavioral and synaptic
alterations (Gkogkas et al., 2013; Santini et al., 2013). For in-
stance, in one of these models, the cap-binding protein eIF4E was
overexpressed in the brain (eIF4E transgenic mice), resulting in
an increase in protein synthesis. The mice exhibited synaptic and
behavioral impairments consistent with ASD, including the pres-
ence of repetitive behaviors and social defects. Moreover, when
the effects of eIF4E overexpression were normalized by adminis-
tering the specific drug inhibitor 4EGI-1, protein synthesis in the
brain was reduced in concomitance with some of the behavioral
and synaptic defects (Santini et al., 2013). Remarkably, these re-
sults were confirmed by a parallel study that used mice with the
genetic deletion of the eIF4E-binding protein 2 (4E-BP2), one of
the repressor proteins of eIF4E, leading to similar biochemical,
behavioral, and synaptic phenotypes (Gkogkas et al., 2013).
These studies indicate causality between dysregulation of protein
synthesis in the brain and certain ASD phenotypes.

In parallel to protein synthesis, multiple protein degradation
genes are mutated in ASD, showing how tight regulation of pro-
tein expression is critical for brain function. The proteasome
pathway is a highly conserved mechanism of targeted protein
degradation that relies on ubiquitination. Ubiquitination is a
post-translational modification that involves conjugating a ubiq-
uitin moiety to target proteins through sequential steps mediated
by several enzymes. The specificity of the process is largely
determined by the E3 ligases, which catalyze the last step of trans-
ferring the ubiquitin to substrate proteins (Berndsen and Wol-
berger, 2014). In addition to its traditional role of targeting
proteins for degradation, protein ubiquitination also plays a key
part in brain development, through the regulation of neurogen-
esis, gliogenesis, neuronal migration, and neurite and synapse
formation (Kawabe and Brose, 2011). Mutations in several ubiq-
uitin ligases result in ASD and ID, including UBE3A, the gene
affected in Angelman syndrome; HUWE1, which is mutated in
syndromic X-linked ID; and UBE3C, which has recently been
associated with autism risk (O’Roak et al., 2012a). Haploinsuffi-
ciency of the deubiquitinating enzyme USP7 (ubiquitin specific
peptidase 7) has been recently associated with ASD (Hao et al.,
2015b). Interestingly, USP7 functions in concert with MAGEL2

to regulate endosomal protein recycling. Duplications spanning
USP7 have also been identified in ASD (Sanders et al., 2011).

Although important clues to the biochemical pathways un-
derlying ASD have evolved from these studies, it still remains to
be delineated whether this knowledge can be directly translated to
human patients. Few of the proteins whose synthesis is dysregu-
lated in animal models of syndromic ASD have been identified.
Multiple studies focused on matrix metalloproteinase 9, which is
overexpressed in FXS and ASD (Gkogkas et al., 2014; Sidhu et al.,
2014), but more targets must be characterized to understand
which ones could be translatable to patients as diagnostic bio-
markers or therapeutic ends.

Understanding and modeling sex differences in ASD
From its initial description �70 years ago, autism has been pre-
dominantly diagnosed in boys (Kanner, 1943). ASD is four times
more common in males than in females (Christensen et al.,
2016); and when considering high-functioning individuals, the
ratio increases to 8 –10:1 male/female (Fombonne, 2005). Multi-
ple theories have been put forth, suggesting, for example, that
females are less susceptible to ASD due to a female protective
effect (Robinson et al., 2013), or that increased fetal testosterone
levels lead to an “extreme male brain,” which is less social and
more prone to repetitive behaviors (Baron-Cohen et al., 2011).
Genetic, epigenetic, and hormonal explanations have been pro-
posed, with none of these mechanisms being mutually exclusive
(Baron-Cohen et al., 2011; Robinson et al., 2013; Werling and
Geschwind, 2013). Genetic studies support the hypothesis of fe-
male protection indicating that females carry more severe muta-
tions than males (Gilman et al., 2011; Levy et al., 2011) and
analysis of the Simons Simplex Collection showed that females
overlap genetically with the most severe males (Iossifov et al.,
2014). Because of the smaller number of girls included in initial
studies, it has often been difficult to define whether ASD presents
differently in females. A large meta-analysis including �4000
cases with 988 females showed that by 6 years of age girls show
fewer stereotypical behaviors, despite having equal communica-
tion and social deficits (Van Wijngaarden-Cremers et al., 2014).
In addition, females tend to display more compensatory behav-
ioral changes, which could lead to underdiagnosis (Lai et al.,
2011; Baldwin and Costley, 2016).

As described above, multiple animal models have been devel-
oped to study ASD using paradigms aimed at capturing behav-
ioral deficits that resemble features of the human disease (for
review, see Ey et al., 2011; Ogden et al., 2016). However, as be-
havior has traditionally been studied preferentially in males, fe-
males have often been excluded. Male and female littermates
were paired for each genotype in a handful of studies showing no
sex differences for mouse knock-outs of Shank1 (Sungur et al.,
2014), Shank2 (Schmeisser et al., 2012), Nlgn2 (Blundell et al.,
2009), and Scn8a (McKinney et al., 2008). However, further anal-
ysis of specific behaviors revealed sexual dimorphism, such as a
female-specific reduction in prepulse inhibition in the Shank3
overexpression model of 22q13 duplication syndrome (Han et
al., 2013), and a male-specific increase in novelty response in the
Nrxn1 heterozygous mouse (Laarakker et al., 2012).

Substantial sex differences were revealed in fully powered be-
havioral studies studying mice deficient for the GABA receptor
subunit Gabrb3 (DeLorey et al., 2011) and the signaling scaffold
Cc2d1a. GABRB3 is located within the 15q11-q13 duplication
region linked to ASD and imprinting of the same region is dis-
rupted in Angelman syndrome (Cook et al., 1997). Not only do
Gabrb3 heterozygous mice display behavioral deficits differently
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depending on the maternal or paternal origin of the mutated
allele, but phenotypes are often found only in males. When fe-
males are also affected, they may not perform like males, as found
in differential performance in motor learning on the rotarod
(DeLorey et al., 2011). When cerebellar circuit function was stud-
ied in these mice, males and females displayed different circuit
properties. Males increased mGluR1/5 activity in the cerebellar
nuclei to counteract increased inhibition, whereas females al-
ready displayed higher levels of firing and did not need to upregu-
late mGluR1/5 (Mercer et al., 2016). In conditional knock-outs
for the signaling scaffold Cc2d1a, which is mutated in ASD and
ID (Manzini et al., 2014), males display an array of cognitive and
social deficits in combination with anxiety and hyperactivity
(Oaks et al., 2016b), whereas females only show mild cognitive
deficits (Oaks et al., 2016a). In parallel, signaling changes are
observed only in the male brain, despite equal removal of Cc2d1a.

These studies suggest that more careful analysis of sex differ-
ences in animal models could identify molecular and cellular
mechanisms that could be used to understand sex differences in
patients. To fully understand the mechanisms underlying ASD, it
is of paramount importance that behavioral, physiological, and
molecular differences are compared in males and females.

Translation of molecular insights into therapeutics
Mechanistic understanding of ASD can identify therapeutic targets
and neural circuits suitable for development of quantitative translat-
able outcome measures. One such example is derived from careful
studies of iPSC-derived neurons bearing patient mutations. Haplo-
insufficiency of SHANK3 emerged as the primary pathogenic event
in PMDS from studies of patient iPSC-derived neurons. Patient neu-
rons with defects in synaptic transmission and membrane resistance
were corrected by restoring SHANK3 expression or by treating neu-
rons with insulin-like growth factor 1 (Shcheglovitov et al., 2013).
Pilot clinical trials for insulin-like growth factor 1 in PMDS patients
have been promising (Kolevzon et al., 2014), but larger clinical trials
are needed. The impending era of in vitro human neuron models of
neurodevelopmental disorders will provide robust substrate for
drug repurposing screens and opportunities for personalized drug
screening.

Challenges of working with iPSC-derived models have been
documented previously (Paşca et al., 2014; McNeish et al., 2015;
Nestor et al., 2016). Furthermore, cell-based assays do not easily
allow circuit-based studies. A critical challenge to developing new
treatments is identification of circuits underlying specific symp-
tom domains and methods to monitor these circuits in clinical
trials. Emerging data suggest that disruption of sensory process-
ing by the cerebellum during a sensitive period will impair mul-
tisensory convergence of inputs onto Purkinje cells needed for
the appropriate activity-dependent refinement of neocortical cir-
cuits recruited during social learning (Becker and Stoodley, 2013;
Rogers et al., 2013; Wang et al., 2014). Consistent with this are
findings that injury of cerebellum early in development is among
the highest risk factors for developing ASD (Limperopoulos et al.,
2014). Cerebellar circuitry is highly conserved across rodents
and humans and can be monitored quantitatively and noninva-
sively in humans of all ages using eyeblink conditioning (Reeb-
Sutherland et al., 2011). Impaired social approach behavior and
eyeblink conditioning have both been observed in TSC mouse
models of autism produced by selective disruption of TSC signal-
ing in cerebellar Purkinje neurons during development (Kloth et
al., 2015). The development of translatable outcome measures,
such as eyeblink conditioning in clinical ASD patient populations
(Oristaglio et al., 2013), will enable rational design of early-stage

proof-of-concept clinical trials for therapeutic hypotheses that
treat dysfunction of this circuit. Furthermore, genetic disorders
associated with ASD represent a unique opportunity to leverage
human genetics to develop and refine these outcome measures.
Duchenne muscular dystrophy (DMD) is caused by inactivating
mutations in the dystrophin gene (DMD), essential for mainte-
nance of muscle fiber intensity (Monaco and Kunkel, 1988).
However, several isoforms are highly expressed in the Purkinje
cells of humans and rodents (Lidov et al., 1990, 1993), leading to
a wide range of Purkinje cell deficits in excitability and plasticity
(Anderson et al., 2003, 2004, 2005, 2010; Kueh et al., 2011; Snow
et al., 2014). This is consistent with reports that ASD symptoms
are comorbid with DMD in �25% of patients (Wu et al., 2005;
Hinton et al., 2007, 2009; Kohane et al., 2012; Banihani et al.,
2015; Ricotti et al., 2016). Evidence of deficits in social behavior
in mouse models of DMD (Alexander et al., 2016) provides a
circuit-driven model for testing therapeutic hypotheses. These
social deficits were reversed by inhibitors of cGMP-specific
phosphodiesterase, consistent with the high concentrations of
the phosphodiesterases PDE5A and PDE9A in Purkinje cells
(Shimizu-Albergine et al., 2003; Kleiman et al., 2012). Thus, the
DMD/ASD patient population may provide a valuable subset of
ASD patients who exhibit symptoms stemming primarily from
disturbances of cerebellar circuitry. Therapeutic approaches ef-
fective at treating ASD symptoms of DMD may provide a new
paradigm for identification and treatment of other cerebellar-
driven ASD symptoms.

In conclusion, the identification of multiple genetic risk fac-
tors for ASD and modeling of these genetic mutations in animal
models, especially as it pertains to syndromes associated with
ASD, has greatly increased our understanding of the pathophys-
iology of this spectrum of disorders. The more we discover how
complex ASD is, the more we realize that we need to do more:
partner with more families, develop more translatable models,
and study their physiological, cellular, and molecular changes in
more detail across more circuits. ASD is varied and autism sub-
types likely exist with specific molecular or circuit alterations,
which could differ between males and females. Translational ef-
forts would benefit from standardized uses of rodent models
(addressing both basic and translational questions), as well as
cross-species comparisons to enhance the predictive validity of
outcome measures. A critical challenge for translation is identifi-
cation of endpoints to monitor the circuitry underpinning
symptoms in preclinical models and patients. As new molecular
targets are identified, there is great promise for repurposing ex-
isting drugs, many of which have already undergone safety stud-
ies. However, access to pharmacokinetic data and expertise
needed to experimentally measure drug levels in animal models
for follow-up studies is critical to conducting meaningful trans-
lational studies in academic settings and requires new infrastruc-
ture (Kleiman and Ehlers, 2016). Although many challenges
remain, the tremendous recent advances make us hopeful as re-
searchers for a brighter future on the horizon for individuals with
ASD and their families.
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