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Abstract

Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential 

to the function of hemoproteins, which are involved in energy generation by the electron transport 

chain, detoxification of host immune effectors, and other processes. During infection, bacterial 

pathogens must synthesize heme or acquire heme from the host; however, host heme is 

sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire 

heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are 

important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must 

rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between 

host and pathogen, and its study has offered significant insight into the molecular mechanisms of 

bacterial pathogenesis.
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Introduction

Heme and iron are essential for life

The tetrapyrrole cofactor heme is important for the cellular processes of most organisms and 

essential to many lifeforms across domains of life. Heme, a porphyrin ring complexed with 

iron, serves as a redox active moiety required for the function of many cellular proteins. 

Heme functions as an electron shuttle in enzymes of the electron transport chain and is 

required for cellular respiration. Additionally, cells rely on heme for the function of many 

widely conserved enzymes including catalase, nitric oxide synthase, hemoglobin (Hb), and 

others. Heme is also an important molecule involved in diverse cellular processes including 

signaling, gas sensing, microRNA processing, and cellular differentiation [1–4]. Thus, 

nearly all organisms must satisfy the requirement for heme through either synthesis or 

acquisition.
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Heme coordinates an iron atom at its center which is vital for heme's electron transfer 

abilities and redox activity. Like heme, iron is nearly universally required for life, and only a 

few exceptions have been identified [5,6]. As an inorganic cofactor, iron can act alone or in 

iron–sulfur clusters as a prosthetic moiety for members of the oxidoreductase, nitrogenase, 

hydrogenase, dehydrogenase, and hydratase enzyme families [7–12]. Therefore, organisms 

have evolved elaborate strategies to acquire, store, and regulate intracellular iron for heme-

dependent and other iron-dependent enzymes.

Nutritional immunity limits host iron availability

Nutritional immunity, a concept articulated primarily by Eugene Weinberg in the 1970s, 

describes the processes by which humans and other organisms sequester iron to limit 

acquisition by bacterial pathogens [13,14]. Nutritional immunity has since been expanded to 

include the host processes that manipulate local levels of manganese, zinc, and other 

transition metals in order to metal starve or intoxicate the invading pathogens (reviewed 

previously in Refs. [15,16–18]). The limited access of pathogens to metals serves as an 

antimicrobial strategy and limits bacterial replication. For instance, free iron rarely exists in 

the mammalian host. The solubility of ferric iron in aerobic solution is exceedingly low, and 

high-affinity iron-binding proteins, including transferrin, lactoferrin, albumin, and ferritin, 

sequester iron extracellularly and intracellularly. Iron-binding proteins function to transport 

iron, protect host cells from iron-mediated oxidative damage, and keep iron from pathogens. 

However, bacterial pathogens have developed exquisite tactics to overcome iron limitation 

and elaborate high-affinity iron receptors and chelators. In this regard, an evolutionary arms 

race has developed at the host–pathogen interface involving host iron-binding proteins and 

the mechanisms bacteria encode to steal iron.

Heme is an important host iron source

Heme makes up the greatest reservoir of iron in the host and serves as an iron source for 

many bacterial pathogens. Humans and other metazoa synthesize heme through a variety of 

steps in the mitochondria and cytosol. This pathway, called the Shemin or four-carbon 

pathway, begins with the condensation of glycine and succinyl-CoA to form the committed 

precursor δ-aminolevulinic acid (ALA) [19–21]. A series of enzymes produces 

protoporphyrin IX from ALA and iron is inserted, forming protoheme IX. For the sake of 

simplicity in this review, heme will refer to ferrous and ferric iron forms of protoheme IX. 

Heme is then bound by hemoproteins to serve a variety of intracellular and extracellular 

tasks. Catalase, peroxidase, and myeloperoxidase rely on heme to catalyze the hydrolysis of 

peroxide molecules. Energy generation by the electron transport chain relies on heme-

dependent c- and b-type cytochromes of the ubiquinol–ferricytochrome c oxidoreductase 

(Complex III) family [22,23]. Hemoproteins involved in tissue oxygen homeostasis include 

myoglobin and neuroglobin. Perhaps the most well-known hemoprotein is the oxygen 

transporter Hb. Its abundance and location in erythrocytes make Hb a rich heme source for 

pathogens. Hb contains about two-thirds of the body's iron, and a single erythrocyte contains 

more than 280 million molecules of Hb [15,24]. Bacterial pathogens have evolved high-

affinity Hb-binding proteins for the acquisition of heme, and these proteins will be described 

below.
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Owing in part to the reactive nature of heme-iron, free heme and Hb are toxic to the human 

host and bacterial pathogens alike [25,26]. To prevent excess heme toxicity, eukaryotic heme 

synthesis is highly regulated and heme homeostasis and sequestration are well orchestrated. 

When Hb is released from erythrocytes or otherwise exists extracellularly, it is rapidly bound 

by haptoglobin (Hp) [27]. The abundance of cell-free Hb is thought to be very low in healthy 

adults, but a variety of genetic disorders, infections, and other disease states can increase the 

concentration of free Hb [28]. Free Hb and its modified forms, in the presence of reactive 

oxygen species, exhibit cytotoxic effects toward endothelial cells [29]. However, the 

relevance of these in vivo studies is unclear, and a comprehensive understanding of 

concentrations to achieve Hb toxicity in healthy humans has not been achieved [25]. On the 

other hand, in the absence of infection-free heme that has been liberated from its 

hemoprotein likely only exists transiently in serum or in cells. In serum, heme is 

immediately bound by the highly abundant albumin (kd ≈ 10 nM) then transferred to 

hemopexin (kd < 1 pM) [30]. The heme is delivered to cells expressing the hemopexin 

receptor; these cells then degrade the heme using heme oxygenases [30]. The rapid 

sequestration and degradation of free heme in the blood is vital to the survival of 

erythrocytes, as heme in the presence of reactive oxygen species exhibits cytotoxicity and 

lipid peroxidation at micromolar concentrations [31,32]. During infection of host heme- and 

Hb-replete niches, bacterial pathogens experience heme toxicity and encode systems to 

protect from heme toxicity as well [33]. Therefore, heme is at the center of a complex 

interplay between host and pathogen for survival.

Bacterial Heme Synthesis

Divergent heme synthesis pathways in Gramnegative and Gram-positive organisms

While both humans and bacteria share the early heme precursor ALA, most bacteria 

(Alphaproteo-bacteria are the exception), archaea, and plants synthesize ALA from charged 

glutamyl-tRNAGlu via the “C5 pathway” (Fig. 1) [21,34,35]. The gluta-myl-tRNA reductase 

HemA produces the highly reactive intermediate glutamate-1-semialdehyde, which HemL, a 

glutamate-1-semialdehyde amino-mutase, converts to ALA [36,37]. The three steps, from 

ALA to uroporphyrinogen, are well conserved and thought to be the evolutionary core of 

heme biosynthesis. ALA dehydratase (also called porphobilinogen synthase; annotated as 

HemB) is responsible for the condensation of two ALA to porphobilinogen (PBG) [38]. The 

linear tetrapyrrole hydroxymethylbilane (HMB) is produced by a head-to-tail condensation 

and deamination of four PBG molecules, catalyzed by HMB synthase (alternatively called 

PBG deaminase, annotated as HemC) [39,40]. Under physiological conditions, HMB will 

spontaneously cyclize to form the uroporphyrinogen I isomer, a biosynthetic deadend. 

Therefore, most bacteria utilize uroporphyrinogen III synthase (HemD) to catalyze the 

cyclization of HMB through a spiro-intermediate to form uroporphyrinogen III [41].

Uroporphyrinogen III can be utilized for the synthesis of several tetrapyrrole-based 

cofactors. Uroporphyrinogen III decarboxylase (HemE) decarboxylates the four acetate side 

chains to methyl groups, producing coproporphyrinogen III, the next step in heme synthesis 

[42]. Additionally, uroporphyrinogen III can be shunted from heme synthesis and converted 

to precorrin-2 to synthesize vitamin B12, coenzyme F430, and siroheme [43]. The Ahb 
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enzymes of some archaea and sulfur-reducing bacteria can convert siroheme (produced from 

uroporphyrinogen) to heme [44,45]. The contribution of the Ahb alternative heme pathway 

has not been demonstrated in bacterial pathogens.

In Gram-negative organisms, as well as eukaryotes, coproporphyrinogen III is converted to 

proto-porphyrinogen IX by coproporphyrinogen III oxidase. This step is the first of the 

terminal three steps in the classical heme synthesis pathway (in blue in Fig. 1) and is 

catalyzed by oxygen dependent HemF or by oxygen independent HemN [46,47]. 

Protoporphyrinogen IX is subsequently oxidized to form proto-porphyrin IX, by a six-

electron oxidation catalyzed by one of three protoporphyrinogen oxidase enzymes. HemG, 

in Gammaproteobacteria and some Alphaproteobactera and Deltaproteobacteria, uses the 

respiratory chain as its electron acceptor and is not dependent on oxygen [48]. HemJ is 

poorly characterized but represents the most common protoporphyrinogen oxidase among 

Alphaproteobactera and Deltaproteobacteria [49]. The third protoporphyrinogen oxidase is 

HemY, an FAD- and oxygen-dependent protoporphyrinogen oxidase found in some 

Proteobacteria as well as eukaryotes [50]. The final step of the classical pathway is the 

insertion of ferrous iron by protoporphyrin ferrochelatase (HemH) to form protoheme IX, 

called heme [51]. From ALA to heme, the steps of the classical synthesis pathway are shared 

by eukaryotes and Gram-negative bacteria.

The terminal steps of the classical pathway were considered universally conserved for all 

heme synthesizing organisms. However, just in the last few years, the terminal steps of heme 

synthesis in the Gram-positive phyla Firmicutes and Actinobacteria have been described 

with genomic and biochemical analysis and termed the non-canonical or transitional 

pathway [34,52]. Very few HemF or HemN coproporphyrinogen oxidases can be identified 

in Gram-positive genomes; instead it has been realized that the annotated HemY in these 

organisms functions as a coproporphyrinogen oxidase to form coproporphyrin III [34,53]. 

The Gram-positive HemH, a coproporphyrin ferrochelatase, inserts ferrous iron to form 

coproheme [52]. Finally, coproheme is decarboxylated by HemQ, an enzyme unique to 

members of the Firmicutes and Actinobacteria to form protoheme IX [54–57]. It is now 

clear that Grampositive organisms utilize a unique series of terminal steps to synthesize 

heme (in green in Fig. 1).

Regulation of heme synthesis

Despite the vital role of heme to bacterial physiology, the regulation of heme biosynthesis 

has not been well studied outside of a few model organisms. In bacteria, regulation has been 

recognized to occur largely at two steps, abundance of the initial enzyme HemA and 

transcription of the coproporphyrinogen oxidase enzymes. Regulation of HemA is typically 

heme-dependent, indicating that bacteria reduce synthesis of heme and all intermediates in 

heme-replete conditions. This process has been extensively studied in Escherichia coli and 

Salmonella enterica serovar. Typhimurium. The addition of heme to cell extracts of E. coli 
reduces total HemA activity, without inhibiting the activity of the purified enzyme [58,59]. 

This was explained by the observation that excess heme results in the proteolytic 

degradation of HemA in Salmonella, suggesting that HemA might bind excess heme [60]. 

The Clp and Lon proteases are responsible for this reduction in HemA levels [61]. 

Choby and Skaar Page 4

J Mol Biol. Author manuscript; available in PMC 2016 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, mutations in HemA have been described that render HemA resistant to heme- 

and protease-mediated degradation, indicating that HemA binds excess heme, and holo-

HemA but not apo-HemA is a substrate for proteolytic degradation [62,63]. In this manner, 

cellular levels of heme can regulate the first step of heme synthesis and limit the unnecessary 

synthesis of heme intermediates as well as the consumption of iron. Recent metabolic 

engineering efforts to enhance ALA production in E. coli suggest that protoporphyrin IX 

post-translationally inhibits HemB, an additional example of feedback inhibition [64]. It is 

likely that for many organisms, heme and terminal heme intermediates can have post-

translational regulatory effects on heme synthesis enzymes. Like Salmonella and E. coli, the 

Gram-positive bacterium Bacillus subtilis regulates levels of HemA. While a mechanistic 

explanation has not been described, the membrane protein HemX post-transcriptionally 

regulates HemA abundance in B. subtilis [38,65]. Homologs of B. subtilis HemX exist in 

multiple Gram-positive pathogens; however, the function of HemX and HemA regulation 

has yet to be detailed.

In addition to the regulation of HemA enzyme levels, the transcription of hemA is also a 

point of control for heme biosynthesis. Two promoters exist upstream of hemA in the Gram-

negative pathogen Pseudomonas aeruginosa, and these promoters contain binding sites for 

the regulators Anr (oxygen sensing), Dnr (redox regulator), IHF (integration host factor), 

and NarL (nitrate regulator) [66,67]. Therefore, hemA expression is induced in the presence 

of oxygen or when oxygen is lacking but an alternative electron acceptor such as nitrate is 

present for utilization of heme-dependent respiration. In B. subtilis, hemEHY is induced 

anaerobically and hemAXCBL is induced by peroxide through de-repression of PerR 

[38,68]. As in B. subtilis, PerR has been implicated as a regulator of the hemEHY operon in 

Staphylococcus aureus; yet recent work has demonstrated that major differences exist 

between B. subtilis and S. aureus PerR orthologs, and therefore, it is difficult to conclude 

that PerR plays a role in S. aureus heme synthesis [69,70]. Corynebacterium diphtheriae, a 

member of the Actinobacteria phylum, encodes two heme-responsive two-component 

systems (TCS). The response regulator HrrA directly binds the promoters of hemA, hemE, 

and hemH to repress their transcription in heme-replete conditions [71]. Similarly, ChrA can 

repress transcription of hemA in heme replete conditions [72,73]. These data suggest that in 

C. diphtheriae, heme utilization is preferred over synthesis when exogenous heme is 

available. Together, these examples point to the transcriptional and post-translational control 

of HemA as a central step in heme synthesis regulation.

The expression of coproporphyrinogen oxidase genes is the second major point of heme 

synthesis regulation. In several species, hemF and hemN are regulated by different oxygen- 

or anaerobic-responsive regulators to ensure proper expression of oxygen-dependent or 

oxygen-independent coproporphyrinogen oxidases. OxyR, a global regulator in E. coli, is 

responsible for the induction of oxygen-dependent hemF expression in hydrogen peroxide 

stress. It has been suggested that the [Fe-S] cluster in oxygen-independent HemN is 

vulnerable to peroxide damage, so HemF is produced to take the place of HemN [74]. In B. 
subtilis, the transcription of coproporphyrinogen III oxidases hemN and hemZ (a second 

coproporphyrinogen oxidase, not to be confused with oxygen-dependent HemY) is induced 

anaerobically by the regulatory cascade of ResDE, Fnr, and YwiD to replace the oxygen-

dependent HemY [75–78]. Similarly, Pseudomonas hemF and hemN are expressed 
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anaerobically under the control of Anr and Dnr, while Anr induces the expression of only 

hemN aerobically [79]. It has been suggested, but not validated, that the expression of 

oxygen-dependent hemF in oxygen limited conditions by Anr and Dnr serves to consume 

residual oxygen during the transition to anaerobiosis, which would protect other 

anaerobically induced oxygen-sensitive proteins [79]. Thus, oxygen is a key regulatory of 

expression of coproporphyrinogen oxidase genes.

Contribution of heme synthesis to pathogenesis

With a few notable exceptions including Bartonella hensaela, Enterococcus faecalis, 

Haemophilus influenzae, and Streptococcus spp., most human pathogens encode complete 

heme biosynthetic pathways [80–83]. However, the contribution of heme synthesis to the 

pathogenesis of bacterial pathogens is largely understudied. For S. aureus, whose reliance on 

heme acquisition during infection has been well established, it is now clear that heme 

biosynthesis is vital to cause disease in murine models of infection [84–86]. Inactivation of 

hemA, which renders S. aureus heme deficient, causes the small-colony variant (SCV) 

phenotype [87]. During systemic infection, this mutant is highly defective at colonizing the 

murine heart and liver relative to wildtype S. aureus [87]. A mutant lacking hemB, also a 

heme-deficient SCV, demonstrates reduced colonization and bone destruction in a murine 

model of osteomyelitis [88,89]. These data demonstrate that for S. aureus, heme acquisition 

is insufficient to support organ colonization and therefore heme biosynthesis is critical to 

pathogenesis. Importantly, the SCV phenotype is encountered clinically. Despite their 

reduced virulence, SCVs are generally more resistant to antibiotics and oxidative stress, 

more equipped to evade the immune system by living intracellularly, and are likely the 

etiological agent of persistent staphylococcal infections [89–92] (reviewed in Ref. [93]).

Less evidence for the role of heme synthesis during infection is available for other 

pathogens. For the intracellular pathogen Brucella abortus, hemH is required for virulence in 

a murine model of brucellosis [94]. Therefore, like S. aureus, host heme utilization is 

insufficient and synthesis is required for full virulence. In addition to B. abortus and S. 
aureus, the advent of whole genome in vivo analysis of mutants using techniques such as 

transposon-sequencing and signature tagged mutagenesis has highlighted the role of heme 

synthesis. In these infections, genes with marked mutations that are recovered at a lower 

frequency from the infected tissue relative to growth in vitro are considered important to 

infection. These types of experiments have demonstrated a role for different heme synthesis 

genes during infection. Transposon mutantsdisrupted in hemY were found to be defective 

for P. aeruginosa colonization of the murine gastrointestinal tract [95]. hemN was found to 

be important for Yersinia pestis infection of deep tissue [96]. Transposon mutants lacking 

hemE in Acinetobacter baumannii were less effective at colonizing the murine lung [97]. 

Finally, hemG was found to be important for Listeria mono-cytogenes oral infection [98]. 

Based on these trans-poson library infections, heme synthesis is vital to the fitness of a 

variety of pathogens.

Current challenges and opportunities

The divergence between the terminal steps of Gram-positive heme synthesis and the 

classical pathway utilized by Gram-negative organisms as well as humans presents the 
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opportunity for targeted small molecule interventions to inhibit or activate Gram-positive 

heme synthesis. The terminal Gram-positive enzymes HemQ, which exists only in 

Actinobacteria and Firmicutes, as well as HemY and HemH, which recognize different 

substrates than the eukaryotic host enzymes, present three potential targets. Small molecules 

have been described that modulate heme synthesis in vivo, while in vitro inhibitors of S. 
aureus HemY have recently been reported, suggesting that Gram-positive heme synthesis is 

an attractive drug target [52,99,100].

Outside of a few model pathogens, very little is understood regarding the regulation of heme 

synthesis, particularly during pathogenesis. Regulation is a central question in understanding 

the role of heme synthesis in infection. Considering that in some niches host heme is 

available and can reach toxic levels, pathogens with the capacity to both steal and synthesize 

heme must regulate both pathways. For S. aureus, in which heme synthesis and acquisition 

are vital during infection, the regulation of heme synthesis is unknown. This is despite the 

observation over half a century ago that the rate of staphylococcal heme synthesis is 

modulated by exogenous heme [101]. For other pathogens, the contribution of heme 

synthesis to disease is still unclear, but whole-genome in vivo fitness experiments like 

transposon-sequencing suggest many bacterial pathogens rely on heme biosynthesis to cause 

disease, and this field of research provides ample opportunity for further exploration.

Gram-Positive Heme Acquisition Strategies

Bacterial pathogens utilize a variety of heme acquisition strategies during infection, ranging 

from surface receptors to secreted proteins that bind either heme or hemoproteins. Heme 

acquired from the host is used fully intact or degraded to liberate heme-iron and both 

processes are important during bacterial pathogenesis. Gram-positive pathogens, including 

S. aureus, Bacillus anthracis, and C. diphtheriae rely on heme acquisition during infection. 

The heme uptake pathways of these three pathogens will be presented as models for 

theGram-positive processes, along with the regulation of the pathway and evidence for the 

role of heme uptake during pathogenesis.

The S. aureus Isd paradigm

The Iron-regulated surface determinant system (Isd), first described in S. aureus, is the 

paradigm for Gram-positive heme acquisition [102]. During infection, S. aureus utilizes the 

leukocidins HlgAB and LukED to lyse erythrocytes and liberate Hb into the bloodstream 

[103]. This results in accessible free heme, heme bound by hemopexin (Hx), free Hb (Hb), 

and Hb bound by Hp to form the Hp–Hbcomplex. The Isd system enables utilization of free 

heme, or heme bound to Hb and Hp–Hb complexes. Isd proteins bind heme and Hb at the 

cell wall surface with conserved near transporter (NEAT) domains. The NEAT domains are 

120–125 aa domains that constitute a conserved eight-stranded β-sandwich fold [104,105]. 

Heme is bound in a hydrophobic pocket with critical coordination by tyrosine residues in a 

YXXXY motif. These NEAT-containing surface proteins (IsdB, IsdH, IsdA in S. aureus) 

shuttle heme to NEAT-containing IsdC. IsdC transfers heme to the membrane-associated 

transporter IsdDEF for transit across the membrane. To access host heme and hemoproteins, 

IsdB, IsdH, and IsdA are covalently attached to the peptidoglycan by the standard Sortase A 
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cysteine transpeptidase [106]. IsdB contains two NEAT domains, NEAT1 (N1) binds Hb and 

Hb–Hp, but not Hp and N2 binds heme; as such IsdB is believed to be the primary Hb-

binding protein [85,107,108]. IsdH contains three NEAT domains, N1 and N2 bind both Hb 

and Hp, andN3bindsheme [109,110]. IsdA, which is partially surface exposed, contains a 

single heme-binding NEAT domain [102]. The current model (Fig. 2), supported by strong 

structural evidence, suggests that IsdB-N1 binds Hb, and IsdB-N2 extracts heme [111]. 

Similarly, IsdHN1 and N2 bind Hb and Hp, and IsdH-N3 extracts the heme. The heme is 

then transferred either directly to IsdC or shuttled via IsdA to IsdC.

S. aureus encodes an iron-regulated Sortase B (SrtB) for which IsdC is the only substrate, 

and SrtB attaches IsdC to peptidoglycan in such a way that IsdC is not surface exposed but 

rather buried in the cell wall, which is 15–30 nm thick [112,113]. This organization allows 

heme transferred from surface Isd proteins to pass through the cell wall to the membrane by 

IsdC's single heme-binding NEAT domain. IsdC alone transfers heme to the IsdE of the 

IsdDEF transporter [114]. At the membrane, IsdDEF transit heme across the membrane and 

into the cytosol.

Upon import, heme is incorporated into staphylococcal proteins or degraded. Exogenous 

heme accumulates in the membrane and is also capable of complementing the growth of 

heme-deficient mutants [84]. Alternatively, the heme oxygenases IsdG and IsdI degrade 

heme to release iron [115] (reviewed in Ref. [116]). IsdG and IsdI are structurally similar 

and are the first described members of the Isd heme oxygenase family, which catabolizes 

heme to staphylobilin instead of biliverdin [117–119]. IsdG and IsdI are required for growth 

using heme as a sole iron source and are expressed during infection [115,120].

The widely conserved ferric uptake regulator (Fur) is the principle regulator of the 

expression of heme acquisition systems in S. aureus. In iron-deplete conditions, Fur no 

longer represses its regulon, allowing the transcription of the isdB, isdA, isdC-DEFsrtBisdG, 
and isdI loci [102]. During infection of iron-deplete niches, the heme acquisition system and 

associated iron-liberating heme oxygenases are expressed. Further regulation of the heme 

oxygenases exists; IsdG abundance increases in the presence of heme and IsdG half-life is 

increased when heme-bound [120]. Also, the Clp proteases have a role in Hb acquisition by 

modulating IsdB levels [121]. Additional heme-dependent regulation likely exists but has 

not been described.

Isd-mediated heme acquisition is vital to the virulence of S. aureus. Heme is the preferred 

iron-source during systemic infection, in part because a heme-responsive transcriptional 

regulator activates iron siderophore synthesis only when heme-iron is unavailable [84,122]. 

The role of the Isd system has been extensively demonstrated in murine infection models. 

Mutants lacking components of the Isd system are highly defective inpathogenesis, 

highlighting the importance of heme acquisition to staphylo-coccal disease [84–

86,108,120,123,124].

Isd-dependent heme uptake by B. anthracis

B. anthracis encodes a heme uptake system that shares the core of the S. aureus Isd, but with 

additional unique proteins. B. anthracis encodes two secreted hemophores termed IsdX1 and 
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IsdX2 [125]. These are the first described Gram-positive hemophores and bind heme, Hb, 

and methemoglobin [125– 129]. IsdX1 contains one NEAT domain, while IsdX2 contains 

five NEAT domains; both are secreted past the cell wall as they lack sortase signals or 

membrane spanning domains [125]. B. anthracis also encodes other NEAT contain proteins; 

Hal contains a single NEAT domain and leucine-rich repeats, which extract heme from Hb 

[130]. Unlike IsdX1/2, Hal is sortase anchored to the cell wall [131]. A second, recently 

described NEAT protein is BslK, which is non-covalently attached to the cell wall and 

transfers heme to IsdC [132]. The current proposed model (Fig. 2) is that IsdX1 is secreted, 

binds heme, and transfers heme to wall-anchored IsdC. IsdX2 can bind free heme, accept 

heme from IsdX1, and transfer heme to IsdC. The multiple NEAT domains ofIsdX2 have 

been proposed to be important for these multiple functions, and it has been suggested that 

IsdX2 can serve as a heme storage protein. IsdDEF transports heme across the membrane for 

utilization by IsdG, an orthologue of the S. aureus heme oxygenase [133]. The diversity of 

heme and Hb-binding proteins relative to S. aureus may be the result of the greater variety of 

environmental niches that germinant and sporulent B. anthracis inhabits.

The role of B. anthracis heme acquisition during infection is not clear. A guinea pig 

infection model demonstrated that ΔisdCX1X2 was as virulent as wild type, yet these 

proteins are expressed during infection [134]. Also, a mutant of B. anthracis lacking Hal 

demonstrated reduced virulence in a model of inhalational anthrax [135]. It is likely that the 

IsdX1/X2 hemophores, BslK, and Hal are partially redundant, and a mutant lacking all four 

proteins would be highly defective in causing anthrax.

In addition to S. aureus and B. anthracis, many other pathogens have evolved NEAT-

containing heme acquisition systems, including Staphylococcus lugdunensis, L. 
monocytogenes, and Streptococcus pyogenes [136–143]. The conservation of NEAT-

mediated heme uptake highlights the contribution of host heme to bacterial infection.

C. diphtheriae heme uptake

C. diphtheriae utilizes non-NEAT-mediated heme uptake systems for heme-iron acquisition, 

termed HmuTUV, HtaABC, and ChtABC/CirA. The Hmu (hemin-uptake) system was the 

first heme acquisition system described in Gram-positive organisms. The associated heme 

oxygenase, HmuO, was discovered and described first, and then HmuTUV was discovered 

for the ability of a plasmid encoding hmuTUV to complement a Corynebacterium ulcerans 
strain that cannot grow on Hb as a sole iron source [144,145]. Sequence analysis suggests 

that HmuTUV acts asan ABC transporter that shuttles heme across the cell membrane [146]. 

It was later discovered that an additional gene is encoded within the hmuTUV operon, 

termed htaA (heme-transport associated) [147]. Adjacent to this locus are the genes htaB 
and htaC. Unlike the sortase anchoring of other Gram-positive uptake systems, HtaA and 

HtaB contain N-terminal secretion signals as well as C-terminal intermembrane domains. 

This results in surface exposure of HtaA and HtaB, which both bind heme. Interestingly, a 

portion of HtaA is secreted and not anchored to the cell envelope. HtaA isolated from cell 

culture is unable to complement the growth of an htaA mutant, suggesting that surface 

bound HtaA may serve as a heme receptor and secreted HtaA may serve as a hemophore 

[147,148]. However, heme transfer between HtaA molecules and further description of the 
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function of HtaA on the surface have not been reported. In addition to heme, HtaA can 

acquire heme from Hb and transfer heme to HtaB, suggesting a heme shuttle from HtaA 

toHtaB toHmuT; HmuT isa surface-anchored lipoprotein, which then transfers heme to the 

cognate ABC transporter HmuUV [148]. While the Isd NEAT domains rely on tyrosine 

alone as the axial ligand for heme binding, HmuT relies on an N-terminal histidine and a C-

terminal tyrosine to coordinate heme [149].

Inactivation of the Hmu/Hta systems does not completely eliminate growth with heme as a 

sole iron source, suggesting the involvement of an additional heme uptake system [147]. 

This led to the characterization of the ChtAB and CirAChrC operons, which are regulated by 

iron levels via DtxR. DtxR is the Diphtheria Toxin regulator which activates the expression 

of Diphtheria Toxin as well as HmuTUV and HtaABC [150,151]. ChtAB and ChtC appear 

to be the result of gene duplication of HtaAB, as all three groups of proteins have sequence 

similarity, N-terminal secretion signals, and C-terminal transmembrane domains, and 

contain the same heme-binding domain [152]. Like HtaAB, ChtAB and CirAChtC are 

surface exposed and ChtAB and ChtC bind heme and Hb. It appears that these heme-binding 

proteins serve redundant functions, and as such, a mutant lacking both HtaB and ChtB is 

deficient at utilizing Hb as an iron source [152]. Recently, it has been shown that ChtA and 

ChtC are both capable of binding Hp–Hb for heme extraction, and acquisition of heme from 

Hp–Hb requires HtaA [153]. The current model (Fig. 2) for Hp–Hb heme acquisition 

involves binding of Hp–Hb by a combination of HtaA and ChtA or ChtC, heme extraction 

either actively or passively, and transfer to HtaB, HmuT, and HmuUV [153].

Gram-Negative Heme Acquisition Strategies

The outer membrane of the cellular envelope of Gram-negative organisms presents an 

additional barrier to heme acquisition. Therefore, Gram-negative heme uptake systems 

consist of outer-membrane receptors that either bind heme and hemoproteins directly, or 

bind heme-bound secreted hemophores. Heme then transits the periplasm and is brought into 

the cell via ABC transporters at the inner membrane. The versatile opportunistic pathogen P. 
aeruginosa encodes direct heme uptake and hemophore systems at the outer membrane, H. 
influenzae uses a hemophore uptake system, and Neisseria meningitidis uses a unique 

bipartite receptor for heme acquisition from host hemoproteins . These pathogens are 

presented as models for Gram-negative heme uptake systems.

P. aeruginosa

P. aeruginosa encodes direct and indirect systems for heme uptake. The Phu (Pseudomonas 
heme uptake) consists of a TonB-dependent PhuR which binds heme and transports it to the 

periplasm. PhuR activity is representative of Gram-negative TonB-dependent outer-

membrane receptors. These β-barrel proteins bind substrates (often iron containing 

molecules) with high affinity, and rely on proton motive force and TonB for transport across 

the outer membrane [154]. TonB is an inner-membrane protein with a substantial 

periplasmic portion for direct interaction with periplasmic domains of the outer membrane 

proteins. Upon PhuR translocation of heme into the periplasm, the soluble periplasmic 
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protein PhuT binds heme and brings it to PhuUV, an ABC transporter at the inner 

membrane.

In addition, HasA/HasR (heme assimilation system) is utilized for heme uptake. HasA is a 

secreted hemophore that binds heme and transfers it to a second TonB-dependent 

transporter, HasR. Like other Gram-negative heme-binding motifs, HasA coordinates heme 

using histidine and tyrosine residues with picomolar affinity. Data from the orthologous 

HasA hemophore of Serratia marcescens suggest that HasA binds Hb and extracts heme, 

then HasA transfers heme to HasR [155,156]. The present model (Fig. 3) for these two heme 

uptake systems suggests that Phu is the principle heme acquisition system but full heme 

utilization requires HasA/HasR. HasA/HasR may be more relevant as a heme sensing 

system; under low heme conditions, the inner-membrane HasS binds the sigma factor 

inhibitor HasI. When heme is available, HasS instead binds HasR, and HasI is free to recruit 

RNA polymerase to activate the transcription of hasAR, hasSI, phuSTUV, and phuR [157]. 

The P. aeruginosa heme uptake system PhuSTUV/PhuR is regulated by Fur in addition to the 

HasI sigma factor detailed above. Recently, small regulatory RNAs have been described that 

impact phuS mRNA levels, suggesting another layer of heme-responsive regulation 

[158,159]

In contrast to many other organisms, Pseudomonas encodes a soluble cytoplasmic heme-

binding protein that is not a heme oxygenase. This protein, PhuS, transfers heme to the 

heme-oxygenase HemO for iron liberation. PhuS, unlike many hemoproteins, binds ferric-

iron heme and subsequently transfers it to HemOunder iron-deplete conditions [160]. The 

dissociation constant of the heme–PhuS–HemO complex is in the nanomolar range, 

suggesting that PhuS transfers heme to HemO specifically and not to the second 

Pseudomonas heme oxygense, BphO [160]. While the PhuS heme transfer has not been 

described completely, PhuS has been shown to bind heme as a monomer utilizing one of two 

histidine residues (His209 and His212), and a third binding site exists when PhuS is in 

dimeric form [161]. Further in vitro characterization and structural analysis has led to a 

model whereby heme coordination occurs primarily at the His212 ligand and induces a 

conformational change required for interaction with HemO [162,163]. Additionally, in vitro 
heme oxygenase activity has been attributed to PhuS; however, the in vivo relevance of this 

function is unclear as no biliverdin-β (the product of HemO heme catabolism) is detected in 

a mutant lacking hemO [164,165].

A recent clinical evaluation of genetic changes to P. aeruginosa during infection of cystic 

fibrosis lungs revealed the importance of heme acquisition during infection [166]. Long-

term infection led to the selection of mutations in the promoters of the phuSTUWV and 

phuR loci, resulting in greater Phu expression. These changes to phu transcription confer a 

growth advantage enabling the utilization of heme from Hb as the sole iron source and 

suggest that heme is an important iron source during chronic Pseudomonas infection. The 

infections also selected for mutants that demonstrate enhanced expression of the feo ferrous-

iron acquisition genes, indicating that ferrous iron is also a source of bioavailable iron. 

These clinical data confirm experimental findings suggesting that P. aeruginosa heme 

acquisition contributes to chronic infection.
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H. influenzae

H. influenzae is a notable exception to the other pathogens outlined here, as it is incapable of 

synthesizing heme and therefore requires heme uptake for aerobic respiration [167]. It is 

capable of acquiring heme from diverse host sources (Fig. 3), including hemopexin, free 

heme, albumin-bound heme, myoglobin, and Hb; the variety of heme sources is in 

accordance with its absolute reliance on exogenous heme [168]. H. influenzae has evolved a 

variety of heme uptake systems important for growth in vitro using various host heme 

sources. While some systems are well described, less is known about others, and a global 

understanding of the utilization of these heme uptake systems during infection is lacking.

The HxuCBA system, described primarily in H. influenzae type B, is capable of heme 

acquisition from free heme and heme-hemopexin (Hx). HxuA is a secreted hemophore that 

is released from the outer membrane by its transporter HxuB [169–171]. HxuA exhibits no 

heme-binding motif but rather demonstrates high-affinity binding specifically to Hx with 

little distinction between apo- and holo-Hx [172]. HxuC is a TonB-dependent transporter 

that binds heme after release from the Hx–heme–HxuA complex and imports it into the 

periplasm [173]. Additionally, HxuC is capable of acquiring heme from serum albumin 

(Alb) independent of HxuA [174]. HpbA is another heme acquisition protein identified in 

nontypeable and type B H. influenzae. A lipoprotein, HbpA is important for growth using 

Hb, Hp–Hb, and heme-human serum albumin as heme sources [175,176]. The inner-

membrane heme transporter has not been definitively identified, but the Hip proteins have 

been implicated [174].

Additionally, H. influenzae encodes three receptors, HgpA, HgpB, and HgpC, that can 

acquire heme from Hp–Hb and Hp bound myoglobin, albeit it at greater concentrations than 

thought to be physiologically relevant [177,178]. While the contribution of the Hgps seems 

redundant, HgpB has been demonstrated to be most important for utilization of Hp–Hb and 

Hp–myoglobin.

There are many outstanding questions regarding H. influenzae heme uptake. Many proteins 

have been attributed to be involved in heme uptake, but their function requires further 

investigation [179–183]. The regulation of the heme uptake system expression is not well 

described, except that hxuCBA and the hgp genes are expressed under in vitro iron/heme 

deplete conditions during experimental infection of the chinchilla ear [184,185]. Lastly, a 

heme oxygenase of Haemophilus has not been described, suggesting that acquired heme is 

utilized intact and that other iron acquisition pathways, from transferrin and lactoferrin 

sources, are sufficient for cellular iron needs. However, it is also possible that a heme 

oxygenase exists and has not yet been identified.

Genetic evidence from clinical isolates suggests that heme uptake is vital to pathogenic 

strains of H. influenzae. Isolates from otitis media infection in children relative to 

commensal throat isolates exhibit greater rates of hxuA, hxuB, hxuC, and hgpB gene 

prevalence, indicating that heme uptake may be a virulence determinant [186,187]. Several 

animal models have been used to demonstrate the role of heme uptake during H. influenzae 
infection. In a model of H. influenzae bacteremia, infant rats infected with a mutant lacking 

HbpA completely clear the infection after one week while rats infected with wildtype remain 
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infected [176]. Likewise, a mutant lacking both HxuC and HgpABC uptake proteins is 

unable to cause bacteremia in the same rat model [188]. Additionally, the Hgp proteins are 

required to cause otitis media in a chinchilla model [189]. It is clear that for H. influenzae 
pathogenesis, heme uptake is a critical virulence determinant.

N. meningitidis

N. meningitidis encodes a bipartite heme uptake system consisting of HpuAB and HmbR 

(Fig. 3). HpuAB is expressed from an iron-repressed operon and consists of the HpuA 

lipoprotein and HpuB, the TonB-dependent receptor capable of binding Hb, apo-Hp, and 

Hp–Hb [190,191]. Upon heme transport into the cytoplasm, the HemO heme oxygenase 

degrades heme to biliverdin and liberates iron. As such, HemO is required for survival using 

heme, Hb, or Hp–Hb as a sole iron source [192,193]. Heme is extracted from these 

hemoproteins and is imported intact, as Hb can complement the deficiencies of a heme 

synthesis mutant in an HpuAB-dependent manner [194]. The inner-membrane transporter 

has not yet been identified, but a zinc transporter has been implicated [195].

Initial studies of the individual function of HpuA and HpuB failed to describe the role of 

HpuA in heme acquisition. HpuB is sufficient to bind Hb, but a high-affinity HpuB-Hb 

complex requires the presence of HpuA, even though HpuA-Hb binding was not detected by 

a flow cytometry assay [196,197]. Additionally, HpuA is required for growth with Hb as a 

sole iron source and heme import [198]. However, a recent structural characterization has 

described a direct, albeit weak, interaction between HpuA and Hb, and a co-crystal structure 

of Hb and an HpuA homolog from Kingella denitrificans has been solved [199]. While these 

data are not conclusive, they suggest that HpuA and HpuA homologs interact with Hb, and 

this interaction is required for HpuAB-mediate heme uptake.

HmbR (Hb receptor) is an additional N. meningitidis heme uptake protein that binds host Hb 

with species specificity, exhibiting a greater utilization of human Hb but is unable to bind 

the Hp-Hb complex and therefore likely binds free Hb only [200,201]. Like HpuAB, it is 

subject to phase variation [202]. HmbR, based on spectroscopy and mutational analysis, also 

coordinates heme with a Tyr residue, which further confirms that diverse heme-binding 

domains have evolved to utilize tyrosine as the axial ligand [203]. The mechanism of heme 

extraction by HmbR, the associated inner-membrane heme transporter that partners with 

HmbR extraction, and structural descriptions of ligand binding are still undescribed for 

HmbR heme uptake.

In N. meningitidis, expression of hemO and hmbR is regulated by Fur as well as the MisRS 

TCS [204,205]. MisRS activates the expression of hemO and hmbR independent of Hb and 

iron concentration, which suggests an additional layer of regulation for Hb acquisition. 

However, the activating signal of MisRS has not yet been described.

The genetic diversity of N. meningitidis clinical isolates has highlighted the importance of 

heme uptake to meningococcal virulence. While not all N. meningitidis strains express both 

the HmbR and HpuAB systems, most express at least one. Most pathogenic isolates express 

at least HmbR, but HpuAB expression is equally associated with disease and carriage 

isolates, which indicates that HmbR is an indicator of pathogenesis [206,207]. N. 
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meningitidis serotype B isolates associated with disease also exhibit “on” phase variation of 

HmbR, correlating virulence with the expression of HmbR [208]. Additionally, HmbR is 

required for virulence in an infant rat model of meningitis [200]. These data implicate heme 

uptake, particularly HmbR, as an important component of Neisseria infection.

Current challenges and opportunities

Study of heme uptake strategies has offered great insight into bacterial pathogenesis and 

nutrient acquisition. There is still great opportunity for discovery. For most bacterial heme-

binding motifs, the transfer from host hemoprotein has not been demonstrated as either 

passive dissociation or active extraction. The redundancy of heme uptake systems in 

pathogens like B. anthracis, P. aeruginosa, and H. influenzae is well appreciated, but the role 

of each system during infection of various niches or commensal environments has yet to be 

fully elucidated. The relative contribution of host heme to iron acquisition by bacterial 

pathogens during infection is understudied. It is unclear if pathogens rely on heme for iron 

in unique spatiotemporal niches and rely on ferrous iron and siderophore acquisition systems 

in other niches. Opportunity abounds to understand the role of heme-iron utilization across 

time and tissues during infection. Finally, while global abundance of heme and Hb in the 

host has been measured, the local availability of heme and hemoproteins during infection 

has not been described and presents an opportunity to understand the microenvironment of 

an infectious niche as well as the host response to infection.

In terms of clinical application, heme uptake systems may be attractive therapeutic targets. 

S. aureus Isd proteins have been the target of vaccine development with mixed success and 

monoclonal antibodies against IsdB have been studied for therapeutic use [209–213]. 

Considering the importance of heme acquisition to infection, using surface-exposed heme 

uptake proteins as targets for vaccine and antibodies should continue to be investigated. 

Additionally, the Mycobacterium tuberculosis heme uptake system, which comprises three 

unique proteins and is sufficient to rescue the growth of a heme auxotroph, has been 

proposed as a new mycobacteria-specific antimicrobial target to be explored [214–216]

The interactions between host hemoproteins and bacterial hemoprotein binding proteins 

offer an excellent opportunity to study host–pathogen co-evolution. It has been recently 

demonstrated that the human and primate iron-binding protein transferrin has undergone 

positive selection at the interface of binding by bacterial transferrin receptors, suggesting 

that the co-evolution of humans and pathogens has produced an evolutionary arms race in 

the context of nutritional immunity [217,218]. In the same vein, the Hb-binding IsdB of S. 
aureus exhibits species specificity and more efficiently utilizes human Hb relative to mouse 

Hb [86]. In keeping with this, transgenic mice expressing human Hb are more susceptible to 

S. aureus disease [86]. The contribution of bacterial heme acquisition to human evolution 

presents ample opportunity to further investigate co-evolution and nutritional immunity.

Heme Toxicity and Tolerance

Bacterial pathogens dedicate extensive cellular machinery to the synthesis and acquisition of 

heme. Paradoxically, excess heme is toxic and thus during infection, invading pathogens 

must contend with heme toxicity as a component of pathogenesis. While heme toxicity is 
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well studied in eukaryotes, less is known in bacteria [25,219,220]. A brief description of 

heme toxicity in bacteria and strategies utilized to combat toxicity follow.

Multi-faceted mechanism of heme toxicity

The reactive nature of heme that makes it such a versatile cofactor also results in toxicity at 

excess concentrations. While the toxicity of heme toward bacteria has been observed for 

over 60 years, a complete understanding of the mechanisms of heme toxicity is lacking 

[26,221]. Free heme is rapidly bactericidal toward various Gram-positive and Gram-negative 

pathogens in low- to mid-micromolar concentrations [33,222-225]. However, investigation 

of heme toxicity in a variety of bacterial species has led to a model of heme inducing iron- 

and non-iron-related damage to the cell.

The accumulation of heme results in excess iron by one of two mechanisms, both of which 

are likely at play under aerobic conditions. First, a portion of iron is freed by the heme 

oxygenases. Second, iron itself may be liberated from the porphyrin ring upon reaction with 

reactive oxygen species (ROS). Irrespective of the source, iron can cycle between ferrous 

and ferric states via Fenton chemistry and the Haber-Weiss reaction (reaction 1), yielding a 

regenerating supply of ROS.

(1)

(2)

Iron-mediated production of ROS can damage DNA, lipids, and proteins [226,227]. Further 

evidence for the contribution of oxidative stress to heme toxicity comes from S. aureus. In 

conditions of excess heme toxicity, membrane proteins are highly oxidized and superoxide is 

formed by redox cycling of heme-iron through membrane menaquinone [228]. Superoxide 

production is a separate source of oxidative damage from ferrous iron-mediated ROS and is 

a major component of heme damage in S. aureus [228]. In addition to experimentally 

validating that heme-mediated ROS is a key to heme toxicity, this work also localized heme 

toxicity primarily to the membrane. The lipophilic nature of heme suggests that it partitions 

to the membrane of bacteria, and this has been demonstrated in S. aureus, likely resulting in 

damage to membrane proteins and lipids [84].

Further evidence suggests that iron-mediated ROS production and subsequent membrane 

damage are an insufficient description of heme toxicity. First, heme is toxic in anaerobic 

conditions, and second, non-iron protoporphyrins are toxic to bacteria and activate the 

cellular response to heme toxicity [229–231]. Also, porphyrins cause significant damage to 

bacterial DNA [232]. Finally, resistance to heme toxicity is in part mediated in N. 
meningitidis by Ght (gene of hydrophobic agent tolerance), suggesting that damage by heme 

is similar to other hydrophobic molecules and may disrupt the Gram-negative outer 

membrane [224,233]. The toxicity of heme is likely the result of a combination of 
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membrane disruption, membrane protein and lipid oxidation, and DNA damage. However, a 

total understanding of heme-mediated damage is far from complete.

Strategies to overcome heme toxicity

While the direct result of excess heme is unclear, it is evident that bacteria must contend 

with heme damage and have evolved a variety of strategies to overcome heme toxicity (Fig. 

4). These systems consist primarily of efflux and sequestration. Additionally, the heme 

oxygenase outlined as part of heme acquisition strategies may contribute to the reduction of 

heme toxicity by cleaving the porphyrin ring and liberating iron for use.

Heme efflux strategies have been primarily characterized in Gram-positive organisms, 

potentially because efflux across a single-membrane barrier is simpler to achieve than in 

Gram-negative pathogens. Three systems have been described, HrtAB, PefAB/CD, and 

MtrCDE. The S. aureus heme-regulated transporter HrtAB is required for survival in toxic 

concentrations of heme. hrtAB expression is activated by the HssRS heme sensing TCS 

[222,234,235]. While the ligand of the HssS histidine kinase has remained elusive, excess 

exogenous or endogenous heme leads to activation, either directly or indirectly [99]. HrtA is 

an ATPase that drives efflux by HrtB permease of its ligand, likely heme. Orthologues of 

HrtAB have been described in B. anthracis and Lactococcus lactis and are required for 

resistance to heme toxicity in these organisms [236]. When the Hrt efflux pump is 

inactivated in both S. aureus and L. lactis, levels of intracellular heme increase, suggesting 

that heme is the substrate of HrtAB export [229,237]. In B. anthracis, an HssRS orthologue 

controls the expression of HrtAB and cross-talks with a second TCS that responds to cellular 

envelope stresses, further implicating membrane damage as a component of heme stress 

[238]. HrtAB is actively expressed during murine anthrax, suggesting that organisms that 

replicate in the bloodstream must tolerate heme toxicity [33].

Additional efflux systems exist, suggesting that this strategy is well conserved. 

Streptococcus agalactiae encodes an orthologue of HrtAB, as well as a dual efflux system 

PefAB and PefRCD [223]. In heme stress, hrtAB and pefAB/RCD are expressed at high 

levels, and the Pef systems are required for resistance to heme toxicity [223]. The Gram-

negative N. gonorrhoeae encodes an efflux pump, MtrCDE, for hydrophobic molecules that 

is required for resistance to heme stress [239].

Heme sequestration and storage is a second theme in strategies to resist heme toxicity. The 

conserved HemS family has been described in Yersinia enterocolitica, Y. pestis, Shigella 
dysenteriae (termed ShuS), P. aeruginosa (called PhuS, detailed above), and E. coli (ChuS, 

which also has heme oxygenase activity) [146,160,225,240–244]. While a variety of heme 

storage, transfer, and degradation properties have been assigned to these proteins, their 

involvement in resisting heme toxicity is clear. Additionally, non-HemS family proteins have 

been found to bind heme and play a role in heme homeostasis, including the small outer-

membrane Protein E of H. influenzae and the Cu,Zn superoxide dismutase of Haemophilus 
ducreyi [245,246].
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Current challenges and opportunities

While numerous systems are involved in detoxifying heme, there are many outstanding 

questions. The efflux systems have been described genetically, but a complete understanding 

of the ligands exported is still murky. For Gram-positive pathogens, the efflux systems may 

provide an additional therapeutic target for infection. Inhibition of efflux may offer a 

treatment option for bloodstream infections by S. aureus and B. anthracis; presumably the 

effects of heme toxicity would be deadly to the bacterium if the HrtAB pump were 

pharmacologically inactivated. This strategy could also pair well with small molecule 

activation of heme synthesis, which has been developed [99]. In terms of heme sequestration 

proteins, it has been difficult to fully interpret the contribution of heme sequestration 

because additional properties like oxygenase (PhuS and ChuS) and DNA binding (ShuS) 

have been observed. Finally, the role of heme oxygenases in resisting heme stress has not 

been well studied.

Concluding Remarks

Heme synthesis, uptake, utilization, and toxicity have been an area of intense investigation in 

bacterial pathogenesis. As outlined throughout, there are many additional questions in this 

field. Some of the most fundamental aspects of heme homeostasis have not been studied in 

detail. For most pathogens, regulation of heme synthesis is unclear and the contribution of 

heme synthesis to infection has not been investigated. For organisms that acquire and 

synthesize heme, a full model of preference between exogenous and endogenous sources is 

unknown. Based on limited evidence, exogenous heme is preferred when available, but is 

there a division between exogenous and endogenous heme in the partitioning to 

hemoproteins and heme oxygenases? Also, when heme enters the cell or is synthesized, does 

it exist in the free state or are there heme chaperones analogous to metallochaperones?

As the heme uptake, synthesis, and toxicity processes are well conserved and vital to 

bacterial pathogenesis, they present an opportunity for therapeutic intervention. As the field 

gains further insight into these processes, hopefully academia and industry will pursue small 

molecule interventions and vaccine candidates for the treatment of the bacterial pathogens 

outlined in this review, many of which are recalcitrant current treatment options.
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Hb hemoglobin

Hp haptoglobin

ALA δ-aminolevulinic acid
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HMB hydroxymethylbilane

Hx hemopexin

SCV small colony variant

PPIX protoporphyrin IX

NEAT near-transporter domain

Isd iron-regulated surface determinants

TCS two-component system
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Fig. 1. Bacterial heme biosynthesis
The heme synthesis pathway of most bacteria begins with charged glutamyl-tRNAGlu to 

form the universal precursor ALA, and coproporphyrinogen III isformed through a series of 

conserved enzymatic steps. The classical pathway (blue) forms heme through the 

protoporphyrinogen IX intermediate; most organisms including Gram-negative bacteria and 

eukaryotes use this pathway. The noncanonical pathway (green), performed by most Gram-

positive bacteria, produces heme through the coproporphyrin III intermediate. Shown for 

each step is the enzyme name followed by the common protein annotation in bold.
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Fig. 2. Gram-positive heme uptake systems
The iron-regulated surface determinant (Isd) systems for heme acquisition in S. aureus and 

B. anthracis, as well as the non-Isd systems of C. diphtheriae are diagrammed. Host Hb, Hp-

bound Hb, and free heme (Fe-containing ring) can serve as heme sources during infection. 

(a) In S. aureus, IsdH is the primary Hp–Hb receptor and IsdB is the principle Hb receptor. 

Both are sortase-linked on the surface of the cell wall, bind host hemoproteins with NEAT 

domains, and extract heme using additional NEAT domains. IsdA can bind free heme or 

accept heme from IsdB and IsdH. Heme is transferred to IsdC, which is embedded in the cell 

wall and transits heme to the membrane complex IsdDEF. IsdDEF transports heme to the 

cytoplasm for utilization intact or for degradation by the heme oxygenases IsdG/I. (b) 

Similarly, B. anthracis uses Isd proteins to acquire heme. IsdX1 and IsdX2 are secreted 

hemophores that bind Hb, Hp–Hb, or free heme as depicted. IsdX2, which has five NEAT 

domains, may also serve as a heme storage protein. Additionally, the sortase anchored Hal 

serves as a Hb receptor on the cell surface and uses its NEAT and leucine-rich repeat 

domains to acquire heme. BslK is cell wall associated and binds heme via its NEAT domain. 

IsdC transports heme to the IsdDEF membrane importer for utilization or degradation by 

IsdG. (c) C. diphtheriae utilizes a unique set of heme uptake proteins for heme utilization. 

HtaA is a cell wall spanning lipoprotein that can acquire heme from Hp–Hb in conjunction 

with ChtA or ChtC. HtaB can bind free heme or accept heme transfer from HtaA and 

transfers heme to the HmuTUV membrane transporter. A portion of HtaA may also serve as 

a secreted hemophore. C. diphtheriae HmuO heme oxygenase can liberate iron from 

imported heme.
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Fig. 3. Gram-negative heme acquisition
The heme uptake systems as described in the text are depicted. (a) P. aeruginosa PhuR binds 

heme at the outer membrane and imports heme into the periplasm in a TonB-dependent 

manner. Heme is transferred to PhuT, which subsequently transfers heme to the PhuUV 

inner-membrane transporter for transit into the cytoplasm. There, PhuS binds and stores 

heme or transfers heme to the heme oxygenase HemO for iron utilization. P. aeruginosa also 

secretes the hemophore HasA which binds Hb or free heme, and transfers heme to the TonB-

dependent outer-membrane receptor HasR. The fate of HasR imported heme is not fully 

understood, but may be trafficked to PhuTUV for import. HasS serves as an inner-membrane 

sensor and regulates expression of the has and phu systems through the sigma factor HasI 

(not shown). (b) H. influenzae can utilize a variety of host heme sources. Secreted HxuA 

specifically binds hemopexin (Hx), and heme from Hx is transferred into the periplasm 

when HxuA interacts with HxuBC at the outer membrane. Independent of HxuA, HxuC can 

also import heme from serum albumin (Alb). HgpA, HgpB, and HgpC are highly similar 

outer-membrane receptors for heme acquisition from Hb complexed with Hp, free Hb, and 

Hp bound to myoglobin (not shown). The inner-membrane heme transporter has not been 

clearly defined, but the Hip system has been implicated for heme transit into the cytoplasm. 

Interestingly, all imported heme may be utilized intact, as no heme oxygenase has been 

identified yet. (c) The N. meningitidis outer-membrane, TonB-dependent complex of 

HpuAB can acquire heme from Hb and Hp–Hb and bring heme into the periplasm. 

Additionally, the HmbR outer-membrane receptor specifically extracts heme from Hb for 

transport. The identity of the inner-membrane heme transporter is unclear at this time, but 

heme somehow enters the cytoplasm where it can be utilized or degraded by the HemO 

heme oxygenase.
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Fig. 4. Strategies to avoid heme toxicity
Heme toxicity (center) is a combination of heme damage to membrane lipids, membrane 

proteins, and DNA, and oxidative damage. Oxidative damage is mediated by the production 

of superoxide dismutase ( ), hydroxyl radical (HO•), and hydroperoxyl radical (HOO•). 

To reduce heme damage, many Gram-positive organisms (the S. aureus system is 

diagrammed here) encode the HrtAB efflux pump. The HssRS two-component system 

responds to excess heme and activates the transcription of the hrtAB system, thus preventing 

the accumulation of toxic levels of heme. Alternatively, Gram-negative organisms rely on 

intracellular heme sequestration proteins (PhuS of P. aeruginosa, HemS of Yersinia), the 

periplasmic heme-binding, copper and zinc dependent superoxide dismutase (Cu,Zn SOD, 

of H. ducreyi), and systems that respond to hydrophobic molecules, including heme 

(MtrCDE efflux and Ght of Neisseria).
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