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Abstract Physiologically based pharmacokinetic (PBPK) modeling and simulation can be used to
predict the pharmacokinetic behavior of drugs in humans using preclinical data. It can also explore the
effects of various physiologic parameters such as age, ethnicity, or disease status on human
pharmacokinetics, as well as guide dose and dose regiment selection and aid drug–drug interaction risk
assessment. PBPK modeling has developed rapidly in the last decade within both the field of academia
and the pharmaceutical industry, and has become an integral tool in drug discovery and development. In
this mini-review, the concept and methodology of PBPK modeling are briefly introduced. Several case
studies were discussed on how PBPK modeling and simulation can be utilized through various stages of
drug discovery and development. These case studies are from our own work and the literature for better
understanding of the absorption, distribution, metabolism and excretion (ADME) of a drug candidate, and
the applications to increase efficiency, reduce the need for animal studies, and perhaps to replace clinical
trials. The regulatory acceptance and industrial practices around PBPK modeling and simulation is also
discussed.
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1. Introduction

The concept of physiologically based pharmacokinetic (PBPK)
models was first introduced by Teorell in 19371. For several
decades, growing efforts have been made to refine PBPK models
so that they can be applied in drug development2. Thanks to the
advancement in computing power and increasing access to
preclinical data, especially in vitro data, on absorption, distribu-
tion, metabolism and excretion (ADME). PBPK modeling and
simulation currently receives extensive attention during drug
discovery and development3,4, and in submissions for regulatory
filing and reviews5,6. As a unique tool, PBPK models can be used
to estimate the pharmacokinetic (PK) profile of a compound based
on its preclinical ADME data and can be used to assess the
exposure in a target organ after the administration of a drug by
taking into account the rate of absorption and disposition in that
organ, as well as metabolism within that organ if it is applicable.
Based on the PK data generated from one dose schedule, the
PBPK model can be used to evaluate the PK profile of different
dose schedules and/or dose routes. Based on the PK data from one
ethnic population, the PBPK model can be used to predict the PK
profile in different ethnic populations as well as populations of
various age and disease stages. This mini-review describes the
PBPK methodology used in drug discovery and development and
specific examples of its application together with the regulatory
acceptance and industrial common applications.
2. PBPK methodology

PBPK models are made up of compartments corresponding to the
different physiological organs of the body, linked by the circulat-
ing blood system. Each compartment is exactly described by a
tissue volume and blood flow rate that is specific to the species of
interest. Each tissue is defined with assumptions of either
perfusion-rate-limited or permeability-rate-limited. Perfusion-rate-
limited kinetics tends to exist for small lipophilic molecules where
the blood flow to the tissue proved to be the limiting process of the
absorption. Permeability-rate-limited kinetics occurs for more
hydrophilic and larger molecules where the permeability across
the cell membrane becomes the limiting process of absorption7.
Drug is disposed via the exile blood flow after being metabolized
in the organ, if applicable.

A schematic of a PBPK model is shown in Fig. 1. The mass
balance differential equations used in these models have been
described previously8 and follow the principles shown below.
Figure 1 Schematic of a PBPK model.
Non-Eliminating tissues:

VT � dCT=dt¼QT � CA�QT � CVT ð1Þ
where Q is blood flow (L/h), C is concentration (mg/L), V is
volume (L); and T represents tissues, A represents arterial, V
represents venous.

CVT ¼CT= Kp=B:P
� � ð2Þ

where Kp is tissue to plasma partition coefficient of the compound
and B:P is the ratio of blood to plasma.
Eliminating tissues:

VT � dCT=dt¼QT � CA�QT � CVT�CLint � CVuT ð3Þ
where CLint is the intrinsic clearance of the compound (L/h), and u
is unbound.

Different from the conventional PK models, PBPK model is
composed of two main parts—an anatomical “backbone” which
contains species specific physiological parameters that are inde-
pendent of the drug and hence can be applied to any compounds,
and a drug-specific part which consists of the individual drug's
ADME properties applied to the relevant processes within each
tissue compartment. Parameters for incorporating into PBPK
models are either drug-dependent (e.g., binding to blood, fub;
tissue-to-plasma distribution coefficient, KPT; tissue permeability–
surface area product, PST; enzymatic activity, Vmax/Km) or drug-
independent (e.g. blood flows, QT; tissue volumes, VT; tissue
composition). The accuracy of the PBPK prediction of ADME
parameters by the model not only depends on the present knowl-
edge of animal or human physiology, but also on the physio-
chemical and biochemical properties of the test compounds.
3. The key points in PBPK model construction

3.1. Acquisition of drug dependent parameters

PBPK modeling is a bottom-up approach that integrates a large
number of drug specific data, parameters on species physiology
(system data), and a good understanding of all active processes
affecting the pharmacokinetic properties of a drug. System-
dependent parameters (e.g., tissue volume, blood flow, glomerular
filtration rate, amount of microsomal protein/hepatocytes per gram
of liver, plasma protein, enzyme, and transporter abundance) for
human and preclinical species are available in the literature and
have been compiled in the commercial PBPK platforms, including
GastroPlus (www.simulations-plus.com), PKSIM (www.system
sbiology.com/products/pk-sim.html), Simcyp (www.simcyp.com),
ADMEWORKS DDI Simulator (http://www.fqs.pl/chemistry_
materials_life_science/products/ddi_simulator), CLOEPK (http://
www.cyprotex.com/insilico/), and many other modeling software.
For example, PBPK models in humans specify ethnic population
(specific system parameters) account for variability (standard
deviation or range) and the covariation between these parameters
in that ethnic population. Drug dependent parameters include
physicochemical properties (molecular weight, pKa, basic or acidic
nature of the drug), solubility (logD) and permeability, blood cell
and plasma protein binding (e.g. fraction unbound in plasma (fu,p),
blood plasma partitioning [B:P]), transporter contribution to drug
disposition, and in vitro data on the metabolism by hepatic or ex-
hepatic enzymes (e.g., intrinsic clearance (CLint)). A lack of
sufficient in vitro and in vivo data may hamper the use of this
approach. These compound-specific parameters are often deter
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http://www.systemsbiology.com/products/pk-sim.html
http://www.systemsbiology.com/products/pk-sim.html
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http://www.fqs.pl/chemistry_materials_life_science/products/ddi_simulator
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http://www.cyprotex.com/insilico/
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Table 1 Data requirement for building a PBPK model in Simcyps.

Parameter Unit convert to In vitro test system

Molecular weight g/mol Physicochemistry property measurement, less
prefer an in silico prediction

logP Octanol:water partition coefficient
pKa (s) Physicochemistry property measurement, less

prefer to use an in silico prediction
Compound type Base, acid, neutral Based on the chemical structure or pH-

dependent solubility test
pH-dependent solubility mg/mL Measured in buffer with different pH
Plasma protein binding fu In vitro in human plasma (pay attention to

whether compound binds to AGP)
Blood–plasma partitioning B:P In vitro in human blood
Apparent permeability 10�6 cm/s Caco-2 , MDCK
Intrinsic clearance in microsomes, or S9, or
hepatocytes, or rhCYP

mL/min/mg for microsomes and S9,
uL/min/million cells for hepatocytes,
uL/min/pmol for rhCYP

In vitro assay, or use in vivo clearance if
available

Protein concentration in in vitro test mg/mL In vitro assay for intrinsic clearance
In vitro test matrix binding fu Measure the free fraction using the same

protein concentration in the in vitro test
system

Vmax and Km (if study for saturable PK; study
metabolic-mediated DDI as a victim)

pmol/min/mg, mmol/L The same in vitro system where intrinsic
clearance was determined

Percent of enzyme (e.g. CYP) contribution to the
metabolism (study DDI as a victim; study
metabolic-mediated DDI as a perpetrator)

fm In vitro reaction phenotyping

Reversible inhibition, IC50 mmol/L Human liver microsomes or suitable in vitro
system

Mechanism-based CYP inhibition, kinact, KI h–1, mmol/L
CYP Induction, Jmax, EC50 fold induction, mmol/L Human hepatocytes with positive controls in

3 donors

Some transporter data can be incorporated; when clinical data become available, CL, Vss, fa, Ka, etc., can be incorporated to refine the initial model.
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mined using in vitro assays or sometimes in silico models. Table 1
lists the input data required for building a basic PBPK model, in
this case, for Simcyp simulation.
3.2. Combination of “bottom-up” and “middle-out” methods to
create and refine a PBPK model

PBPK modeling typically uses a “bottom-up” approach and is
initially constructed based on preclinical data during the early drug
discovery stage. Compound-specific parameters generated using
in vitro models are used to predict in vivo PK profile in preclinical
species and humans. For example, a “bottom-up” methodology for
the clinical PK profile prediction proposed by Jones et al.9 is
described as following:

) Verification of intravenous disposition prediction in preclinical
species, for example, assessment of most appropriate Kp

prediction methodology taking into account method assump-
tions, assessment of the prediction accuracy and the physico-
chemical properties of the particular compound;

) Verification of oral absorption prediction in preclinical species
over a range of doses to further assess prediction accuracy;

) Simulation of disposition and absorption in humans—using
appropriate CL and Kp prediction methods selected based on the
preclinical verification step. Once preclinical or clinical in vivo
data are available, the mechanistic PBPK models can be further
refined and updated (“middle-out” approach) and applied
prospectively to simulate unstudied scenarios and, when
appropriate, these predictions can be incorporated into regula-
tory submissions, product labels, additional post-approval
studies, and next generation follow-on drugs10.

During this stage, mismatches between simulation and
observation may frequently occur and parameter sensitivity
analysis is critical to identify the inputs that have the most
influence on a simulated profile. The selection of which
parameters to focus upon for the parameter sensitivity analysis
requires a good understanding of the nature of each input data,
as well as how they may impact the simulated profile. It is also
important to have an understanding of how the input data are
generated and the associated errors, and also an awareness of
the reasonable range of input values.
4. Applications of PBPK modeling during drug research and
development

PBPK models are routinely applied from the early discovery stage,
where there is limited data captured for any compound of interest,
to late drug development, where large amounts of data are
available9. PBPK modeling can be categorized into three major
roles, that can be used to inform regulatory communications, that
have impacted clinical development decisions and that promote the
mechanistic understanding of clinical observations11.
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5. Lead optimization or candidate evaluation, a case study

Unlike late development stages where PK data from animal can be
used to refine the PBPK model built on in vitro data, in drug
discovery, these processes mainly rely on the use of physico-
chemical properties, in vitro data, and increasingly in silico data.
This example illustrates the use of a PBPK absorption model
(GastroPlus v. 8.5) in the prediction of human oral bioavailability
from preclinical studies for a candidate compound. YQA-14 is a
novel and selective dopamine D3 receptor antagonist, with the
potential to treat drug addiction. Earlier compounds in its structural
class tend to have poor oral bioavailability in humans due to the
pronounced metabolism from aldehyde oxidase (AO). The aim of
this study was to simulate the clinical pharmacokinetic behavior of
YQA-14 using a PBPK model to assess the likelihood of
developing YQA-14 as a clinical candidate12. YQA-14 is a
lipophilic and basic compound with three pKa values (6.91,
9.30, and 10.91) and a logD7.4 value of 2.15. At pH 6.5, the
solubility of YQA-14 was 0.004 mg/mL. It was stable in human
liver cytosolic fractions (less AO metabolism liability compared to
the previous candidates), and the liver microsomal clearances and
in vivo clearances were moderate in rats, dogs (in vitro and in vivo)
and humans (in vitro only). It also had moderate bioavailability in
preclinical species. For human PK prediction, a “bottom-up” full
PBPK model was first built by inputting the main parameters
obtained from in vitro studies (Table 2). This model was then
validated and modified by in vivo PK profiles of rats and dogs
(Fig. 2). After oral administration, YQA-14 was rapidly absorbed
in preclinical species with a Tmax around 0.5–1 h; this is consistent
with the high permeability obtained from the Caco-2 assessment.
Oral bioavailability in rats and dogs were 15.6% and 45.9%,
respectively. Because rats have a higher hepatic clearance, both
in vitro and in vivo, then might have a higher pre-system
metabolism. Poor solubility could be another reason for the lower
bioavailability in rats because a higher dose was given to rats
compared to dogs. After the preclinical model was validated,
physicochemical properties, models/modules used to predict tissue
distribution, compound dissolution and precipitation information,
combined with respective in vitro human data (clearance, plasma
protein and microsomal binding, and RBC partitioning) were
utilized to simulate human plasma concentration vs. time profiles
of YQA-14 at 287 mg QD, a therapeutic dose extrapolated from the
Table 2 Input data used in the GastroPlus™ PBPK model.

Parameter Value

Molecular weight (g/mol) 442.95
pKa 6.91, 9.30, 10.91
logD at pH 7.4 2.15
Caco-2 permeability (10–6 cm/s) 19.90, 22.13
(propranolol, control)

Aqueous solubility at pH 6.5 (mg/mL) 0.004
Rbp in rat, dog, human 0.70, 0.67, 0.65
%Fu in rat, dog, human plasma and
human liver microsomes

1.29, 1.05, 0.96, 64

CLint in rat, dog and human liver
microsomes (mL/min/kg)

57.60, 6.42, 13.46

In vitro predicted hepatic clearance in rat,
dog and human (mL/min/kg)

31.60, 5.49, 8.05

In vivo clearance, rat, dog (mL/min/kg) 29.7, 8.3
Dose (rat, dog, and human, mg/kg, QD) 25, 5, 4.1

This table is adapted from Ref. 12 with permission.
rat pharmacology study. A bioavailability of 16.9% was predicted in
humans. However, after decreasing the oral dose from 287 mg to
57.4 mg (the low end of the projected human efficacious dose), the
predicted bioavailability increased from 16.9% to 35.1%, whereas
no change in elimination parameters such as t1/2 was observed,
suggesting that solubility did play a role in the absorption of YQA-
14 in humans. These acceptable PK properties make YQA-14 an
improved candidate for further development as a potential dopamine
D3R antagonism for the treatment of drug addiction in clinic.
6. Drug–drug interaction (DDI) potential prediction, a case
study

This example demonstrates the potential of using PBPK modeling in
the prediction of DDI risk13. Naturally occurring furanocoumarin
compounds psoralen (PRN) and isopsoralen (IPRN) are bioactive
constituents in herbaceous plants. They are widely used as active
ingredients in many Chinese herbal medicines. Both PRN and IPRN
showed potent reversible inhibition of CYP1A2 in human liver
microsomes (HLMs). In addition, time-dependent inhibition of
CYP1A2 was observed with IPRN but not PRN. In an attempt to
assess the potential DDI risk, Simcyp simulations were conducted to
predict phenacetin (a CYP1A2 substrate) AUC changes under the
co-administration of PRN or IPRN by allowing perpetrator and
victim dosed at the same time once a day for 10 days. A reduced
PBPK model was built using the basic physicochemical data listed in
Table 314. Simulations were performed in healthy subjects (n¼100,
50% men, aged 40–65 years) by using a Simcyp population-based
simulator (version 11, Simcyp Ltd., Sheffield, UK). A population of
smokers was constructed by modifying the CYP1A2 abundance in
healthy subjects from 52 to 94 pmol/mg microsomal protein to
mimic individuals who smoke 20 cigarettes per day14. The Simcyp
default phenacetin profile was used without further modification. The
maximum allowed daily doses of PRN and IPRN (60 mg, Chinese
Pharmacopoeia Commission, 2010) were used to predict the worst-
case scenario of DDI. Fig. 3 presents the 10-day simulations of
plasma concentration–time profiles of a 1500 mg daily dose of
phenacetin with a 60 mg daily dose of PRN or IPRN. The results
showed that PRN increased the AUC of phenacetin by 1.71-fold and
2.12-fold in healthy volunteers and smokers, respectively, whereas
IPRN increased the AUC of phenacetin by 3.24-fold and 5.01-fold in
healthy volunteers and smokers, respectively. It is worth noting that
in this simulation, the smoker population has lower basal AUC
because of their high CYP1A2 activity. Co-administration of the
moderate reversible inhibitor PRN was not able to bring the AUC
back to the level of a healthy volunteer, suggesting an incomplete
balance of the higher CYP1A2 activity induced by the smoke.
However, when a more potent inhibition IPRN was applied (both
reversible and time-dependent CYP1A2 inhibitor), the AUC in the
smoke population was comparable to the level of healthy volunteer
suggesting that the inhibition and inactivation effects by IPRN
balanced off the CYP1A2 activity induced by smoke. On the other
hand, the change of clearance and AUC were more profound when
the co-administration IPRN or PRN in smoke population.
7. Human PK and DDI prediction to avoid clinical DDI
trials, a case study

Orteronel (TAK-700) is an oral, nonsteroidal, reversible, selective
17,20-lyase inhibitor that was in development for the treatment of



Figure 2 Observed (□) and PBPK model–simulated (-) plasma concentration–time profiles of YQA-14 in rats (A and B) and dogs (C and D) after
a single i.v. (A and C) or (p.o.) (B and D) administration. Observed plasma concentration–time profiles (OBS) were obtained for rats and dogs after
single i.v. and p.o. administration of YQA-14 at 25 and 5 mg/kg, respectively (n¼3 rats/group; n¼4 dogs/group). This figure is adapted from Ref.
12 with permission.
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patients with metastatic castration-resistant prostate cancer. In vitro
CYP inhibition study in human liver microsomes showed that
orteronel is a moderate inhibitor in CYP1A2, 2C8, 2C9, and 2C19,
with IC50 values of 17.8, 27.7, 30.8 and 38.8 mmol/L, respectively.
However, it showed no inhibition in CYP2B6, 2D6 or 3A4/5
(IC504100 mmol/L, Table 4)15. The Cmax of orteronel in patients
who had consumed a high-fat meal was at average of 9.18 mmol/L
and thus, the [I]/IC50 ratio calculated using a basic static model
showed that orteronel could cause as high as 1.84-fold of DDI.
Following the FDA DDI guidance16, if basic static models show
that a perpetrator has the potential of causing DDI (i.e.
[I]/IC5040.1), following up DDI assessment using a PBPK model
under the dynamic conditions with both substrate and inhibitor is
recommended. A PBPK model was then built with physicochem-
ical and preclinical data and oral clearance from a human phase I
trial because in vitro metabolic clearance does not reflect the total
body clearance (Table 5). The resulting model well described the
observed clinical PK (Fig. 4). This model was then used to
simulate DDI potential with a set of sensitive CYP probe
substrates, theophylline, repaglinide, (S)-warfarin, and omeprazole
for CYP1A2, 2C8, 2C9, and 2C19, respectively (built in com-
pound profiles within the Simcyp software, no further modification
was made). The DDI potential of orteronel toward these 4 CYPs at
the dynamic concentration scenario was simulated. As shown in
Table 6, orteronel would not cause DDI with any of the 4 CYPs
with AUC changes all less than 1.25-fold, with the criteria
considered as no DDI by the FDA16.
8. Dose guidance for renal impairment patients, a case study

This case illustrates how PBPK modeling can inform appropriate
dosing of renal impairment (RI) patients in phase I/III studies and
thereby enable characterization of safety and efficacy in the RI
patients during the late stage of drug development17. Data from
human ADME study revealed that orteronel (see last example) is a
drug that is primarily cleared by kidney excretion. The extent of
orteronel biotransformation is minimal, with cytochrome P450
isozymes having only a minor role. Thus, patients with renal
impairment may have increased exposure to orteronel because of
their impaired urinary excretion capability. A PBPK model was
built as described in the last case study. The predicted PK profile
was then validated using clinical PK data before applying the
model to simulate PK profile of orteronel in moderate (glomerular
filtration rate (GFR), 30–60 mL/min) or severe (GFR, o30 mL/min)
RI patients. By comparing the PBPK model outputs with the
population PK analysis results from phase 2 trials, it was
demonstrated that PBPK modeling can accurately predict the
effect of moderate and severe RI on the PK profile of orteronel
(i.e. fold increase in AUC). In this model, exposure to orteronel



Table 3 Input data of PRN and IPRN for Simcyps simulation.

Parameter PRN IPRN

Molecular weight 186.17 186.17
logD7.4 1.63 1.32
Blood–plasma partition co-efficient (B/P) 0.82 0.65
Plasma protein binding (fu) 0.283 0.126
Microsomal protein binding at 0.5 mg/mL (fu) 0.745 0.906
Apparent permeability value: Papp (10–6 cm/s) Caco-2 51.6 44.6
(calibration compound atenolol Papp ¼ 1.40� 10�6 cm/s)
Microsomal clearance (μL/min/mg) 14.5 8.0
CYP1A2 IC50 (μmol/L) 0.26 0.22
CYP1A2 KI (μmol/L) 0.40
CYP1A2 kinact (min-1) 0.05

For reversible inhibition, Ki were estimated using IC50/2;
Both compounds are in neutral condition under physiological pH, thus pKa was not available;
1400 mg phenacetin QD� 10 and 60 mg PRN or IPRN QD� 10 were applied;
This table is adapted from Ref. 14 with permission.

Figure 3 Simcyp simulation results of phenacetin AUC0–24 at 1400 mg daily� 10 days in the presence of IPRN (60 mg daily� 10 days) and
absence of IPRN in healthy subjects (A) and smokers (B), or the presence of PRN (60 mg daily� 10 days) and absence of PRN in healthy subjects
(C) and smokers (D). The outer curves represent phenaceitn concentration in the presence of PRN or IPRN. This figure is adapted from Ref. 14
with permission. IPRN, isopsoralen; PRN, psoralen.
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increased as a reversed function of the estimated proportion of
orteronel cleared by the kidney, aligning with the degree of renal
impairment. The AUC for orteronel, when given at the clinical
dose of 400 mg BID, was predicted to increase by 52% in patients
with moderate RI and 83% in patients with severe RI compared
with the healthy population group. Furthermore, the PBPK
simulation also predicted that a reduced dose of orteronel of
220 mg BID (or a rounded dose of 200 mg BID) would achieve
exposures in severely impaired subjects comparable to those seen
in subjects with normal renal function treated at 400 mg BID
(Fig. 5). Then a PopPK model was built to determine if dose
adjustments might be required for renal RI patients in the clinical
setting. Results of the PopPK suggested that patients with mild RI
may not require dose adjustments as they were predicted to have
only a 20% higher exposure compared to the healthy subjects (a
scenario not included in the PBPK modeling). Patients with severe
RI given orteronel 200 mg BID were predicted to have similar
orteronel plasma concentrations as control subjects given 400 mg
BID. In summary, this case demonstrates that for a drug being
eliminated primarily via renal route, the PBPK modeling approach
can play a key role for guiding dose selection. This analysis helped
the inclusion of patients with RI in phase III trials with appropriate
dose adjustment. That could serve as an alternative to a dedicated
RI study, or suggests that a reduced-size study in severe RI
patients may be sufficient to assess the exposure risk in other RI
patients.



Table 4 Orteronel [I]/Ki values and predicted AUC ratio using static model.

Parameter CYP1A2 CYP2C8 CYP2C9 CYP2C19

Orteronel IC50 (μmol/L) 17.8 27.7 30.8 38.8
[I]/Ki 1.03 0.66 0.60 0.47
Substrate (fm) Theophylline (0.90) Repaglinide (0.64) (S)-warfarin (1.00) Omeprazole (0.87)
AUC ratio 1.84 1.34 1.60 1.39

Abbreviations: CYP, cytochrome P450; [I], inhibitor concentration that is the total plasma maximum concentration (Cmax); IC50, 50% inhibitory
concentration; Ki, inhibition dissociation constant.
Note: The mean Cmax in the subjects with the high-fat meal was 9.18 μmol/L. Ki¼ IC50/2, assuming competitive inhibition. The fm was adapted from
Simcyps v 11. AUC ratio was calculated using the basic static equation: AUCR¼1/(fm/((1þ[I]/Ki)þ(1–fm))).
This table is adapted from Ref. 15 with permission.

Table 5 Orteronel input data for PBPK M&S.

Parameter Value

Compound type Monoprotic base
Molecular weight 307.35
logD7.4 1.322
pKa 6.600
Blood–plasma partition coefficient (B/P) 1.39
Plasma protein binding (fu) 0.403
Main binding protein HSA
Microsomal protein binding at 0.5 mg/mL (fu,mic) 0.961
fu (gut) 1
fa 0.86
Ka (L/h) 0.79
Qgut (L/h) 8.394
Apparent intrinsic permeability value: Papp (10–6 cm/s) Caco-2 9.05
Calibration compound (propranolol) value: Papp (10

–6 cm/s) Caco-2 25.1
Clinical oral clearance (CL/F), (L/h) 16.9
Human ADME clearance routes (renal, hepatic, other) 53%, 28%, 19%
Clinical oral clearance, %CV 15.7
Clinical volume of distribution (Vd/F), (L/kg) 1.4
Clinical volume of distribution, %CV 30.2
CYP1A2 Ki (mmol/L)a 8.9
CYP2C8 Ki (mmol/L)a 13.8
CYP2C9 Ki (mmol/L)a 15.4
CYP2C19 Ki (mmol/L)a 19.4

Abbreviations: %CV, percent coefficient of variation; ADME, absorption, distribution, metabolism, excretion; fa,
fraction absorbed; fu, fraction unbound; fu (gut), apparent unbound fraction in enterocytes; HSA, human serum
albumin; IC50, 50% inhibitory concentration; Ka, first-order absorption rate constant; Ki, reversible inhibition constant;
logD7.4, logarithm of the octanol–water partition coefficient at pH 7.4; Papp, apparent passive permeability; pKa,
logarithmic acid dissociation constant; Qgut, hypothetical blood flow term that is used to indicate complex interplay
among passive intestinal permeability, active transport, enterocyte drug binding, blood flows to enterocytes, and gut
metabolism.
This table is adapted from Ref. 15 with permission.
aAll inhibition was assumed conservatively to be reversible; Ki values were calculated: IC50/2.
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9. Bridge healthy adults to special populations

PBPK models can be utilized to extrapolate the drug pharmaco-
kinetic behavior in healthy volunteer to patient populations that are
a challenge to obtain PK profiles for, such as predicting doses and
drug exposures in children and infants18 and patients suffered from
impaired renal or liver function11,15. The work of Parrott and
colleagues19 exemplified the usage of a mechanistic PBPK model
in predicting the pharmacokinetics of a neuraminidase inhibitor
oseltamivir and its active metabolite oseltamivir carboxylate (OC)
which are for the treatment and prophylaxis of influenza A and B
infections in infants and neonates. In their strategy (Fig. 6), the
simulation of pharmacokinetics in adult animal species was first
conducted. After a reasonable simulation of pharmacokinetics in
the adult animal is achieved with a refinement, prediction of
human pharmacokinetics was performed using information cap-
tured during the refinement of the animal model. For prediction of
juvenile PK profile in humans, the same methodology is followed.
First, a juvenile animal model is generated, which accounts for
age-dependent differences that are known to impact the PK
behavior of the drug, then the model was verified by comparison
with the data obtained from a juvenile animal study. Finally, the
prediction of juvenile humans was done using a PBPK model that
accounted for age dependency in humans and information gathered



Figure 4 Simulated and actual mean orteronel concentration-versus-
time curves. The line represents the simulated mean area under the
concentration-versus-time curve after a single dose of orteronel at
400 mg; the circles represent the actual data points from the high-fat
diet group (n¼42) treated with a single dose of orteronel 400 mg. This
figure was adapted from Ref. 15 with permission.

Table 6 DDI analysis: simulated area under the concentra-
tion–time curve ratios for orteronel.

CYP/substrate Dose Orteronel IC50

(mmol/L)

CYP1A2/theophylline (SV) 125 mg TID 17.8
CYP2C8/repaglinide (SV) 0.25 mg BID 27.7
CYP2C9/(S)-warfarin (Sim) 10 mg QD 30.8
CYP2C19/omeprazole,
enteric-coated (SV)

20 mg BID 38.8

Abbreviations: BID, twice daily; CYP, cytochrome P450; DDI,
drug–drug interaction; IC50, 50% inhibitory concentration; QD,
once daily; Sim, profile based on in vitro data; SV, profile based on
in vivo data; TID, 3 times daily.
This table was adapted from Ref. 15 with permission.

Figure 5 Physiologically based pharmacokinetic (PBPK) simulation
of orteronel in (A) healthy subjects (observed and simulated values),
subjects with moderate renal impairment (simulated values), and
subjects with severe renal impairment (simulated values), and
(B) regression of orteronel clearance vs. glomerular filtration rate
(GFR) based on PBPK simulations in healthy subjects, subjects with
moderate renal impairment, and subjects with severe renal impairment.
Observed data for healthy subjects (high-fat diet group, n¼42) were
obtained from clinical study C21007. The clinical scenario assumed
100% bioavailability with all uncharacterized metabolism treated as
hepatic clearance (orteronel dose: 400 mg BID for 10 days). CL, total
clearance; RI, renal impairment. This figure was adapted from Ref. 17
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from adult human and juvenile animal studies for refinement. This
provided the first insight of drug exposure in juveniles since a PK
study in this population is hard to come by.
with permission.
10. Regulatory submission

PBPK modeling has been gaining acceptance at various regulatory
bodies as part of submission package. Discussion of modeling and
simulation approaches can be found in the updated DDI guidance
from both the European Medicines Agency (EMA)20 and the U.S.
Food and Drug Administration (FDA)16. Recently, The FDA
hosted a workshop at their White Oak Campus in Silver Spring,
MD, USA. At the workshop, the director of the Center of Drug
Evaluation and Research (CDER), Dr. Janet Woodcock, concluded
that “the modeling work performed thus far at CDER has
contributed tremendously to overall drug development, in terms
of safety and efficacy, which ultimately result in patient benefits”6.
Both FDA scientists and industrial and academic representatives
agreed that the current advance in PBPK modeling enable us to
predict investigational drugs as a substrate of drug metabolizing
enzyme with high confidence, especially when the drug is
primarily metabolized by CYP3A and 2D621,22. Among com-
pounds in the BCS classification, the PK profile of type I
compounds with high solubility and high permeability usually
can be predicted quite well from their preclinical data. On the other
hand, prediction of exposure changes due to CYP induction has
not been well validated, neither had the compounds of mix of CYP
inducer and time-dependent inhibitor. PK prediction involving
transporters is still not reliable due to poor understanding of the
scaling factors used to extrapolate in vitro data to in vivo
disposition. The same is true for metabolism and disposition in
the gut. Due to the complexity of the metabolism, absorption, and
transporter activity involved at the different segments of the
gastrointestinal tract, and the unique nature of the of individual
compound, PBPK modeling for gut absorption (Fg) has yet to be
optimized22,23. Drug metabolizing enzyme-transporter interplay,
PK prediction in organ impairment population, and allometry
scaling down to children younger than 2 years of age (ontogeny
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Figure 6 PBPK modeling strategy employed to predict exposure in neonates and infants. A stepwise approach is followed with verification
against in vivo data at each step. Simulations in juveniles are based on a model incorporating age dependencies in physiology and incorporating
data from relevant in vitro systems. Verification in juvenile animals allows for model refinement before prediction in children. This figure was
adapted from Ref. 19 with permission.
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and maturation), are among the areas that still need more research.
There are much experiences lacked in the area of pregnancy,
obesity, and the geriatric population, as well as food effect,
formulation, and pH effects. The prediction of intracellular
concentration is also often a challenge24,25.

As PBPK modeling advances, the FDA has seen an increase in
modeling work in submission packages. Much of the modeling
work is cited in drug product labels to illustrate the degree or lack
of DDI risk with co-administration of market drugs5,6,22,26–30.
From July 1, 2008 to December 31, 2013, there were 112 PBPK
packages submitted to the FDA including 5 run by the agency.
Among these packages, most of the studies (76/112) were DDI-
related. Most of the DDI simulation (45/76) had no clinical data
available for comparison, and of these eight studies were for
perpetrators. Most of the DDI submissions were for CYP inhibi-
tion risk evaluation, only 8 cases were for CYP induction and
1 was for transporter inhibition. A few cases (3) had clinical data
available for building and optimizing the final models22. In most
situations, the PBPK models were included in the submission of
IND or NDA.
4

5

11. Common industrial application for PBPK modeling

In the pharmaceutical industry, PBPK modeling is used for
purposes, such as mechanistic studies, aiding internal drug
discovery or clinical development decisions, and informing
regulatory communication including filing at various stages (e.g.,
IND and NDA). It is mostly applied at the development stage.
Below are a few outlines of its routine applications:

) At the lead optimization stage of drug discovery, PBPK
modeling can provide human PK prediction at clinical dose
and dose schedule. A high projected dose (e.g., 41 g/day) may
discourage further investment in that drug candidate if it is not a
first-in-class drug candidate. For a similar reason, if a drug
needs to be administrated multiple times a day, it may face
challenge in marketing if it is neither a first-in-class nor a best-
in-class drug candidate.

) At the candidate selection stage of drug discovery, should a
drug candidate be partially metabolized by polymorphic
enzymes, such as CYP2D6 or 2C19, a PBPK model can be
applied to simulate the exposure in population including poor
metabolizer to determine whether poor metabolizers need to be
excluded in the first-in-human (FIH) trials. The model can be
further refined with the data from FIH healthy volunteer trials to
help to design a DDI study (e.g., dose adjustment) in the poor
metabolizer population.

) At the drug development stage, DDI risk simulation is the most
popular application for PBPK modeling. Whether a drug
candidate is a substrate of drug metabolizing enzymes or a
perpetrator, a DDI risk simulation with standard care medica-
tions can assess the risk of co-medication with these standard
care market drugs. Oftentimes, the most potent perpetrator or
the most sensitive substrate is used in the initial simulations to
assess the worst case scenario. If enough safety margins are
presented at the worst case scenario, then clinical trials with
moderately sensitive substrates or perpetrator may get waivered.

) Many drugs are cleared via hepatic metabolism. Some may be
excreted via renal excretion. Thus, exposure simulation in organ
impairment patients is important to know. There are successful
examples of such a simulation described above and in the
literature11,15.

) In DDI trial, dependent on the half-life of the substrate, the dose
frequency and dose duration of the inhibitor need to be
optimized to cover the duration of the exposure of the substrate
as much as possible. The more exposure overlap between the
substrate and the inhibitor, the better we can capture the DDI
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Figure 7 Application of physiologically based pharmacokinetic
modeling and simulation in various stages of drug discovery and
development. Models were initially built with preclinical data, and
later refined with available clinical information. This figure was
adapted from Ref. 15 with permission.
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potential between these two drugs31. In a crossover study
design, the washout period is changed upon the application of
an inhibitor and therefore needs to be simulated prior the study.
A lengthy washout period is costly and also not convenient to
the patients, whereas a washout period too short would affect
the data quality.

) For many high clearance compounds and substrate of CYP3A4/5,
the CYP3A4/5 inhibitor ritonavir is often used to enhance the
exposure. PBPK modeling can be used to simulate whether, in
the presence of ritonavir, the exposure of the drug candidate can
reach the level of efficacious exposure. When DDI liability
cannot be avoided, for example part of the chemical structure is
responsible for the pharmacological activity but also carries
DDI liability, modeling and simulation can be applied to
evaluate whether alternative routes of administration (e.g.,
intravenous) would reduce the DDI liability. Drugs target for
inhalation or other non-conventional routes are better evaluated
using PBPK modeling to get the feasibility test.
12. Conclusions

PBPK modeling is a useful tool for the prediction of human PK
profile from preclinical data. Once FIH PK data or human ADME
data becomes available, the model can be further fine-tuned as
illustrated in Fig. 715. It is a good tool for evaluating and
optimizing clinical trial design, for example, to select the dose
and dose schedule. It helps to understand the individual variability
and parameters that have the most impact on human PK profile
through sensitivity analysis. Hence, PBPK modeling provides a
practical solution for extrapolating PK profile from healthy
population to some ethnical, special age, or disease populations
where clinical PK study is the hardest to conduct. In the DDI
prediction area, PBPK modeling can help to determine the
washout period in a crossover study design to set the minimal
but sufficient clinical trial duration. It can also be applied as an
alternative to DDI trials in some special populations, such as
pediatrics and organ-impairment patients where the actual DDI
trial is hard to conduct due to logistical or ethical issues. Thus, it
can sometimes provide waiver for conducting unnecessary clinical
DDI trials which then speeds up the drug development process and
put fewer burdens on patients. Conducting DDI trials with multiple
perpetrators in patients is also not ethical and practical, the PBPK
modeling, in this case, can provide information about “what if” all
of those drugs are co-administered together. On the other hand, as
discussed earlier, PBPK modeling is a bottom-up approach, its
results dependent on the quality of the input data. Although
software are available for the prediction of physicochemical
properties of compounds, such as logP and pKa, in authors
experience, it is critical to use measured values to get a reliable
PBPK prediction, especially when predicting human PK profile,
rather than the AUC ratio for DDI purpose. For example, for a set
of clinical candidates (about 40 compounds), the number of
compounds for which the predicted PK profile within two fold
of observed clinical values dropped from about 70% to half of that
when in silico predicted logP and pKa were used (unpublished
data). Transporter is another emerging area of PBPK modeling,
however, most of the data generated are qualitative to answer the
question of yes or no of whether a compound is a substrate of a
transporter. PBPK modeling relies on kinetic data, such as the
clearance of the compound via that transporter. Thus, additional
data of transporter clearance are needed for PBPK modeling.
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