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Abstract

PARP inhibitors are active in tumors with defects in DNA homologous recombination (HR) due to 

BRCA1/2 mutations. The phosphoinositide 3-kinase (PI3K) signaling pathway preserves HR 

steady state. We hypothesized that in BRCA-proficient triple-negative breast cancer (TNBC), 

PI3K inhibition would result in HR impairment and subsequent sensitization to PARP inhibitors. 

We show in TNBC cells that PI3K inhibition leads to DNA damage, downregulation of BRCA1/2, 

gain in poly-ADP-ribosylation, and subsequent sensitization to PARP inhibition. In TNBC 

patient–derived primary tumor xenografts, dual PI3K and PARP inhibition with BKM120 and 

olaparib reduced the growth of tumors displaying BRCA1/2 downregulation following PI3K 

inhibition. PI3K-mediated BRCA downregulation was accompanied by extracellular signal–

regulated kinase (ERK) phosphorylation. Overexpression of an active form of MEK1 resulted in 

ERK activation and downregulation of BRCA1, whereas the MEK inhibitor AZD6244 increased 

BRCA1/2 expression and reversed the effects of MEK1. We subsequently identified that the ETS1 

transcription factor was involved in the ERK-dependent BRCA1/2 downregulation and that 

knockdown of ETS1 led to increased BRCA1/2 expression, limiting the sensitivity to combined 

BKM120 and olaparib in 3-dimensional culture.

SIGNIFICANCE—Treatment options are limited for patients with TNBCs. PARP inhibitors have 

clinical activity restricted to a small subgroup of patients with BRCA mutations. Here, we show 

that PI3K blockade results in HR impairment and sensitization to PARP inhibition in TNBCs 

without BRCA mutations, providing a rationale to combine PI3K and PARP inhibitors in this 

indication. Our findings could greatly expand the number of patients with breast cancer that would 

benefit from therapy with PARP inhibitors. On the basis of our findings, a clinical trial with 

BKM120 and olaparib is being initiated in patients with TNBCs.

INTRODUCTION

Therapeutic options for triple-negative breast cancer (TNBC) are limited and based on the 

use of multiple lines of chemotherapy (1). An exception to this paradigm is found in the 

small subset of TNBCs that have defects in homologous recombination (HR)-mediated DNA 

repair due to BRCA1/2 mutations, in which therapy with PARP inhibitors results in high 

antitumor activity (2–5). PARP enzymatic activity is necessary for the repair of single-strand 

breaks (SSB) through the base excision repair (BER) pathway. Several double-strand break 

repair mechanisms exist, including HR, which uses a sister chromatid template for 

recombination, and nonhomologous end joining, which uses DNA ligation for repair but 

exhibits lower fidelity than HR (5). When PARP is inhibited, unrepaired SSBs can 

degenerate to DSBs that, in BRCA-deficient cells, can no longer be repaired by HR, 

resulting in a continuous and lethal DNA damage (4–6). BRCA1 and BRCA2 proteins are 

essential components of HR that are recruited to damaged DNA for repair of the DSBs. 

Therefore, the loss of BRCA1/2 results in HR deficiency and sensitization to PARP 
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inhibitors. HR deficiency can also occur through other mechanisms that may promote 

sensitivity to PARP inhibition: (i) methylation and silencing of the Fanconi anemia genes 

(7), involved in DNA repair and associated with BRCA1/2, (ii) loss of CDK1 activity, which 

maintains BRCA1 protein stability (8), or (iii) loss of RAD51 expression (7, 9), a necessary 

recombinase in the HR complex that associates with BRCA1/2.

TNBCs also display aberrant activation of the phosphoinositide 3-kinase (PI3K) pathway, 

which occurs due to a variety of mechanisms including loss of negative pathway regulators 

such as PTEN or inositol polyphosphate 4-phosphatase type II (INPP4B; refs. 10, 11), 

activating mutations of the PIK3CA gene (12), or overexpression of the EGF receptor (13). 

Direct pharmacologic inhibition of PI3K/AKT/mTOR signaling is, therefore, an attractive 

clinical strategy for this disease. In addition to regulating cellular processes including 

metabolism, growth, and survival (14), PI3K also stabilizes and preserves DSB repair by 

interacting with the HR complex under normal conditions (15) and is necessary for DNA 

repair during ionizing radiation (16). Here, we investigate the effects of PI3K inhibition in 

perturbing DNA HR in preclinical models of TNBCs containing PI3K-activating alterations. 

We found that PI3K blockade promotes HR deficiency by downregulating BRCA1/2 and 

sensitizes BRCA-proficient tumors to PARP inhibition.

RESULTS

PI3K Suppression Impairs Homologous Recombination

TNBC is exquisitely sensitive to chemotherapy. This is due, at least in part, to intrinsic 

genomic instability of TNBC cells as a result of deficient DNA repair (17). Because PI3K 

signaling is known to maintain HR steady state (15), we asked whether inhibition of PI3K 

would further promote DNA damage in TNBCs. To test this hypothesis, we first used siRNA 

to knockdown the expression of PIK3CA, the gene encoding for the α-isoform of the 

catalytic p110 subunit of the PI3K enzyme complex, in MDA-MB-468 cells, a BRCA wild-

type PTEN-null TNBC cell line. PIK3CA knockdown resulted in accumulation of 

phosphorylated histone 2AX (γH2AX), a protein that localizes to damaged DNA (18) and 

recruits DNA repair effectors to these sites (ref. 19; Fig. 1A and B). γH2AX accumulation, 

occurring mainly in the S- and G2 phases of the cell cycle, was further enhanced by 

concomitant treatment with olaparib, a small-molecule PARP inhibitor. In the same assay, 

siRNA for BRCA1 served as a positive control for γH2AX accumulation following PARP 

inhibition.

Concomitantly, we observed that suppression of PIK3CA was accompanied by 

downregulation of BRCA1, indicating that PI3K suppression per se can inhibit the 

expression of proteins necessary for HR (Fig. 1C; Supplementary Fig. S1). Importantly, 

BRCA1 downregulation by itself had little effect in increasing γH2AX nuclear foci 

formation. Subsequently, we investigated whether pharmacologic inhibition of PI3K could 

recapitulate the effects on BRCA expression observed by PIK3CA knockdown (Fig. 1D). 

Consistently, treatment with a pan-PI3K inhibitor (NVP-BKM120, hereafter referred to as 

BKM120), resulted in decreased expression of BRCA1/2 and concomitant gain of 

Poly(ADP-ripose) (PAR) proteins, a product (and marker) of PARP activation (20). 

Quantitative real-time PCR (qRT-PCR) showed that BRCA1/2 downregulation occurred, at 
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least in part, at the transcriptional level and was not limited to MDA-MB-468 cells (Fig. 1E; 

Supplementary Fig. S2).

HR Deficiency Induced by PI3K Suppression Sensitizes to PARP Inhibition

In the setting of decreased HR activity, PARP inhibition results in chromatid aberrations 

leading to cell lethality (5). To evaluate whether HR impairment following PI3K suppression 

conferred increased sensitivity to PARP inhibition, we tested the in vitro activity of 2 PARP 

inhibitors, olaparib (Fig. 2; Supplementary Fig. S3A) and ABT888 (Supplementary Fig. 

S3B), in cells transfected with PIK3CA siRNA or treated with BKM120. Knockdown of 

PIK3CA decreased the IC50 for olaparib in MDA-MB-468 (Fig. 2A) and BT20 

(Supplementary Fig. S3B) TNBC cells. Knockdown of PIK3CB also led to sensitization to 

olaparib or ABT888, albeit to a lesser extent (data not shown). The combination of olaparib 

and BKM120 was superior to single agent in inhibiting colony formation in soft agar in 

MDA-MB-468 cells (Fig. 2B). The superiority of the combination was observed in 

additional TNBC BRCA -wild-type cell lines (MDA-MB-231: RAS-mutated; HCC1143: 

PTEN-null; HCC70: PTEN-null) as well as with different PI3K inhibitors (GDC-0941; Fig. 

2C).

BKM120-Mediated BRCA Downregulation Sensitizes to PARP Inhibition in Patient-Derived 
Primary Tumor Xenografts

To study the effects of BKM120 in modulating BRCA expression and consequent 

sensitization to olaparib in models that better represent patient tumors, we decided to use 3 

TNBC patient–derived tumor xenografts developed from 3 different patients with breast 

cancer at our institution (Table 1). These models have been reported to resemble both the 

morphologic and molecular characteristics of the original patient tumors from which they 

have been expanded (21, 22). Indeed, tissue architecture, hormone receptor levels, HER2, 

and PTEN expression of our xenografts were indistinguishable from their original tumors 

(Supplementary Fig. S4). In concordance with the high frequency of PTEN loss reported in 

TNBCs (12, 23), PTEN expression was barely detectable in any of the TNBC models, 

whereas an activating PIK3CA mutation (H1047R) was detected in one (TNBC1). Of note, 

both PTEN loss and PIK3CA mutations have been previously reported to coexist in breast 

cancer (23).

Accumulation of nuclear γH2AX foci following PI3K inhibition was variable in the 3 

TNBC models (Fig. 3A). TNBC1 and TNBC3 showed a 2-fold increase in γH2AX staining, 

whereas no significant changes occurred in TNBC2 following BKM120 treatment. The 

inability of TNBC2 to accumulate γH2AX foci following PI3K inhibition may be due to its 

intrinsic resistance (and lack of significant cell death; refs. 24, 25) to BKM120 used as a 

single agent (data not shown). Downregulation of BRCA expression upon BKM120 

treatment occurred in TNBC1 and TNBC2 and was accompanied by an increase in PAR 

levels (Figs. 3B, 3C). We therefore hypothesized that combined PI3K and PARP inhibition 

was likely to be effective in these 2 xenograft models. BKM120 as a single agent 

temporarily reduced tumor growth in TNBC1 and TNBC3 but was scarcely efficacious in 

TNBC2. As expected, olaparib monotherapy was ineffective in all 3 models. However, the 

combination of BKM120 with olaparib was superior to single agents in reducing TNBC1 
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and TNBC2 tumor growth (Fig. 4). Consistently, lack of BRCA downregulation and PARP 

activation (TNBC3; Fig. 3B and C) coincided with little or no benefit from dual PI3K and 

PARP suppression (TNBC3; Fig. 4).

Taken together, these results suggest that (i) the degree of HR impairment and consequent 

sensitization to PARP inhibition induced by PI3K blockade may vary among different 

TNBC populations and (ii) the sensitivity to dual PARP and PI3K treatment may be 

dependent on the degree of BRCA1/2 downregulation and consequent increased PARP 

activity (PAR) following PI3K inhibition.

Extracellular Signal–Regulated Kinase Inhibition Prevents the BKM120-Mediated Decrease 
in BRCA Expression and Increase in PARP Activity

Next, we searched for possible mechanisms that could explain the variability in BRCA1/2 

expression (and consequent susceptibility to PARP inhibition) following PI3K suppression. 

Interestingly, in both TNBC1 and TNBC2, we observed a concomitant increase of 

extracellular signal–regulated kinase (ERK) phosphorylation upon BKM120 treatment (Fig. 

3C). This finding was not surprising as ERK activation following PI3K blockade in breast 

cancer has been previously described by us and others (26–28). To explore whether 

BRCA1/2 expression may be regulated by the ERK pathway, we undertook several 

approaches. First, we exogenously expressed an active form of MEK1 (thus increasing ERK 

phosphorylation) in MDA-MB-468 cells and asked whether elevated ERK activity per se led 

to downregulation of BRCA1. In Fig. 5A and B, we show that this in fact was the case. 

Moreover, pharmacologic MEK inhibition using the small-molecule MEK inhibitor 

AZD6244 was sufficient to increase the expression of BRCA1 and BRCA2 and reverse the 

effects of MEK1 overexpression.

These observations prompted us to conduct a Jaspar promoter analysis (29) searching for 

ERK-related transcription factors binding to either BRCA1 or BRCA2 promoters. This 

analysis identified ETS1 as the transcription factor with the highest number of BRCA1/2 
binding motifs (Supplementary Table S1). As a matter of fact, ETS transcription factors have 

been described to be phosphorylated (and activated) by the ERK pathway (30) and to repress 

the BRCA1 promoter (31). To test whether the ETS1 transcription factor was involved in the 

ERK-dependent BRCA1/2 downregulation upon PI3K blockade, we measured the levels of 

phosphorylated ETS1 (pETS1T38) in MDA-MB-468 cells treated with BKM120, AZD6244, 

and the combination of both (Fig. 5C). Together with the expected increase in ERK 

activation, BKM120 treatment also increased the levels of pETS1T38 (Fig. 5C; 

Supplementary Fig. S5). In Fig. 5D, we confirm that PI3K suppression and ERK activation 

led to transcriptional BRCA1/2 downregulation. In Fig. 5E and F, we show that these results 

also held true in vivo. In fact, TNBC1 treated with BKM120 displayed ERK activation with 

increased pETS1 levels that led to downregulation of BRCA1/2. This phenomenon was 

prevented by MEK suppression by AZD6244.

To further confirm the role of ETS1 in regulating ERK-dependent BRCA1/2 expression, we 

specifically knocked down ETS1 by short hairpin RNA (shRNA) or siRNA (Fig. 6A and C; 

Supplementary Fig. S6) and showed that this manipulation was sufficient to increase 

BRCA1/2 expression and concomitantly inhibit PARP activity in 2 TNBC cell lines (Fig. 
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6A–D). Furthermore, ETS1 downregulation in MDA-MB-231 cells limited the sensitivity to 

dual PI3K and PARP inhibition (without altering colony formation of cells treated with 

single agents; Fig. 6E).

Taken together, these data indicate that HR impairment following PI3K blockade may be 

dependent on ERK activation that in turn increases ETS1 phosphorylation (and activity) to 

repress BRCA1/2 expression.

DISCUSSION

HR deficiency associated with BRCA1/2 mutation results in dependence on PARP-mediated 

DNA repair and profound sensitivity to PARP inhibitors (2–4, 7). In contrast, the clinical 

activity of PARP inhibitors in non–BRCA-mutant tumors to date has been disappointing 

(32), resulting in limited applicability of these agents in the clinic. It has been proposed that 

somatic loss of BRCA function by promoter methylation and consequent transcriptional 

silencing may also induce HR deficiency, which would result in an additional fraction of 

patients who may potentially benefit from PARP inhibitors (33).

Our study suggests that PI3K inhibition could be exploited to induce HR deficiency and 

sensitization to PARP inhibition in BRCA-proficient TNBCs. Using in vitro models, we 

show that suppression of the PI3K pathway was accompanied by BRCA1/2 downregulation 

and an increase in PARP activity (increased PAR levels), indicating that cells undergoing 

PI3K suppression become more dependent on this DNA repair mechanism. As a matter of 

fact, dual inhibition of both PARP and PI3K activity resulted in greater suppression of cell 

proliferation, as well as of anchorage-independent and-dependent colony formation. 

However, in vivo, we observed that BRCA1/2 downregulation following PI3K inhibition 

was variable among our tested models. In those patient-derived xenografts showing 

BKM120-dependent BRCA downregulation, the addition of olaparib significantly 

suppressed tumor growth. No such effects were observed when BRCA1/2 levels remained 

unchanged by PI3K inhibition. This would suggest that BRCA expression rather than DNA 

damage following PI3K inhibition predicts response to PARP inhibition. This observation is 

in accordance with recent data indicating that response to chemotherapy in TNBCs occurs 

exquisitely in tumors with impaired BRCA nuclear expression/localization independently of 

the magnitude of DNA damage (34).

Intriguingly, in the tumors responding to combined therapy, BRCA1/2 downmodulation was 

accompanied by concomitant activation of the ERK pathway following PI3K inhibition. 

Moreover, the use of a MEK inhibitor prevented ERK phosphorylation and limited 

BRCA1/2 downregulation induced by BKM120 treatment. These results indicate that 

BRCA1/2 gene transcription may be regulated, at least in part, by the ERK pathway. 

Furthermore, our data suggest that ETS1 is among the transcription factors mediating this 

ERK-dependent BRCA downregulation. Interestingly, it has been recently proposed that the 

antitumor effects of olaparib may be limited to ETS-positive tumors (35). Our study 

supports this conclusion and argues that ETS1-dependent ERK activation is sufficient to 

sensitize TNBCs to dual PI3K and PARP blockade.

Ibrahim et al. Page 6

Cancer Discov. Author manuscript; available in PMC 2016 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The magnitude of BRCA1/2 downregulation following PI3K blockade that is needed for 

cancer cells to acquire sensitivity to PARP inhibitors remains to be determined. Single allelic 

mutation of BRCA1 is sufficient for the induction of HR deficiency (36), suggesting that 

changes in (and not only complete loss) in BRCA1 or BRCA2 expression could act 

synergistically with PARP inhibition in abolishing tumor growth.

In summary, we show that PI3K inhibition in TNBCs results in BRCA downregulation, 

activation of PARP, and ultimately sensitization to PARP inhibition. Importantly, BRCA1/2 

downregulation following PI3K inhibition seems to be a conditio sine qua non to achieve 

strong antitumor activity when a PARP inhibitor is combined in BRCA -wild-type TNBCs. 

Our findings provide the rationale to investigate the clinical efficacy of dual PARP and PI3K 

inhibition in TNBCs, an approach that could expand the fraction of patients who may benefit 

from PARP inhibitors.

METHODS

Cell Culture and Inhibitors

MDA-MB-468, MDA-MB-231, HCC70, HCC1143, and BT20 cells were obtained from the 

American Type Culture Collection (ATCC). Cells were tested and authenticated by ATCC 

(DNA fingerprinting, karyotyping, and morphology study) and additionally by Western blot 

and Mass Array mutational analysis in our laboratory. MDA-MB-468 cells were maintained 

in RPMI-1640 media supplemented with 10% FBS. MDA-MB-231 cells were maintained in 

ATCC-formulated Eagle’s Minimum Essential Medium with 10% FBS. BT20 cells were 

maintained in RPMI-1640, 10% FBS, supplemented with basic minimal essential amino 

acids (Sigma), MEM Nonessential Amino Acids (Sigma), and porcine insulin. HCC70 and 

HCC1143 cells were cultured in RPMI-1640 supplemented with 10% FBS. All cell cultures 

were conducted at 37°C in 5% CO2. Low melting temperature seaplaque agarose was 

purchased from Lonza. Matrigel was purchased from Invitrogen. GDC-0941, MK2206, 

AZD6244, and AZD2281 (olaparib) were purchased from Selleck Chemicals. ABT888 was 

purchased from Active Biochem. Plasmids for control and MEK1 were kindly provided by 

Cory Johannessen at the Broad Institute (Boston, MA). The siRNAs against human BRCA1, 
PIK3CA, PIK3CB and nontargeting control #3 are ON-TARGET-plus Smartpool siRNAs 

from Dharmacon Thermal Scientific. Lipofectamine RNAiMAX Transfection Reagent was 

purchased from Life Technologies. siRNA for control and ETS1 were generated using 

Invitrogen siRNA sequence generator and purchased from Sigma. pTRIPZ ETS1 shRNA 

lentiviral (5 clones—RHS4740-NM_005238) doxycycline-regulated vector (shRNA-ETS1) 

was purchased from OpenBiosystems.

Flow Cytometry for γH2AX

Twenty-four hours after transfection with 50 nmol/L siRNA and RNAiMAX transfection 

reagent according to manufacturer’s protocol, cells were treated with PARP inhibitor or 

vehicle control for 48 hours. Cells were then trypsinized into single-cell suspension and 

fixed with 1% ice-cold paraformaldehyde solution for 15 minutes, followed by incubation 

with 70% ethanol at −20°C overnight. Cells were permeabilized with bovine serum albumin 

(BSA)–T–PBS (1% BSA and 0.2% Triton X-100 in PBS) and incubated with γH2AX 
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antibody (BD Pharmingen, Alexa Fluor 488 Mouse anti-H2AX, pS139) at 4°C overnight. 

Cells were then washed, resuspended in propidium iodide (PI) staining solution, and run on 

FACSCalibur System (BD Biosciences). Data were analyzed with FlowJo (Tree Star, Inc.).

Cell Viability Assay

Eighteen hours after transfection with the indicated siRNAs, cells were trypsinized and 

plated in 96-well plates in triplicates. Six hours later, various concentrations of olaparib or 

ABT888 were added. After growing for 7 days, cell viability was assessed by Cell Titer-Glo 

(Promega).

Clonogenic Assay

Eighteen hours after transfection with the indicated siRNAs, cells were trypsinized and 

plated in 6-well plates at clonal density in triplicates. Six hours later, various concentrations 

of olaparib or ABT888 were added. Medium was refreshed every 4 days. After growing 14 

to 18 days, cell colonies were stained with methylene blue and counted by Labworks 

imaging software (UVP).

Anchorage-Dependent and -Independent Growth in 3-Dimensional Culture

A 1% seaplaque agarose media mixture was solidified in 24-well plates. A cell mixture of 

0.4% agarose in media and 5,000 cells was plated on top of the 1% agarose layer. After 24 

hours, cells were treated with inhibitors as indicated and media containing inhibitors were 

changed once per week. Images were taken at a ×10 objective.

Three-dimensional (3D) anchorage culture of breast cancer cells was conducted in 100% 

Matrigel. Briefly, polyhema-coated 96-well plates were coated with 25 μL of Matrigel, 

centrifuged, and allowed to gel at 37°C. Five thousand cells were plated on top in media 

containing 2% Matrigel. After 3D structures were formed (3 days), cells were treated as 

indicated for 7 days. Phase-contrast microscopy was used to image 3D structures.

Generation of ETS1 shRNA-Expressing MDA-MB-231

Lentiviral pTRIPZ was generated according to manufacturer’s protocol, and target MDA-

MB-231 cells were infected with a pool of 5 ETS1 shRNA viral constructs. Cells were 

puromycin selected for 2 weeks and then treated with or without doxycycline (20 ng/mL) for 

4 days.

Western Blots

Tumor samples were homogenized in ice-cold lysis buffer [Tris-HCl, pH 7.8, 20 mmol/L; 

NaCl, 137 mmol/L; EDTA, pH 8.0, 2 mmol/L; NP40 1%, glycerol 10%; supplemented with 

NaF, 10 mmol/L; leupeptin, 10 μg/mL; Na2 VO4, 200 μmol/L; 

phenylmethylsulfonylfluoride, 5 mmol/L; and Aprotinin (Sigma-Aldrich)]. Cell lines were 

also collected in ice-cold lysis buffer. Lysates were cleared by centrifugation at 13,000 rpm 

for 10 minutes at 4°C, and supernatants were removed and assayed for protein concentration 

using the Pierce BCA Protein Assay Kit (Thermo Scientific). Thirty micrograms of total 

lysates were resolved by SDS-PAGE and electrophoretically transferred to nitrocellulose 

membranes. Membranes were hybridized with the following primary antibodies: phospho-
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Akt (pAkt-Ser473), phospho-Akt (pAkt-Thr308), phospho-S6 (pS6-Ser240/244), phospho-

ERK (pERK-Thr202/Tyr204), and total ERK (CST); BRCA1, BRCA2, and PAR (Abcam), 

and phospho-ETS1 (pETS1-Thr38; Invitrogen) in 1% nonfat dry milk. Mouse and rabbit 

horseradish peroxidase (HRP)–conjugated secondary antibodies (Amersham Biosciences) 

and chicken-HRP (Abcam) were used at 1:2,000 in TBS-T/1% nonfat dry milk. Protein–

antibody complexes were detected by chemiluminescence with the Immobilon Western HRP 

Substrate and images were captured with a Fujifilm LASS-3000 camera system.

Quantitative Real-Time PCR

qRT-PCR was carried out using TaqMan probes from Applied Biosystems, according to the 

manufacturer’s recommendations. Reactions were carried out in an ABI 7000 sequence 

detector (Perkin Elmer) and results were expressed as fold change calculated by the ΔCt 

method relative to the control sample. The ribosomal subunit 18S was used as an internal 

normalization control.

RNA Expression Microarray Analysis

Tumor RNA was extracted by RNeasy Mini Kit (Qiagen) according to manufacturer’s 

instructions, and 100 ng were hybridized onto Affymetrix HuGene microarrays. Data were 

analyzed as previously described (37).

Establishment of Patient-Derived Tumor Grafts in Nude Mice

Patient consent for tumor use in animals was obtained under a protocol approved by the Vall 

d’Hebron Hospital (Barcelona, Spain) Clinical Investigation Ethical Committee and Animal 

Use Committee. Tumors were subcutaneously implanted in 6-week-old female 

HsdCpb:NMRI-Foxn1nu mice (Harlan Laboratories). Animals were supplemented with 1 

μmol/L estradiol (Sigma) in the drinking water. After tumor graft growth, tumor tissue was 

re-implanted into recipient mice, which were randomized upon implant growth.

In Vivo Treatment Study

Patient-derived tumor grafts: Animals bearing patient-derived tumor grafts were randomized 

in groups of 6 to 8 mice per group when tumor volumes reached 100 to 200 mm3. Animals 

were treated by oral gavage with NVP-BKM120 every 6 days (dissolved in NMP-PEG) or 

AZD6244 (dissolved in methylcellulose/Tween). Olaparib was resuspended for 

intraperitoneal administration in 10% Captisol. Tumor grafts were measured with calipers, 

and tumor volumes were determined using the formula: (length × width2) × (π/6). At the 

end of the experiment, animals were sacrificed by CO2 inhalation. Tumor volumes are 

plotted as mean ± SE.

Immunohistochemistry and Immunofluorescence

Tumor specimens and tumor grafts were fixed immediately after biopsy or excision in a 10% 

buffered formalin solution for a maximum of 24 hours at room temperature before being 

dehydrated and paraffin embedded under vacuum conditions. For tumor grafts, tissue 

microarrays (TMA) were constructed including triplicate cores from each graft. TMA slides 

underwent deparaffinization and antigen retrieval using PT Link system (Dako) following 
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manufacturers’ instructions. Antibodies against the following targets were from Dako: 

estrogen receptor (ER; 1:50), progesterone receptor (PR; prediluted), HER2 (prediluted), 

and PTEN (1:100) from CST. Immunohistochemical staining was conducted as follows: 4-

μm sections from formalin-fixed and paraffin-embedded material were deparaffinized and 

hydrated. Antigen retrieval was conducted using a T/T Mega microwave system following 

manufacturer’s instructions and Dako reagents. After peroxide blocking, slides were 

incubated with primary antibody, secondary antibody, and finally developed with freshly 

prepared 0.05% 3,3′-diaminobenzidine and counterstained with hematoxylin. Positive and 

negative controls were run along with the tested slides per each marker.

Immunofluoresence analysis of γH2AX in MDA-MB-468 cells was conducted on cells 

seeded onto coated cover slips and then transfected 24 hours later with control siRNA, 

BRCA1 siRNA, or PIK3CA siRNA. Either vehicle control or 1 μmol/L olaparib was added 

to the medium 24 hours after transfection. Two days after drug treatment, cells were fixed 

with 3% formaldehyde, permeabilized with 0.1% Triton X-100, and blocked with 10% FBS-

containing PBS medium for 1 hour. Subsequently, cells were incubated with γH2AX 

antibody (BD Pharmingen, Alexa Fluor 488 Mouse anti-H2AX, pS139; 1:1,000), washed, 

counter-stained by Hoechst 33342 to visualize the nuclei, and mounted for 

immunofluorescence analysis. Ten fields per sample were quantified with a threshold of 10 

foci or more being considered positive.

Immunofluorescence analysis of γH2AX (Millipore, 1:100) in tumor samples was 

conducted on formalin-fixed, paraffin-embedded TMAs. After deparaffinization, antigen 

retrieval was conducted by incubation in 10 mmol/L citrate buffer, pH 6.0 (Dako), in a 

heated (97°C) water bath for 40 minutes. Nonspecific binding was blocked by immersing the 

sections in a TBS/5% BSA solution for 10 minutes. Sections were incubated with a mouse 

monoclonal antibody at a dilution of 1:100 for 60 minutes. Anti-mouse Alexa Fluor 568 goat 

anti-mouse IgG (Molecular Probes) was diluted 1:700 for 30 minutes. Sections were 

counterstained with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, Vysis). All 

incubations were conducted at room temperature. Images were acquired using a confocal 

microscope and quantified by a pathologist blinded to the identity of the samples.

Statistical Analysis

One-way ANOVA with Bonferroni post-test was done using Graph-Pad Prism (GraphPad 

Software). Error bars represent the SE. All experiments were repeated at least 3 times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BRCA downregulation and γH2AX staining following PI3K inhibition in vitro. A, 
fluorescence-activated cell-sorting (FACS) analysis showing staining of γH2AX during the 

3 phases of the cell cycle (G1, S, G2) in MDA-MB-468 cells transfected with control, 

BRCA1, or PIK3CA siRNAs and treated with either dimethyl sulfoxide (DMSO) or 1 

μmol/L olaparib. B, immunofluorescence of γH2AX in MDA-MB-468 cells transfected with 

control, BRCA1, or PIK3CA siRNAs and treated with either DMSO or 1 μmol/L of 

olaparib. Percentages of positive nuclei (10 foci or more per nucleus being considered 
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positive) from 10 fields per sample are indicated. C, Western blot analysis of cell lysates (7 

days posttransfection) from MDA-MB-468 cells transfected with control or PIK3CA 
siRNAs using the indicated antibodies. Tubulin was used as loading control. D, Western blot 

analysis of lysates from MDA-MB-468 treated with BKM120 (750 nmol/L) for 7 days using 

the indicated antibodies. Total ERK (tERK) was used as a loading control. E, quantitative 

real-time PCR (qRT-PCR) measuring both BRCA1 and BRCA2 mRNA levels in MDA-

MB-468 treated with BKM120. Measurements were normalized to 18S mRNA levels and 

expressed as fold change compared with controls (log2 scale). Data are shown as mean ± SE 

of 3 independent replicates for each condition.
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Figure 2. 
Combined PI3K and PARP suppression in vitro. A, viability (assayed by Cell Titer-Glo) of 

MDA-MB-468 cells transfected with control, BRCA1, or PIK3CA siRNAs and treated with 

either dimethyl sulfoxide (DMSO) or olaparib for 7 days. IC50 values were calculated using 

the GraphPad Prism program. B, MDA-MB-468 cells plated in anchorage-independent 

conditions treated with BKM-120 (750 nmol/L), olaparib (4 μmol/L), or the combination for 

45 days, with weekly media changes. Cell colonies were stained with crystal violet. C, 
MDA-MB-231, HCC1143, and HCC70 cells plated in anchorage-dependent conditions 
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treated with BKM-120 (750 nmol/L), olaparib (4 μmol/L), GDC-0941 (500 nmol/L), or the 

combination for 7 days. Magnification, ×10.
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Figure 3. 
γH2AX staining and BRCA downregulation following PI3K inhibition in vivo. A, 
representative immunofluorescence staining for γH2AX (red) comparing placebo versus 

BKM120-treated (27.5 mg/kg) TNBC xenografts. Nuclei are stained with DAPI (blue). 

Quantifications of γH2AX staining are from 6 different tumors for each condition. *, P < 

0.001. Magnification, ×20. B, qRT-PCR measuring both BRCA1 and BRCA2 mRNA levels 

of patient-derived TNBC1 and TNBC2 treated with BKM120. Measurements were 

normalized to 18S mRNA levels and expressed as fold change compared with controls (log2 
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scale). Data are shown as mean ± SE of 3 independent replicates for each condition. *, P < 

0.001. C, Western blot analysis of patient-derived xenografts of 2 independent tumors from 

different mice treated for 21 days with vehicle or BKM120 (27.5 mg/kg) using the indicated 

antibodies. Total ERK (tERK) is used as loading control.
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Figure 4. 
Combined PI3K and PARP suppression in vivo. Tumor growth of TNBC1, TNBC2, and 

TNBC3 xenografts treated with vehicle control, BKM120 (27.5 mg/kg), olaparib (Olap; 50 

mg/kg), or the combination of both agents. Relative tumor volumes are displayed as mean ± 

SE of a minimum of 6 tumors per arm. *, P < 0.001 combination versus BKM120 arm.
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Figure 5. 
ERK-dependent BRCA downregulation. A, Western blot analysis of protein lysates from 

MDA-MB-468 cells constitutively overexpressing control or MEK1 plasmids and treated 

with the MEK inhibitor AZD6244 (500 nmol/L) for 4 days using the indicated antibodies. 

Total ERK (tERK) is used as loading control. B, qRT-PCR measuring both BRCA1 and 

BRCA2 mRNA levels in MDA-MB-468-MEK1 cells treated with AZD6244. Measurements 

were normalized to 18S mRNA levels and expressed as fold change compared to controls 

(log2 scale). Data are shown as mean ± SE of 3 independent replicates for each condition. C, 
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Western blot analysis of protein lysates from MDA-MB-468 cells treated with BKM120 

(750 nmol/L), AZD6244 (500 nmol/L), or the combination of both for 4 days using the 

indicated antibodies. Total ERK (tERK) is used as loading control. D, qRT-PCR measuring 

both BRCA1 and BRCA2 mRNA levels in MDA-MB-468 cells treated with BKM120 and 

AZD6244. Measurements were normalized to 18S mRNA levels and expressed as fold 

change compared with controls (log2 scale). Data are shown as mean ± SE of 3 independent 

replicates for each condition. E, Western blot analysis of the indicated proteins in 2 

independent TNBC1 tumors treated for 4 days with BKM120 (50 mg/kg), AZD6244 (10 

mg/kg), or the combination of both. Total ERK (tERK) is used as loading control. F, qRT-

PCR measuring both BRCA1 and BRCA2 mRNA levels in tumor grafts. Measurements 

were normalized to 18S mRNA levels and expressed as fold change compared with controls 

(log2 scale). Data are shown as mean ± SE of 3 tumors for each condition.
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Figure 6. 
ETS1 knockdown and resistance to the combination of BKM120 and olaparib. A, Western 

blot analysis of protein lysates from MDA-MB-231 shRNA-ETS1–infected cells treated 

with doxycycline (20 ng/mL) for 4 days using the indicated antibodies. Total ERK (tERK) is 

used as loading control. B, qRT-PCR measuring both BRCA1 and BRCA2 mRNA levels in 

MDA-MB-231-shETS1 cells treated with doxycycline. Measurements were normalized to 

18S mRNA levels and expressed as fold change compared with controls (log2 scale). Data 

are shown as mean ± SE of 3 independent replicates for each condition. C, Western blot 

analysis of protein lysates from BT20 shRNA-ETS1–infected cells treated with doxycycline 

(20 ng/mL) for 4 days using the indicated antibodies. Total ERK (tERK) is used as loading 

control. D, qRT-PCR measuring both BRCA1 and BRCA2 mRNA levels in BT20-shETS1 
cells treated with doxycycline. E, MDA-MB-231-shETS1 cells plated in anchorage-

dependent conditions were treated with/without doxycycline (20 ng/mL) and BKM-120 (750 

nmol/L), olaparib (Olap; 4 μmol/L), GDC-0941 (500 nmol/L), or the combination for 14 

days. Magnification, ×10.
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Table 1
Characterization of TNBC patient–derived tumor xenografts

Sample ID Source
PTEN IHC
(H-score)

PIK3CA status
(MassArray)

BRCA status
(Sanger) PAM50

TNBC1 Metastatic 0 H1047R Wild-type Basal-like

TNBC2 Metastatic 0 Wild-type Wild-type Basal-like/claudin-low
a

TNBC3 Primary 0 Wild-type Wild-type Basal-like

NOTE: Expression of PTEN and PIK3CA or BRCA1/2 mutational statuses of 3 tumor grafts derived from either primary or metastatic lesions of 
different patients with TNBCs. A minimum of 3 independent samples were used for PTEN quantification by immunohistochemistry. Molecular 
subtype analysis was conducted using PAM50 molecular analysis of Affymetrix microarrays.

Abbreviation: IHC, immunohistochemistry.

a
Low estrogen receptor expression by IHC.
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