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The recently implemented National Institutes of Health policy requiring that grant applicants consider sex as a biological variable in the
design of basic and preclinical animal research studies has prompted considerable discussion within the neuroscience community. Here,
we present reasons to be optimistic that this new policy will be valuable for neuroscience, and we suggest some ways for neuroscientists

to think about incorporating sex as a variable in their research.

Introduction

As of January 25, 2016, applicants for National Institutes of
Health (NIH) grants to study vertebrate animals are required to
explain how their study design will account for Sex as a Biological
Variable (SABV). In most cases, this means that proposed studies
should include both males and females; single-sex studies require
strong scientific justification. As explained in the relevant policy
announcement (NOT-OD-15-102), the rationale for an SABV
policy comes from the observation that “more often than not,
basic and preclinical animal research has focused on male ani-
mals and cells,” which “may obscure understanding of sex influ-
ences on health processes and outcomes.”

Has most basic and preclinical research focused on males?
Beery and Zucker (2011) analyzed research articles using nonhu-
man mammals published during 2009 in 10 fields of biology and
found that research in males dominated in 8 of them. The greatest
biases were in neuroscience and pharmacology, where the ratios
were ~5 studies using exclusively males to every 1 study using
exclusively females. Physiology was intermediate at 3.7:1, and the
bias was in the opposite direction in immunology (1:2.2) and
reproductive science (1:1.6). Although some studies have re-
ported weaker sex bias (e.g., Florez-Vargas et al., 2016), an anal-
ysis done by one of us (C.S.W.) supports the findings of Beery and
Zucker for neuroscience. Of 1244 neuroscience-related research
articles using rodents published in 5 journals (Nature, Science,
Nature Neuroscience, Neuron, and the Journal of Neuroscience)
from June 2011 through May 2012, we found that ~32% studied
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exclusively males, ~7% studied exclusively females, and only
~4% studied both sexes and stated whether there were any dif-
ferences between them; the remainder of the studies either used
both sexes without mentioning differences or the lack of them
(~29%) or failed to note the sex of the animals studied (~28%).
Beery and Zucker also quantified failure to report the sex of ani-
mals used to generate published results, which they found in
~20% of neuroscience articles. Together, the study by Beery and
Zucker, our own analyses, and similar findings by others (e.g.,
Mogil and Chanda, 2005; Yoon et al., 2014), indicate that sex bias
in animal research, more often in favor of males, is real.

The next question is whether sex bias in animal research is an
obstacle to the NIH mission, which is to “seek fundamental
knowledge about the nature and behavior of living systems” and
apply that knowledge to “enhance health, lengthen life, and re-
duce illness and disability.” That is, does the fact that most basic
research is conducted in males limit the ability of basic science to
inform clinical studies and public health policies? And if so, will
requiring both sexes in NIH-funded research relieve this limita-
tion in a tangibly beneficial way? Opinions vary widely on these
questions. Announcement that an SABV policy was on the hori-
zon (Clayton and Collins, 2014) was accompanied by both opti-
mistic (McCullough et al., 2014) and pessimistic (Fields, 2014)
commentary about its potential benefits. Detractors have voiced
concerns about the feasibility of implementing and adhering to
the policy (outlined and addressed by Mogil, 2016; Maney, 2016),
as well as skepticism that such a broad mandate will translate to
improved health outcomes (Richardson et al., 2015). However,
others have expressed support for the initiative, suggesting that
addressing the imbalance in subject sex is not only long overdue
from a public health standpoint (Cahill and Aswad, 2015) but is
also an essential step toward understanding the brain at its most
fundamental level (Klein et al., 2015; Mazure, 2016). We, too, are
optimistic that SABV will benefit neuroscience at both the basic
and translational levels. Our goals in this Dual Perspective are to
explain why and to suggest some ways for neuroscientists to think
about sex as a variable in their research.


http://dx.doi.org/10.1523/JNEUROSCI.1391-16.2016
http://dx.doi.org/10.1523/JNEUROSCI.1391-16.2016

11818 - J. Neurosci., November 23, 2016 - 36(47):11817-11822

Will SABV strengthen basic neuroscience research?

Despite the relative infrequency of basic neuroscience studies
that include both male and female subjects, the existence of sex
differences in brain biochemistry, physiology, structure, and
function is broadly accepted (Becker et al., 2005; McCarthy et al.,
2012; Bangasser et al., 2016; Panzica and Melcangi, 2016; but see
Joeletal.,2015). Indeed, implicit in a decision not to include both
sexes in study design is often a concern that outcomes in males
and females might be different, complicating interpretation and
obscuring what is “really” true about the brain. In other words:
let’s figure out the fundamentals first (usually in males) and
worry about sex differences later. This is, of course, a flawed
rationale because an outcome in one sex cannot be more or less
true than it is in the other, nor is one sex more important to study
than the other. The benefit of SABV is that by including both
sexes in research, we learn the answers to research questions in
both sexes. If findings in one sex do not apply to the other, then it
seems clear that sex should be considered when reporting results.
Conversely, when there is no sex difference, it is equally impor-
tant to indicate that results can be considered true for both sexes.

As several recent reviews suggest, incorporating both sexes
can be done most simply with a “50/50” approach, in which males
and females equally comprise each experimental group (McCar-
thy, 2015; Mogil, 2016). Although this approach may not be suf-
ficiently powered to detect small sex effects, large effects should
be evident. Researchers can then choose whether to explore the
biological basis of sex differences in follow-up experiments. Im-
portantly, the results of such studies will be datasets generated in,
and therefore relevant to, both sexes.

One common question about SABV is: how important are
gonadal hormones? Because most human patients suffering from
a disease or disorder are gonadally intact, human disease condi-
tions will typically be modeled most effectively using gonadally
intact animals. Some researchers have expressed concerns that
including both sexes will require increased sample sizes to ac-
commodate variability among females due to hormonal fluctua-
tions across the reproductive cycle. However, a recent meta-
analysis of variability among male and female mice across almost
10,000 published measurements of behavioral, morphological,
physiological, or molecular traits showed that variability was no
greater in females than males for any endpoint; indeed, variability
was greater in males for several measures (Prendergast et al.,
2014). Similar meta-analyses in other species have come to the
same conclusion (Mogil and Chandra, 2005; Itoh and Arnold,
2015; Becker et al., 2016). This does not mean that the estrous
cycle has no effect on neural function or behavior; to the con-
trary, there is evidence for estrous effects on many processes,
from hippocampal LTP (Warren et al., 1995; Good et al., 1999) to
sensitivity to stress (Shansky et al., 2004). However, it does mean
that there is little reason to expect that use of gonadally intact
females will add variability to outcomes. Some sources of vari-
ability may be the same in males and females, and some may be
distinct. As above, it is up to individual researchers to deter-
mine which sources of variation are of interest to their re-
search program.

One way to think about circulating gonadal hormones (in
both sexes) is simply to accept them as part of the complex
physiological background of each animal. With this strategy,
experimental design need not attempt to control, remove, or
manipulate hormones, but focus instead on identifying effects
that transcend the influence of hormones. For example, Gruene
et al. (2015) recently identified an active conditioned fear re-
sponse in rats (“darting”) that occurred predominantly in
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females and was evident in all phases of their estrous cycle. Alter-
natively, if there is interest in determining whether a particular
effect depends on circulating gonadal hormones, a design in
which the gonads are removed (gonadectomy) may be used.
This can identify sex differences that arise during development
and that are independent of the postpubertal hormonal mi-
lieu. Some researchers, including one of us (C.S.W.), have
taken this approach.

For example, Tabatadze et al. (2015) used gonadectomi-
zed adult rats to show a sex-specific response of hippocampal
inhibitory synapses to inhibition of fatty acid amide hydrolase
(FAAH), an enzyme that hydrolyzes endocannabinoids. Synaptic
inhibition was suppressed by an FAAH inhibitor in females, with
no effect of the same drug in males. Because endocannabinoids
are involved in diverse aspects of brain function, including cog-
nition, appetite, pain, and responses to stress, the enzymes that
regulate their levels are promising targets for therapeutic devel-
opment (Fowler, 2015). Indeed, FAAH inhibitors have been used
in clinical trials. Recognition that FAAH inhibitors have different
effects in the hippocampus of male and female rats suggests that
these or other drugs that influence endocannabinoids could af-
fect men and women differently.

Sex differences that are independent of circulating gonadal
hormones have also been shown using prepubertal animals. One
recent example comes from a study of the cerebellar nuclei
(CbN), which carry the output of the cerebellum. The firing rate
of CbN neurons in weanling (P17-P24) mice previously was mea-
sured to be ~90 spikes/s in mixed-sex studies. However, when
data from males and females were analyzed separately, Mercer et
al. (2016) found that the average firing rate was ~65 spikes/s in
males, compared with ~100 spikes/s in females. The same study
also showed sex differences in synaptic excitation and synaptic
inhibition of CbN neurons, as well as sex-specific responses to
mutation of the autism-linked Gabrb3 gene.

Examples such as these demonstrate that considering sex as a
variable can reveal sometimes striking sex differences in com-
monly studied systems for which there is little reason, a priori, to
suspect that males and females would differ. Others have found
similarly robust sex differences in many other systems, from spi-
nal mechanisms involved in chronic pain (Mogil, 2012; Sorge et
al., 2015) to reward circuitry and addiction-related behaviors
(Becker and Koob, 2016). As these studies demonstrate, identify-
ing what is the same between males and females and what is
different is essential to provide appropriate baselines for future
basic studies, as well as to inform translational studies that are
based on outcomes of basic research.

As more neuroscientists begin to incorporate sex as a variable
in their research, it will be important to consider assumptions
that underlie interpretation of some standard outcome measures,
and to be aware that these assumptions may not apply equally to
males and females. This is particularly true for behavioral studies.
For example, sex differences in responses to stress may influence
common tests of anxiety and aversive learning. As reviewed by
Archer (1975), female rodents show greater exploration and am-
bulation in the open field test, faster latencies to emerge into
novel environments, and faster acquisition of active avoidance
learning. Additionally, female rats exhibit less freezing in contex-
tual fear conditioning (Maren et al., 1994) and are resistant to
learned helplessness in a shuttlebox test (Dalla et al., 2008). One
interpretation of these differences is that female rodents are sim-
ply less anxious and fearful than males. However, another possi-
bility is that females are more likely than males to exhibit active
behaviors in response to novel or aversive situations.
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The findings of Gruene et al. (2015) noted above support this
idea. The active fear response in females that emerged during fear
conditioning corresponded with less freezing behavior, the stan-
dard measure of conditioned fear in rodents. Thus, results in
females could have been interpreted as reflecting poorer learning
or lower fear than in males, had the active responses not been
recorded. This mirrors earlier evidence of sex differences in active
behaviors. For example, Fernandes et al. (1999) used principal
component analysis of behavior in the elevated plus maze, a com-
monly used test of anxiety-like behavior. These authors found
that, in males, anxiety accounted for 75% of variance in elevated
plus maze behavior, whereas in females, anxiety accounted for
only 34% of variance; the principal component for females was
activity, at 57%. Together, these studies suggest the need to re-
evaluate some classic behavioral assays, which may require adap-
tation as incorporation of female subjects increases (Shansky,
2015). One successful example of this comes from Lukas and
Neumann (2014), who recently modified a social defeat model to
reveal sexually divergent functions of oxytocin and vasopressin.

Will SABV lead to improved health outcomes in humans?
One of the most widely cited reasons for studying sex differ-
ences in the brain is that many neurological and neuropsychi-
atric disorders vary by sex, in their incidence, age of onset,
symptoms, and/or responses to treatment. Although a detailed
catalog of such differences is beyond the scope of this perspec-
tive, it is important to recognize that sex bias in brain disor-
ders is evident at all life stages, from childhood through old
age. For example, autism spectrum disorders, which are most
often diagnosed at ~4 years of age, are >4 times more com-
mon in boys than girls (Christensen et al., 2016). In contrast,
women are more likely than men to develop major depressive
disorder, post-traumatic stress disorder, and anxiety disorders
(Breslau, 2009), a wide range of pain syndromes (Fillingim et
al., 2009), and show faster progression of Alzheimer’s disease
(Tschanz et al., 2011). Other disorders show smaller sex dif-
ferences in overall incidence but manifest differently in men
and women. For example, schizophrenia has consistently been
shown to develop at an earlier age in men than women (Héifner
et al., 1993; Castle et al., 1998), and symptoms differ between
the sexes (Abel et al., 2010).

Although sex differences in human brain disorders may be
determined partly by social and cultural factors, a great deal of
evidence suggests that differences in biological processes that un-
derlie the disorders’ etiologies and pathophysiologies also play a
role. It follows, then, that comparing these processes in male and
female animal models could lead to better interventions and ther-
apeutics in both men and women. In addition, even illnesses that
afflict men and women with equal prevalence, such as bipolar
disorder, may differ between the sexes in underlying mechanisms
and/or risk factors (Dao et al., 2010). As articulated previously by
de Vries (2004), some sex differences in the brain may serve to
compensate for other sex differences, making endpoint measures
in males and females more similar, rather than more different.
Put simply, differences between males and females at a mecha-
nistic level may converge to similar physiological or behavioral
outcomes. This possibility highlights the importance of asking
whether the answers to “fundamental” neuroscience questions
are the same in both sexes.

Skepticism about whether studying both sexes in model or-
ganisms will result in improved public health is often framed as a
translational problem (Richardson et al., 2015). Essentially, this
argument asserts that the many environmental influences unique
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to humans (e.g., gender-related sociocultural norms and experi-
ences) that could lead to discrepancies in disease incidence or
drug effects do not factor into sexually divergent outcomes in
basic science research and that, therefore, studying sex differ-
ences in laboratory animals is unlikely to provide insight into
male-female differences in people. Although we acknowledge
that animals are imperfect models of human behavior or disease,
research in animals is currently the best approach available for
understanding how biological processes work, defining the con-
sequences of disrupting those processes, and testing interven-
tions aimed at rescuing disruptions. Thus, to the extent that
animal research is useful to understand biological processes that
underlie human disorders, basic science should seek to under-
stand how sex influences these processes. Furthermore, the po-
tential value of SABV goes beyond informing clinical areas in
which men and women are known to differ. Its broader impact
will be to ensure that knowledge gained from basic biomedical
research is relevant to both sexes.

Although we believe that SABV will benefit translational
research in neuroscience, we also caution against overinter-
pretation of neuroscience studies, particularly in predicting
cause-and-effect relationships that have not been directly
demonstrated. For example, it can be tempting to speculate
about how sex differences observed at a cellular or molecular
level could produce sex differences in behavior. However, the
potential consequences of sex differences at a mechanistic
level must be considered in the context of whole-animal phys-
iology; specific molecular differences may not have a direct
behavioral correlate (as noted above, such differences may
actually converge to common outcomes in males and females)
(de Vries, 2004). Conversely, some sex differences in behavior
may not be due to sex differences in the brain itself, but rather,
to differences in other aspects of physiology. One case of this is
female rodents’ greater sensitivity to the rapid antidepressant
effects of ketamine (Carrier and Kabbaj, 2013; Franceschelli et
al., 2015), which appears to be due, at least in part, to their
enhanced metabolism of ketamine to the antidepressant me-
tabolite (2R,6R)-hydroxynorketamine (Zanos et al., 2016).

Resources for implementing SABV in neuroscience

Designing and interpreting experiments that include both males
and females can seem daunting, especially for researchers who are
not familiar with studying both sexes. However, taking advantage
of a number of excellent reviews, guides, and perspective pieces
written by experts in the field can help to ensure that addressing
SABYV results in informative datasets that use limited resources
wisely.

First, Janine Clayton, Director of the NIH Office for Re-
search of Women’s Health and a principal leader of the SABV
initiative, recently published a piece in The FASEB Journal
(Clayton, 2016) that outlines the rationale and goals for SABV.
As a follow-up, Tannenbaum et al. (2016) discuss the guide-
lines for peer reviewers evaluating whether SABV has been
satisfactorily incorporated into NIH proposals. Becker and
Koob (2016) outline a framework for thinking about different
types of sex differences, particularly in the context of addic-
tion, and Sanchis-Segura and Becker (2016) provide a detailed
discussion of how sex differences arise during development.
Margaret McCarthy has provided several useful resources, in-
cluding a debunking of myths about sex differences in the
brain and a “roadmap” for incorporating SABV (McCarthy
2015), a decision tree-style framework for interpreting sex
differences (Joel and McCarthy 2016; see also McCarthy et al.,
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2012), and a primer on the history of sex differences research
(McCarthy, 2016). This latter piece appears in a recent themed
issue of Philosophical Transactions of the Royal Society B, which
collectively addresses many aspects of sex differences in the
context of neuroscience. Within this issue, we also recom-
mend Donna Maney’s thoughtful discussion of common “per-
ils and pitfalls” in reporting the results of sex differences
research. This piece offers excellent advice on thinking
through SABV in experimental design, data interpretation,
and communication, particularly to avoid overinterpretation
of sex differences in ways that can promote damaging cultural
stereotypes (also see Eliot, 2011). Finally, an upcoming special
issue of Journal of Neuroscience Research will provide a broad
look at the current state of sex differences research.

In conclusion, there is already compelling evidence for sex
differences in numerous areas of neuroscientific research, but
our understanding of many aspects of neural function is still
limited primarily to one sex. Adherence to SABV will likely
reveal further surprising ways in which aspects of neural func-
tion differ between the sexes, as well as neurobiological mech-
anisms that are conserved across the sexes. Both outcomes will
broaden our understanding of fundamental processes and
may also critically inform efforts to translate basic research
findings into new approaches to the diagnosis, treatment, and
prevention of brain-related disorders. We encourage basic
neuroscientists to view SABV not as a burden, but as an op-
portunity to more thoroughly and more accurately identify
the key factors that influence brain function. The results will
likely benefit both sexes.

4 )

Response from Dual Perspectives Companion
Authors-Lise Eliot and Sarah S. Richardson

Sex is obviously important in biological research. In this
Dual Perspective piece, as well as in their individual re-
search programs, Shansky and Woolley have made vital
contributions to understanding the role of sex and gonadal
hormones in biological processes from the cellular to the
behavioral level. Sex differences and the impact of sex-
related variables on physiology and behavior are crucial ar-
eas of study. This research has advanced dramatically in the
last few decades and provided key insights into basic mech-
anisms of neuronal function and the biological basis of be-
havior (McCarthy, 2016).

However, the importance of sex difference research does
not mean that every biologist should be forcibly recruited
into this field. The nice thing about leaving the study of sex
effects to experts like Shansky and Woolley is that they ap-
preciate the nuance of sex-related findings, have the tools
for dissecting them, and possess the experience to accu-
rately interpret them. The same cannot be said for all other
NIH-funded animal researchers, any more than every re-
searcher has the knowledge and technical expertise to dis-
sect the equally important effects of genetic background
(strain), prenatal experience, aging, environmental enrich-
ment, social housing, and many other key variables that
affect physiology and behavior. Whatever they are study-
ing, biomedical scientists should be free to choose the
model animal that best suits their needs and to narrow
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down competing variables to focus on the specific aims of
their research.

Like Shansky and Woolley, we regret the historical prece-
dent (probably rooted in societal gender assumptions) that
led to the bias toward male-based studies in many areas of
animal research. We agree that animal researchers have
overused males on the erroneous assumption that estrus
effects make females unacceptably variable. Recent meta-
analyses demonstrate that this is not the case (Prendergast
et al., 2014; Becker et al., 2016), and as more researchers
become aware of the utility of female animals, we are confi-
dent they will find ways to include them in their research.

But the argument that requiring sex comparisons in every
strain of rat, mouse, and other laboratory animal will lead to
advances in human medicine is currently unfounded. As we
point out in our companion piece, even the FDA’s change in
recommended zolpidem dosing for women was not based
on animal research, nor could it have been detected in ani-
mals due to species differences in pharmacokinetics and
pharmacodynamics. Similarly, the finding, cited by Wool-
ley and Shansky, of greater ketamine sensitivity in female
mice (Carrier and Kabbaj, 2013) does not translate to hu-
mans, where ketamine appears to be a more effective anti-
depressant in men (Coyle and Laws, 2015). Certainly, sex
differences in pharmacokinetics and pharmacodynamics
are important in both medicine and preclinical research,
but there is little evidence that such sex differences reliably
carry over between species (Anderson 2005). As we hope to
impress upon neuroscientists, this is because “sex” is not
the simple binary variable that this mandate assumes. Itis a
complex phenotype subject to conditions that vary across
species, developmental age, and environmental context.
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