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A Zero-Dimensional Model
and Protocol for Simulating
Patient-Specific Pulmonary
Hemodynamics From Limited
Clinical Data
In pulmonary hypertension (PH) diagnosis and management, many useful functional
markers have been proposed that are unfeasible for clinical implementation. For exam-
ple, assessing right ventricular (RV) contractile response to a gradual increase in pulmo-
nary arterial (PA) impedance requires simultaneously recording RV pressure and
volume, and under different afterload/preload conditions. In addition to clinical applica-
tions, many research projects are hampered by limited retrospective clinical data and
could greatly benefit from simulations that extrapolate unavailable hemodynamics. The
objective of this study was to develop and validate a 0D computational model, along with
a numerical implementation protocol, of the RV–PA axis. Model results are qualitatively
compared with published clinical data and quantitatively validated against right heart
catheterization (RHC) for 115 pediatric PH patients. The RV–PA circuit is represented
using a general elastance function for the RV and a three-element Windkessel initial
value problem for the PA. The circuit mathematically sits between two reservoirs of con-
stant pressure, which represent the right and left atriums. We compared Pmax, Pmin,
mPAP, cardiac output (CO), and stroke volume (SV) between the model and RHC. The
model predicted between 96% and 98% of the variability in pressure and 98–99% in vol-
umetric characteristics (CO and SV). However, Bland Altman plots showed the model to
have a consistent bias for most pressure and volumetric parameters, and differences
between model and RHC to have considerable error. Future studies will address this
issue and compare specific waveforms, but these initial results are extremely promising
as preliminary proof of concept of the modeling approach. [DOI: 10.1115/1.4034830]

Introduction

Pulmonary hypertension (PH) is a degenerative disease involv-
ing a gradual breakdown of the complex cardiopulmonary biome-
chanical system. For example, in advanced disease, the right
ventricle (RV) becomes unable to increase contractility to accom-
modate an increase in afterload, which is commonly referred to as
decoupling [1–3]. Reliable 0D models of the cardiopulmonary
complex can be used for estimating vascular/ventricular pheno-
types [4–6], modeling the effect of therapy, and understanding the
contribution of each component in a complex system.

The Use of 0D Models in Vascular Phenotyping. The sys-
temic and pulmonary arteries (PA) have been described by differ-
ent variations of the Windkessel model, where estimating
parameters from hemodynamic data [7] have been shown to dif-
ferentiate between healthy and PH patients [8]. In the systemic
vasculature, the Windkessel model has predicted the impedance

curve [9], revealing invaluable information about ventricular
work [10] and the reactive/resistive components of afterload
[11,12]. For research purposes, these models have also been used
to investigate normal hemodynamic pressure relations in
the RV–PA axis [6] and extrapolate flow from pressure
measurements [4].

Previous work has also focused on validating the predictive
nature of 0D models. Considering the fluid–structure interaction
within a compliant vascular bed and highly complex flow patterns
in the proximal vasculature [13–15], the three-element Windkes-
sel has been shown to agree with animal data [15] and validated in
in vitro experiments [16] relatively well.

Modeling the RV–PA Complex. Combining the Windkessel
vasculature model with a mathematical representation of the ven-
tricle (an elastance function [17]) offers a simulation of the entire
RV–PA complex and can be used to estimate critical prognostics
(e.g., contractility [18], vascular–ventricular coupling [19]). Ela-
stance functions have been shown to predict pressure–volume
loops [5], and can be estimated from patient-specific min/max
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ventricular elastance or pressure from both ventricles [17]. In this
study, the overall objective was to develop and provide prelimi-
nary validations for a reliable 0D model of the RV–PA complex,
which utilizes the limited patient data collected during RHC. To
our knowledge, we are presenting a novel implementation proto-
col and are the first to validate model predictions against right
heart catheter (RHC) measurements in a large pediatric cohort.

Methods

Hundred and fifteen RHC datasets (59:56 boys:girls;
age¼ 10.4 6 5.7 yr; body surface area (BSA)¼ 1.15 6 0.47 m2,

weight¼ 37.3 6 22.2 kg, mean 6 standard deviation reported) col-
lected as Standard of Care at Children’s Hospital Colorado were
retrospectively analyzed for pediatric patients admitted with PH.
RHC pressure measurements were made using standard right heart
catheterization protocol, with a six-French Swan-Ganz catheter at
room air conditions. Cardiac output (CO) was estimated using a
thermodilution catheter. 110/115 patients had a recorded WHO
functional class assessment during catheterization. Within those
patients, functional class was distributed as: 32 WHO I; 45 WHO
II; 27 WHO III; 6 WHO IV.

The Circuit Model and Implementation. The 0D circuit
model representing the RV–PA axis consists of the RV–PA com-
plex positioned between two constant pressure reservoirs, where
right atrial pressure (Pa) and pulmonary capillary wedge pressure
(PCWP) are essentially the right and left atrial pressures (see Fig.
1), respectively. Right atrial pressure is typically recorded during
RHC and left atrial pressure is normally estimated as the PCWP
[19], which is measuring downstream of an inflated balloon in the
proximal PA.

The protocol described in this manuscript includes (1) parame-
ters used as model input; (2) parameters computed by the model;
(3) variables not directly used in the model, but are eliminated
during the derivation; and (4) preset error thresholds used during
iterative searches. These parameters, and their origin as input vari-
ables, are cataloged in the Nomenclature.

Governing Equations. The circuit (see Fig. 1) is mathemati-
cally represented by five governing equations: Eq. (1) computes
RV pressure (PRV) as a function of instantaneous ventricular ela-
stance (ERV, explained in RV elastance function), volume (VRV),

Fig. 1 Physical model with circuit diagram of the simulated
RV–PA axis. In parts of this manuscript, R 5 PVR 2 Zc.

Fig. 2 Numerical protocol for simulating RV–PA hemodynamics. EDV 5end diastolic vol-
ume; EDPVR 5 end diastolic pressure–volume relationship.
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and dead-volume (V0). Instantaneous (at time t¼ t0) volume (Eq.
(2)) is computed as the integral of flow entering and exiting the
RV, added to the end-diastolic volume (EDV), and is made non-
linear by two diodes acting as the tricuspid and pulmonic valves.
The diodes govern the flow entering and exiting the RV: QinðtÞ
and QoutðtÞ, based on conditions in Eqs. (3) and (4), respectively.
In Eq. (3), Pa represents right atrial pressure that is measured
directly from RHC. The dead volume is an iteratively changing
variable and is discussed further in the RV elastance function and
The Numerical Protocol. The PA pressure (PPAÞ is governed by
the initial value problem in Eq. (5), and is also based on the condi-
tion specified in Eq. (4), therefore being nonlinearly coupled to
the pressure in the RV

PRVðtÞ ¼ ERV ðtÞ � ½VRVðtÞ � V0� (1)

VRVðt0Þ ¼ EDVþ
ðt0

0

ðQin � QoutÞ@t (2)

Qin ¼
Pa � PRV

RTV

; PRV < Pa

0; PRV � Pa

8<
: (3)

Qout ¼
PRV � PPA

Zc
; PPA < PRV

0; PPA � PRV

8<
: (4)

dPPA tð Þ
dt

¼ Qout tð Þ
C
� PPA tð Þ � PCWP

PVR� Zcð ÞC (5)

Equation (5) is based on the three-element Windkessel model.
The pulmonary vascular bed consists of three components: (1)
characteristic impedance (Zc), which is treated as a resistor; (2)
the distal pulmonary resistance (R¼ PVR� Zc), where PVR is the
measured pulmonary vascular resistance; and (3) the pulmonary
vascular compliance (C). PVR and C are computed directly from
RHC data, but the method for estimating Zc is described in a later
subsection: Derivation of the Estimate of Characteristic
Impedance (Zc).

RV Elastance Function. The pressure–volume relationship in
the RV is represented with a time-varying elastance function (Eq.
(1)), which offers an analytical expression that relates ventricular
pressure to ventricular volume [20]. The specific function chosen
to represent this relationship is not very important as long as it
roughly resembles experimental curves and can be scaled in
amplitude and duration to peak elastance [21]
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In Eq. (6), a¼ 0.3 and b¼ 2 are coefficients dictating the sys-
tolic and isovolumetric phases in the cardiac cycle, which were
not available for each patient. Therefore, the model considers
average values previously used in literature [20]. Patient specific-
ity is included into the end-systolic/end-diastolic ventricular com-
pliance variables, Ces

RV (Eq. (7)) and Ced
RV (Eq. (8b)), respectively.

It is not uncommon to assume a linear RV end-systolic
pressure–volume relationship (ESPVR) [5]. The end-systolic com-
pliance (Eq. (7)) is estimated as the ratio of RV end-systolic vol-
ume (ESV) minus V0, to RV end-systolic pressure

Ces
RV ¼

ESV� V0

PRV sys

(7)

RV end-systolic pressure (PRV sys) was assumed to be equal to
the PA end-systolic pressure, based on visual interpretation of
simultaneous RV and PA pressure measurement [22]. From the
measured waveforms in Ref. [22], it was evident that PA and RV
pressure waveforms started to overlap at end-diastole (coinciding
with maximum RV pressure derivative) at the onset of the pul-
monic valve opening. From those tracings, it was clear that the
overlap lasts until the maximum pressure is reached in both cham-
bers, followed by elevated pressure in the PA at the onset of the
following diastole, and thus causing the pulmonic valve to close.

The RV end-diastolic pressure–volume relationship (EDPVR)
is not linear. In fact, the relationship between end-diastolic pres-
sure and end-diastolic volume normally takes on the form of a
power curve. This relationship is estimated according to Eq. (8a),

where a unique n is found for each patient based on EDV, Pmin,
and V0. Note that V0 is iteratively adjusted for each patient, so a
new n is found at each iteration (see Fig. 2)

EDPVR ¼ nðVRV � V0Þnþ1
(8a)

In Eq. (8a), n was computed using Newton’s method, with
EDV¼ 128.4(BSA1.34) estimated from body surface area (BSA)
[23], where the original equation was doubled to move the
pressure–volume loop away from the origin. There was no physio-
logical justification for moving the P–V loop, but this was neces-
sary to ensure that the end-systolic volume ([ESV¼EDV� SV]
used in Eq. (7)) always remains positive. As a qualitative check, it
was confirmed that the value of the multiplication constant had
little influence on final correlations between measured and
computed hemodynamics presented in this manuscript.

Once n was computed from Eq. (8a), the end-diastolic ventricu-
lar compliance was found by taking the derivative of the EDPVR
at the EDV (Eq. (8b))

Ced
RV ¼

1

d EDPVRð Þ
d EDVð Þ

¼ EDV� V0ð Þ�n

n2 þ n
� � (8b)

Derivation of the Estimate of Characteristic Impedance
(Zc). Normally, the characteristic impedance can be calculated
from a Fourier decomposition of the transient pressure and flow
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waveforms in the main pulmonary artery (MPA), but these wave-
forms are not usually available in clinical settings and are almost
never available from retrospective clinical data. In this study, the
characteristic impedance was computed by combining equations for
pulse wave velocity (c) with an estimate of PA distensibility (D).

The computational protocol for computing and deriving the
characteristic impedance ðZcÞ incorporated into the model
includes:

� Equation (9) is used to approximate PA distensibility [2]:
(D¼ (1/A)(@A/@P), where A is the PA cross-sectional area).
Equation (9) is solved using Newton’s method, while assum-
ing that the zero-pressure PVR: PVR0 ¼ 50PVR

mPAP ¼
1þ D � PCWPð Þ5 þ 5D � PVR0 � CO

h i1=5

� 1

D
(9)

The PVR0/PVR¼ 50 ratio was based on a typical deflated/inflated
PA diameter ratio that was obtained from Ref. [24] and normal-
ized to our pediatric population. Specifically, this multiplication
coefficient was estimated from Poiseuille Law

PVR

PVR0
¼ udeflated

uinflated

� �4

where u is the MPA diameter.
� In order to compute the patient-specific Zc, we start by rec-

ognizing it as a ratio of proximal arterial stiffness to fluid
inertia (Eq. (10)) [2]

Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qEh

2p2Ra5

r
(10)

where q is the blood density (1.06 g/mL), E is the proximal arte-
rial elastic modulus, h is the arterial wall thickness, and Ra is the
lumen radius, estimated in proportion with patient age
(Ra¼ 0.368ageþ 5.79—visually extrapolated from figure in
Ref. [25], where age is in years). The Moens–Korteweg equation
ðc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=2qRa

p
Þ is combined with Eq. (10) to rewrite Zc as a

function of the pulse wave velocity (c) [26]

Zc ¼
qc

pRa2
(11)

� Combining Eq. (11) with the Bramwell–Hill relationship
(Eq. (12)), we arrive at Eq. (13) for the characteristic

impedance. Equation (13) assumes the vessel to have a circu-
lar cross section, where A¼pRa2

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A

q
dA

dP

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
1

qD

s
(12)

Zc ¼
q

pRa2

ffiffiffiffiffiffiffiffiffiffiffi
1

qD

s
(13)

The Numerical Protocol. Numerical integration (Dt¼T/1000,
based on convergence in time) of Eq. (5) is carried out using
fourth-order Runge–Kutta method to compute PA pressure for a
total of 20 cardiac cycles. This in turn impacts the state (open ver-
sus close) of the pulmonic valve (Eq. (4)), ventricular volume
(Eq. (2)), and therefore ventricular pressure (Eq. (1)). Computed
model pressure and flow results are taken from the waveform gen-
erated in the 20th cycle. In postprocessing, the difference between
the maximum and minimum values of VRVðtÞ offered the stroke
volume (SV), and the time-integral of the outflow was used to
compute the cardiac output (CO). The RV end-systolic pressure
computed by repeating the simulation for patient-specific PVR,
4*PVR, and 8*PVR is fit using least squares to compute a new
ESPVR and resulting V0. This is described below in greater detail.

Figure 2 shows the computational algorithm carried out for
each patient, which iteratively finds three model input variables
ðV0;; n; RTVÞ. The protocol starts with estimating the characteris-
tic impedance from Eq. (13). Following, we make a guess for a
starting resistance across the tricuspid valve (RTV) and V0. Based
on the initial guess for V0, n is computed from Eq. (8a). Then a
loop is carried out to converge on a value for RTV, which sits
inside of a loop that converges on a value for V0. In the innermost
loop (see Fig. 2), RTV is computed using ohms law between the
right atrium (RA) and RV pressure gradient at end diastole.
Changes in the RV end diastolic pressure are used to correct RTV

at each iteration, where the error (eR ¼ jRold
TV � Rnew

TV j) dictates con-
vergence (eR < 0:01Þ. Once a converged RTV is computed (for the
current guess of V0 and n), the simulation is repeated under two
challenge conditions (4*PVR and 8*PVR) to produce three
pressure–volume loops and estimate a new ESPVR and resulting
V0. With a new V0, the algorithm computes a new n (leading to a
new EDPVR) and performs the aforementioned protocol for find-

ing RTV and V0 all over again. This process is repeated until eV ¼

Fig. 3 (a) Typical RV and PA pressure waveforms computed using RV–PA axis model. (b)
and (c) Ventricular volume and ventricular pressure–volume loop, respectively. (d) Pulmo-
nary vascular impedance in the frequency domain, computed using simulated PA pressure
and flow waveforms as outlined in Ref. [2]. Note: PPA and PRV are pulmonary and RV pres-
sure, respectively.

121001-4 / Vol. 138, DECEMBER 2016 Transactions of the ASME



jVold
0 � Vnew

0 j falls below 0.1, where the superscript indicates the
computed value in the current and previous iterations.

RTV generally converged in under ten iterations for all patients
without exceptions. The iterative protocol for finding V0 required
manual intervention for 5 out of 115 patients. It is not immedi-
ately clear why those patients could not reach numerical conver-
gence without relaxation of the iterative guess for V0. Overall, the

convergence properties of the proposed algorithm were favorable,
but more work is needed to determine the complications presented
for these five patients.

Results

Figure 3 shows typical pressure waveforms (3(a)), RV volume
waveform (3(b)); pressure-volume loop (3(c)); and pulmonary

Fig. 5 (Left) cardiac output (CO) computed by integrating the flow waveform simulated with the RV–PA model, compared
with CO measured using a thermodilution catheter. (Right) stroke volume (SV) computed according the difference between
the maximum and minimum volume measured by implementing the elastance function, compared with SV 5 CO/HR. The
slope (m) and y-intercept (b) are coefficients for the fitted line: CVSIM 5 m � RHC1b. The bottom rows show Bland Altman
plots, where the middle and outer lines represent the consistent bias and 1.96SD, respectively.

Fig. 4 Max (left column), min (middle column), and mean (right column) PA pressure comparison between RV and PA axis
model and measured RHC hemodynamics. In each column, the top row shows a correlation between measured and simu-
lated values. The slope (m) and y-intercept (b) are coefficients for the fitted line: CVSIM 5 m � RHC1b. The bottom rows show
Bland Altman plots, where the middle and outer lines represent the consistent bias and 1.96SD, respectively.

Journal of Biomechanical Engineering DECEMBER 2016, Vol. 138 / 121001-5



vascular impedance (3(d)) computed with the proposed model.
The model generated pressure waveforms qualitatively appeared
to be physiologically realistic for both the ventricle and vascula-
ture. The PPAðtÞ waveform shows a sharp systolic increase with
gradual pressure decay in diastole, but free of wave reflections
that are generally visible in measured data [27,28]. Furthermore,
in agreement with clinical pediatric waveforms, the pressure
decay spans across most of the entire diastolic phase [29,30]. The
PRVðtÞ waveform also shows a sharp increase in systole, with a
concave dip below end-diastolic pressure that quickly normalizes,
which is consistent with a typical physiological RV pressure
waveform [31]. Finally, the impedance curve generated using the
RV–PA model was similar to clinical data with the exception of
oscillations typically seen at higher harmonics [2], which is a
common limitation in 0D models.

Comparing PA Pressures Between RV–PA Model and RHC
Measurements. Typical RHC output records min (Pmin), max
(Pmax), and mean pressure values (mPAP). With no time varying
pressure and flow data available, we compared three points on the
RV–PA model output wave with RHC data: Pmin, Pmax, mPAP
(see Fig. 4). mPAP is computed by integrating over the pressure
waveform, suggesting that the shape of the waveform is relatively
consistent with the true waveform. A least square line was added
to the scatter plots comparing model results versus RHC data. The
RV–PA model predicted between 96% and 98% of the variability
in RHC data. Ideally, a perfect prediction would reveal a slope of
unity of the regression line (m¼ 1) and a y-intercept of zero
(b¼ 0). The regression line for all three measurements is within
10% of the one-to-one slope (m¼ 1), but with a maximum
y-intercept offset (b) of �4.35 mmHg for Pmax.

Bland Altman plots show that the calculation of Pmax has a con-
sistent bias of 7.3 mmHg relative to RHC, but that 95% of the dif-
ferences between simulated and measured Pmax fall within
8.6 mmHg. This is the largest consistent bias and difference for all
three pressure comparisons (Pmax, Pmin, and mPAP).

Comparing RV CO and SV Between the RV–PA Model and
RHC Measurements. The retrospective pediatric PH dataset
used for input and validation of the presented model did not offer
right ventricular pressure or volume data. However, CO was esti-
mated using a thermodilution catheter, providing a measurement
of CO and SV¼CO/HR. Therefore, these measured metrics were
compared against CO and SV computational results (see Fig. 5),
where simulated CO was obtained by integrating the computed
PA flow and the simulated SV was computed directly from the
volume waveform generated using Eq. (2). For both comparisons,
the model predicts at least 98% of the variability within the
patient cohort and the slope error is �10.1%.

Bland Altman plots show that the consistent bias of CO is
0.6 L/min, with 95% of the differences between simulated and
measured CO falling below 0.97 L/min. Large differences tended
to occur at CO values above 5 L/min, suggesting that a typical
error is bounded by approximately 20%. SV calculation reveals a
consistent bias of approximately 6.4 L, with 95% of the differen-
ces falling below 12.4 L.

Discussion

Qualitative Analysis of Model Output. In this retrospective
study, we could not directly validate simulated pressure wave-
forms with clinical data. However, qualitative comparison with
existing literature showed good agreement. The shape of RV
pressure–volume loops are generally changing through the pro-
gression of PH [32,33], which would be difficult to capture in a
0D computational model. Our model shows a relatively short iso-
volumetric contraction region, whereas clinical data show this
region to be similar to the isovolumetric relaxation [32,33] region.
However, the model’s contractile isovolumetric phase increases—

relative to the diastolic isovolumetric regions—under an increased
simulated PVR. Previous studies have shown that a similar circuit
model can predict animal pressure–volume data of the left ventri-
cle, but the ventricular elastance function would require substan-
tially more patient-specific input parameters than was available
for this study [5].

RV–PA Model Validation. A reliable 0D model can be used
to compute impedance, which is a combined measure of resistance
and reactance in pediatric PH [29], oscillatory work, and to gener-
ate pressure–volume curves. While future studies will need to
compare the shape between RHC waveforms and model output,
we have shown that min, max, and mean PA pressure calculations
predict at least 96% of the variability in RHC measured values.
Furthermore, the model predicts at least 98% of the variability in
RHC measured values for volumetric characteristics (CO and
SV).

Ideal linear regression between model and RHC data would
reveal a one-to-one slope with a y-intercept of zero. Comparing
RHC with the RV–PA model, the largest slope for the regression
line was 1.11 for CO, with regression slopes for the remaining
compared parameters being within 10% of 1.0. The y-intercept is
also reflected in the consistent bias of Bland Altman plots. The
largest was seen when computing Pmax, with the majority of large
differences seen in more hypertensive patients.

Overall, the comparison between the RV and PA model and
RHC data is extremely promising, but more work is needed to
minimize the difference between the computed and simulated
pressure/flow metrics. Future studies will focus on this goal, along
with a comparison of the actual waveform.

Comparison With Previous 0D Models. To the best of our
knowledge, this is the first 0D model that mathematically confines
the RV–PA circuit between two patient-specific constant-pressure
reservoirs (represented as two direct-current voltage sources).
Therefore, the pressure within the RV–PA circuit is dictated by
boundary conditions on both sides (pressure in the right and left
atriums), which are measured for each patient during RHC. Fur-
thermore, it presents a novel iterative approach to arrive at
RV–PA hemodynamic measurements that are in good agreement
with RHC data for a large dataset (N¼ 115).

Previous models of the RV–PA axis either made the pulmonary
circulation a closed-loop system [6], in-line with the simulated
systemic circulation [20], or simply as an arterial Windkessel to
identify pulmonary vascular characteristics [7,8]. Many other 0D
models were focused on the systemic circulation [5,34], but none
mathematically confined the model between patient-specific pres-
sure measurements or validated against such a large dataset.

It is important to note that this model is not intended to replace
RHC, but to compliment it by offering additional information
(e.g., RV–PA coupling, waveform data) and forward-simulating
therapeutic response. Bulk hemodynamic models are computa-
tionally efficient, require minimal computational resources, and
do not need the same user expertise as 3D modeling. Furthermore,
they have shown exceptional promise when validated with patient
data.

At this time, it could be too speculative to discuss using 0D
models in the clinic. However, given their low level of complexity
and the need for little computational resource, it is a lot more fea-
sible that they will be clinically utilized before complex 3D mod-
els. Nevertheless, currently they would be better suited to answer
research questions about bulk hemodynamics and biomechanics
in cardiovascular disease.

Additional Model/Study Limitations and Future Work. A
reasonable critique of the current study is the use of model input
parameters for model validation. However, it was not trivial to
arrive at such a strong agreement between measured and simu-
lated hemodynamics for a large dataset. Every parameter in the

121001-6 / Vol. 138, DECEMBER 2016 Transactions of the ASME



0D model has a strong influence on the resulting hemodynamics,
creating a complex multivariable teeter-totter scenario, which
required a relatively complex algorithm with two iterative loops
to finally arrive at simulated hemodynamics that generate the cor-
relations shown for such a large dataset. Furthermore, the overall
purpose of the model was not to estimate hemodynamics that
would already be available during catheterization. The purpose
would be to arrive at a model that offers an opportunity to simu-
late therapeutic intervention and compute metrics that are not
available from catheterization. Therefore, the current agreement
between model and measured hemodynamics, even in light of the
fact that those were used as input, support the general idea that the
model is reliable.

In the current study, the model and implementation algorithm
were validated with limited RHC PA data for general proof of
concept. However, our retrospective dataset did not offer ventricu-
lar characteristics (e.g., pressure, volume). While the model com-
puted stroke volume was in very good agreement with the RHC
measured stroke volume, additional validation is required and
future studies will address this limitation with prospective data
collection/analysis.

A three-element Windkessel model does not account for fluid
inertia and the nature of 0D models do not predict wave propaga-
tion dynamics. Furthermore, with limited data, our approach for
finding Zc assumes proportional mechanics between the distal and
proximal PAs across the entire patient sample. When comparing
the simulated waveforms with patient data, the model did not
reveal a dicrotic notch or impedance oscillations at high frequen-
cies. This effect could be simulated by replacing the three-
element Windkessel circuit representing the PA with a 1D model
of the compliant vasculature [35]. However, implementing a 1D
model requires vascular parameters that are not easily computable
from RHC data and is more computationally expensive. Neverthe-
less, in applications where wave propagation dynamics are of
interest, 1D models would be suitable for the pulmonary
vasculature.

Assuming the RV–PA complex to behave within two constant
pressure reservoirs does a disservice to the pulsatility within the
RA, particularly during the “kick.” If time-varying RA pressure
data are collected, they can be easily implemented into the current
model and improve open/close times for the tricuspid valve, esti-
mate of tricuspid valve resistance, and the pressure generated in
the RV. However, only mean RA pressure is normally recorded
during RHC. Future studies will investigate if a generic atrial
pressure waveform, scaled by the measured mean values, would
improve agreement between model and RHC.

Conclusion

In this study, we propose a novel 0D computational model of
the RV–PA axis, which is capable of simulating vascular/ventricu-
lar hemodynamics and volumetric measurements. Such a model
can be used to estimate ventricular–vascular coupling, generate
pressure/flow waveforms from limited catheterization data, deter-
mine cause and effect between pathophysiological phenomenon
and resulting hemodynamic changes, and to simulate therapeutic
scenarios.

We present an implementation protocol that combines readily
available patient data as model input with an iterative approach to
arrive at an excellent agreement between measured and simulated
hemodynamics. Qualitative comparisons show that the model
reveals physiologically realistic waveforms and pressure–volume
loops, but some physiological waveform traits are missing (e.g.,
wave reflections).

In this study, the model’s ability to generate time-averaged,
minimum, and maximum hemodynamics was validated without
available time-varying data, but time-averaged parameters were
found by integrating the simulated waveform. The presented ini-
tial results were promising, and future studies will compare the
shape of measured and simulated waveforms in more detail.
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Nomenclature

Parameters Used as Model Input

Variables Collected From RHC or During Clinical Observation

BSA ¼ body surface area
CO ¼ cardiac output
HR ¼ heart rate

mPAP ¼ mean PA pressure
Pa ¼ right atrial pressure

Pmax ¼ maximum PA pressure
Pmin ¼ minimum PA pressure

PCWP ¼ pulmonary capillary wedge pressure—assumes to be
left atrial pressure

Variables Estimated From RHC Data, Patient Measurements, and

Demographics

C¼ compliance¼ pulse pressure/SV
D ¼ PA distensibility

ERV ðtÞ ¼ RV elastance versus time—described in RV elastance
function (1/ Crv)—(from Eq. (6))

EDV ¼ RV end-diastolic volume
ESV ¼ RV end-systolic volume¼EDV � SV
PVR ¼ pulmonary vascular resistance¼ (mPAP–PWCP)/CO

R ¼ distal resistance, R¼PVR � Zc

Ra ¼ PA lumen radius
SV ¼ stroke volume¼CO/HR

T ¼ period of a cardiac cycle
Zc ¼ characteristic impedance¼Eq. (13)

Variables Derived From Literature and Assumed Constant

a ¼ systolic coefficient dictating the elastance function
b ¼ isovolumetric coefficient dictating the elastance

function
q ¼ blood density

Variables Computed by Iteratively Changing Until Convergence

(see Fig. 2)

Ced
RV ¼ end-diastolic RV compliance (Eq. (8b)) needed for

computing RV elastance function.
Ces

RV ¼ end-systolic RV compliance (Eq. (7)) needed for com-
puting RV elastance function.

RTV ¼ resistance across tricuspid valve—described in numeri-
cal integration

V0 ¼ RV ventricular volume at zero pressure
n ¼ coefficient dictating the end-diastolic pressure-volume

relationship (EDPVR)

Parameters Computed by the Model

Ees ¼ end-systolic elastance (measure of contractility) com-
puting by simulating a hemodynamic challenge

PPAðtÞ ¼ PA pressure versus time (used to compute model Pmax,
Pmin, mPAP)

PRVðtÞ ¼ RV pressure versus time
PRV dia ¼ RV diastolic pressure
PRV sys ¼ RV systolic pressure

QinðtÞ ¼ flow across the tricuspid valve versus time
QoutðtÞ ¼ flow across the pulmonic valve versus time
VRVðtÞ ¼ RV Volume versus time (used to compute model CO,

SV)
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Variables Not Directly Used in the Model

c ¼ PA pulse wave velocity
E ¼ arterial elastic modulus
h ¼ arterial wall thickness
u ¼ MPA diameter

Preset Error Thresholds

eR ¼ numerical iterative error in computing RTV

eV ¼ numerical iterative error in computing V0
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