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Abstract

The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated
with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate
cells” apoptosis and to measure the effects of expression of specific mediators, such as NF-xB (nuclear factor kappa-light-chain-enhancer of acti-
vated B cells), Bcl-2 (B-cell lymphoma 2), SMAG/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with
low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration
of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-xB signalling pathways is supported by our
results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-«B. It has been argued that one
of the pathways leading to the activation of NF-xB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence
suggests that although in limited doses, endogenous ROS may play an activating role in NF-xB signalling, while above a certain threshold, they
may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-kB exists and recent studies have shown that
ROS activity is subject to negative feedback regulation by NF-xB, and that this negative regulation of ROS is the means through which NF-«xB
counters programmed cells.
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Introduction

Anabolic androgenic steroids (AASs) are a group of synthetic
compounds obtained by selective chemical manipulations of the 19-
carbon testosterone molecule that affect the pharmacokinetics as well
as the ratio of the anabolic/androgenic effect [1]. Misuse of AASs by
athletes is widely acknowledged, and worldwide non-medical use is
increasing in adolescents and adults, typically in individuals seeking
physical strength, enhanced appearance and performance [2-8].
AASs can be legally prescribed to treat conditions resulting from ster-
oid hormone deficiency, such as delayed puberty and hypogonadism,
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as well as other diseases, such as bone marrow failure syndromes,
bone mineralization and some muscle-wasting disorders [9].
Although the potential effects on the nervous system have not
been well defined, a wide range of physical and psychiatric adverse
effects has been described in the literature [10, 11]. Early behavioural
effects include increased confidence, energy and motivation accom-
panied by irritability and agitation [12, 13], whereas prolonged use is
usually associated with loss of inhibition and impulsive and markedly
aggressive behaviour [13] by significantly modifying both serotoner-
gic and noradrenergic neurotransmission [14]. Currently, it is not yet
fully clarified whether AASs are toxic to neurons and whether their
abuse is a risk factor for chronic neurodegenerative disorders,
although growing evidence supports a neurodegenerative potential
for AASs [15, 16]. The neurodegenerative effects of long-term AASs
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abuse seem to be a phenomenon that has not yet been taken into
consideration, probably because of the fact that most of the AAS
users are still under the age of 50 and even if they might have
incurred in neurotoxic effects, they are still too young to exhibit gross
cognitive or motor deficits [17], even though neuronal loss has been
observed on human AASs abusers [18].

Although the origin of AASs neurodegeneration might be multi-
factorial, oxidative stress could play a critical role. In fact, oxidative
stress has been involved in many neurodegenerative human diseases,
such as Alzheimer’s disease, Parkinson’s disease (PD), Huntington’s
disease, amyotrophic lateral sclerosis and HIV-associated neurocog-
nitive disorder [19-23], and the potential effects of disrupting the
redox signalling of AASs is evident and this kind of toxicity occurs in
numerous organs and systems [24]. In addition, recent animal stud-
ies have shown that increased neuronal susceptibility to apoptotic
stimuli could explain the neurotoxic effects of AASs [25]. Long-term
administration of certain AASs leads to behavioural changes in the
central nervous system in rodents [26-32], which may underlie some
of the behavioural changes that are observed in AASs abusers [33].

As there is growing evidence of the potential role of oxidative
stress and apoptosis for AASs-mediated neurotoxicity, the aim of this
study was to evaluate the role played by oxidative stress in the apop-
totic response in different brain areas of rats chronically treated with
supra-physiological doses of nandrolone decanoate (ND), one of the
most frequently abused AASs.

Materials and methods

The experiments were performed on 40 adult male Wistar rats (Wistar,
Charles River, Lecco, Italy) weighing 200-250 g (10 weeks old). All
experimental procedures were in compliance with the EEC Directive
(86/609/EEC) on the protection of animals used for experimental and
other scientific purposes, and were approved by the Ethical Committee
for the Use of Laboratory Animals of the University of Siena. All
efforts were made to minimize animal suffering and to reduce the
number of animals used.

At the beginning of the experiments there was no statistically signifi-
cant difference in animals’ bodyweight within the group (P > 0.20), as
well as between the groups (P > 0.30). All animals were housed in four
per cage (55 x 35 x 30 cm), under standard conditions (23 + 2°C,
50-60% relative humidity, 12 hr/12 hr light/dark cycle with lights on at
08:00, and with free access to food and water). The animals were ran-
domly divided into two groups A: ND treated group and B: control
group (submitted to vehicle injection; peanut oil with 10% of benzoic
alcohol). Steroid and vehicle were administered by a single intramuscu-
lar injection twice a week for 8 weeks. The rats of group A (20 animals)
received 3.75 mg ND/kg/week (1.875 mg/kg twice per week). The rats
of group B (20 animals) received vehicle, twice a week. One week after
the last injection, the rats were killed by decapitation, and blood was
immediately collected. The brains were excised and were placed dorsal
side up in an ice-chilled rat brain matrix (World Precision Instruments,
Inc., Aston, Stevenage, UK) with slits spaced at 1 mm. Using an ice-
chilled razor blade, the target regions were dissected according to the
atlas of Paxinos and Watson. In each case, samples from (pre) frontal
cortex (PFC), striatum (S), hippocampus (Hipp) and cerebellum (Cer)
were taken. A portion of each sample was immediately frozen in liquid
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nitrogen and stored at —80°C. The remaining samples were fixed in
10% buffered formalin for 48 hrs.

Biochemical analysis

Malondialdehyde assessment

The extent of lipid peroxidation, a marker of oxidative stress, in rat
brain areas was estimated using malondialdehyde (MDA) level calcula-
tion. Samples of brain areas were homogenized in a 0.04 M K*-phos-
phate buffer (pH 7.4) containing 0.01% butyl hydroxytoluene (1:5 w/v,
0°C) to prevent the artificial oxidation of polyunsaturated free fatty acids
during the assay. This homogenate was deproteinized with acetonitrile
(1:1) and then centrifuged at 3000 x g for 15 min. The supernatants
were used for MDA-analysis after pre-column derivatization with 2,4-
dinitrophenylhydrazine. The MDA-hydrazone was quantified by isocratic
reversed-phase high-performance liquid cromatography (HPLC) method
with UV detection as described by Shara ef al. [34].

Histopathological study

Paraffin-embedded brain tissue specimens were sectioned at 4 um and
stained with haematoxylin and eosin. In addition, an immunohistochemi-
cal investigation was performed with antibodies anti-NF-«xB (nuclear fac-
tor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell
lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of
caspases/direct 1AP-binding protein with low PI), VMAT-2 (vesicular
monoamine transporter 2) and apoptosis with TUNEL assay. We used
3-um-thick paraffin sections mounted on slides covered with 3,
amminopropyl-triethoxysilane  (Fluka, Buchs, Switzerland). A pre-
treatment was necessary to facilitate antigen retrieval and to increase
membrane permeability to the antibodies: for NF-xB (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), boiling 0.25 M ethylenediaminete-
traacetic acid buffer; for Bcl-2 (Millipore-Upstate, Temecula, CA, USA),
SMAC/DIABLO (Millipore—Chemicon) boiling in 0.1 M citric acid buffer,
and for antibody anti-VMAT2 (Chemicon), 5 min. proteolytic enzyme at
20°C (Dako, Copenhagen, Denmark). For TUNEL assay (Millipore—
Chemicon), we used TdT enzyme: the sections were immerged in
proteinase K (20 pg/ml of TRIS) for 15 min. at 20°C. The primary anti-
body was applied in a 1:50 ratio for NF-xB and Bcl-2. The incubation of
the primary antibody was for 120 min. at 20°C. For TUNEL assay the
sections were covered with the TdT enzyme, diluted in a ratio of 30% in
reaction buffer (Apotag Plus Peroxidase In Situ Apoptosis Detection Kit;
Chemicon) and incubated for 60 min. at 38°C. The detection system uti-
lized was the LSAB+ kit (Dako), a refined avidin-biotin technique in
which a biotinylated secondary antibody reacts with several peroxidase-
conjugated streptavidin molecules. The positive reaction was visualized
with 3,3-diaminobenzidine peroxidation, according to standard methods.
Then, the sections were counterstained with Mayer’'s Haematoxylin,
dehydrated, cover-slipped and observed under a Leica DM4000B optical
microscope (Leica, Cambridge, UK). The samples were also examined
under a confocal microscope, and a three-dimensional reconstruction
was performed (True Confocal Scanner; Leica TCS SPE). For semiquan-
titative analysis, slides were scored in a blinded manner by two
observers. Staining pattern within each sample was assessed semiquan-
titatively in the scale 0-5 as follows: —: no immunoreactivity (0%); +:
mild immunopositivity in scattered cells (10%); ++: immunopositivity in
up to one-third of cells (33%); +++: immunopositivity in up to one half

© 2016 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



of cells (50%) and ++++: strong immunopositivity in the majority or in
all cells (100%).

Western blot analysis

Western blot analysis was performed. Approximately, 100 mg of frozen
brain tissue was dissected and immediately transferred to the RIPA buf-
fer with a protease inhibitor cocktail, and homogenized on ice, utilizing
the homogenizer Silent Crusher. The homogenate was centrifuged
(12,000 x g for 10 min. at 4°C). The supernatant was collected, esti-
mated by Qubit Fluorometer (Invitrogen, Thermo Fisher Scientific, Wal-
tham, MA, USA), and boiled for 5 min., at 95°C. Brain total protein
extracts (approximately 40 pg/lane) were run on 4-15% SDS PAGE at
80 V for about 2.5 hrs. For Western blot analysis, proteins from SDS
gels were electrophoretically transferred to nitrocellulose membranes in
mini trans blot apparatus (1 hr at 250 mA). Non-specific binding was
blocked by incubating membranes in Western blocker solution for 1 hr
at room temperature. The membranes were incubated with primary anti-
bodies anti-diluted in Western blocker solution, in a 1:400 ratio over-
night at 4°C. Blots were washed with PBS (Tween-20) and then
incubated for 1 hr at room temperature with HRP (horseradish peroxi-
dase)-conjugated secondary antibodies diluted in Western blocker solu-
tion, in a 1:2000 ratio. Membranes were washed with PBS/Tween-20,
and the immune reaction was developed in IMMUNOSTAR Kit Western
C (Bio-Rad Laboratories, Segrate, Milan, Italy) and then visualized by
chemiluminescent detection methods. The light was then detected by a
photographic film. The image was analysed by Versadoc (Bio-Rad
Laboratories), which detected the chemiluminescent blots of protein
staining.

Statistical analysis

Values are presented as mean S.D. The unpaired two-way Student’s
+test was used to compare the results obtained for ND treated rat
group with the control group. P < 0.05 was accepted as indicative of a
significant difference between the two groups.

Results

MDA evaluation

The MDA levels were used as a lipoperoxidation index and evidence
of oxidative damage. The results obtained showed a strong and sig-
nificant increase in MDA concentrations (Table 1) in all brain areas
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examined respect to controls: + 347% PFC, + 669% S, + 446% Hipp,
+86% Cer (Fig. 1).

Histopathological results

The microscopic evaluation of the sections stained with haematoxylin
and eosin revealed in the treated group: red neurons, nuclear shrink-
age and perivascular haemorrhages.

The immunohistochemical study of the samples, for each
antibody revealed the immunohistochemical findings and gradation of
the immunohistochemical reaction were described with an ordinal
scale and the median value was reported (Table 2).

NF-xB
Anti-NF-xB provided strong neuronal positive reaction in brain sam-
ples of the treated rats compared to the control group, particularly in
PFC, S and Hipp samples. Cerebellum areas had a weaker positivity
(Fig. 2).

Bel-2

We found a strong positive reaction to the Bcl-2 in ND group com-
pared to control rats. In detail, our findings revealed that PFC, S and
Hipp samples had a stronger positive reaction, whereas a weaker pos-
itive reaction was detected in cerebellum (Fig. 3).

SMAC/DIABLO

A strong localization on the dendrites and neuronal cell body positivity
located in PFC, S and Hipp areas was revealed for treated rats,
compared to control group (Fig. 4).

VMAT-2

Anti-VMAT-2 immunopositivity was significantly weaker on the den-
drites and neuronal cell bodies of treated rats compared to controls.
In particular the most significant difference was found in S and Hipp
samples (Fig. 5).

TUNEL

The immunohistochemical study revealed an intensive positive result
to TUNEL assay. The number of TUNEL positive cells that showed the
typical morphological features of apoptosis (chromatin condensation,
cytoplasmatic blebbing and apoptotic bodies) significantly increased
in PFC, S and Hipp when compared with the control group. The
neuronal nuclei labelled by TUNEL assay showed an intense,

Table 1 MDA (nmol/mg tissue) in rat brain areas after administration of nandrolone decanoate 1.875 mg/kg twice per week by intramuscular

injection for 8 weeks (each value is the mean + S.D. of three animals)

Cont PFC Nan PFC Cont Str Nan Str Cont Hipp Nan Hipp Cont Cer Nan Cer
Mean 815 15.5 2.61 20.1 2.7 14.6 5.8 10.8
S.D. 1.13 4.38 0.98 5.69 1.29 5.21 2.98 3.7
PFC and Str P < 0.01 versus Cont; Hipp P < 0.02 versus Cont; Cer P < 0.05 versus Cont.
Cont: Control; Nan: nandrolone; PFC: frontal cotex; Str: striatum; Hipp: hippocampus; Cer: cerebellum.
© 2016 The Authors. 603
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Table 2 Responses NF-kB, Bcl-2, VMAT2 and apoptosis with TUNEL assay in brain specimens
Cont PFC  Nan PFC  Cont Str  Nan Str  Cont Hipp Nan Hipp  Cont Cer  Nan Cer Bl el
Nan versus Cont

Anti-NF-«B i R 3 HHE + HE 3 3 g
Anti-Bcl-2 + -+ + -+ + +++ + + DA
TUNEL assay 4 A 4 A A A= 4 4 *hE
Anti-VMAT2 SRias + AHEF s A 4 4 3 R
SMAC/DIABLO  + A e A= = A= 4 4 Hokk

NS: P> 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001. Intensity of immunopositivity was assessed semiquantitatively in the scale 0-5 as fol-
lows: —: no immunoreactivity (0%); +: mild immunopositivity in scattered cells (10%); ++: immunopositivity in up to one-third of cells (33%);
+++: immunopositivity in up to two-third of cells (70%) and ++++: strong immunopositivity in the majority or all cells (100%). In cases of

divergent scoring, a third observer decided the final category.

Cont: Control; Nan: nandrolone; PFC: frontal cortex; Str: striatum; Hipp: hippocampus; Cer: cerebellum.

* wx #%k g the value of P. It is an international standard.

+, ++, +++, ++++ is the value of semiquantitative analysis (see the text)

widespread, positive reaction in the treated group, especially in PFC,
S and Hipp samples. Spotted positive nuclei were observed in cere-
bellum samples and in the control group (Fig. 6).

Western blot analysis
Furthermore, the induction of expression levels was quantified by
Western blot analysis. NF-xB revealed an intense and massive

positive reaction in ND group. Western blot analysis detected the
chemiluminescent blots of NF-kB, Bcl-2 and SMAG/DIABLO in the
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treated group; a weak reaction was observed in the treated group for
VMAT-2.

Furthermore, the induction of these protein expression levels was
quantified. The results were as follows: NF-xB/p-actin 0.60, Bcl-2/B-
actin 0.60 and SMAC/DIABLO/B-actin 0.50 for nandrolone-treated
group A; VMAT-2/B-actin 0.20 for the same ND group, matching per-
fectly with the immunohistochemistry results (Figs 2-6).

Control groups did not show any immunoreactivity for the
studied markers, as well as Western blot analysis (reactions were
not present), except for VMAT-2. Our results are summarized in
Table 2.

© 2016 The Authors.
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Fig. 2 Strong and uniform NF-kB neuronal
positivity was found in the frontal cortex
(A), striatum and hippocampus (B), of the
nandrolone group. Western blot analysis
detects the chemiluminescent blots of NF-
kB (C). (D) control group with negative
results.

Fig. 3 Confocal laser scanning microscopy
showed markedly Bcl-2 positive cytoplas-
mic reaction (in brown) on the striatum
(A) and hippocampus (in brown) (B) in
rats after nandrolone treatment. (G) Wes-
tern blot analysis detects the chemilumi-
nescent blots of Bcl-2 in the treated
group. (D) control group with negative
results.

Discussion

In this study, we have investigated the hypothesis that high, chroni-
cally administered doses of ND could induce deleterious effects in the
brains of rats through a strict mutual crosstalk among apoptotic
pathways activation, neuronal degeneration and oxidative stress
unbalance. The results of the present study indicate that a long-term

© 2016 The Authors.
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administration of ND, an AAS, promotes oxidative injury in rat brain
specific areas. The main metabolites are 3o-hydroxy-5p-estran-17-one
(3-norandrosterone) and 3a-hydroxy-5p-estran-17-one (2-noretio-
cholanolone) [35]. The substitution of a methyl group to the carbon
atom at position 19 by a hydrogen atom in the testosterone molecule
changes considerably the ratio between anabolic and androgenic
activities, increasing the concentration of the former compound [35].
The genotoxic activity of steroids is also because of an indirect
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process that takes place in the redox cycle, as well as in the produc-
tion of oxygen reactive types [36, 37]. Thus, the metabolic activation
of testosterone derivatives leads to the formation of free radicals and
consequently to the induction of oxidative stress. The lipid peroxida-
tion observed in all brain areas tested, as an index of neuronal
oxidative injury, is the evidence of this effect. The possible conse-
quence on behaviour, learning, memory and cognitive abilities must
be considered.
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Fig. 4 A strong SMAC/DIABLO localization
on the dendrites and neuronal cell body
positivity located in the frontal cortex (A),
striatum (B) and hippocampus areas was
revealed for treated rats. (C) Chemilumi-
nescent blots of SMAC/DIABLO in the trea-
ted group. (D) Control group with negative
results.

Fig. 5VMAT-2 weaker reactions on the
dendrites and neuronal cell bodies of trea-
ted rats compared to controls (D). In par-
ticular the most significant difference was
found in striatum (A) and hippocampus
(B) samples. (C) Western blot analysis
detects the chemiluminescent blots of
VMAT2 in the treated group.

Our data revealed a strong increase in apoptotic death in brain
specimens of treated rats when compared to the control group. Not
surprisingly, we found that apoptotic death as indicated by the number
of TUNEL+ cells was mostly exacerbated in brain areas of treated rats
where the greatest densities of androgen receptors (ARs) were found,
namely the hippocampus and deep layers of cerebral cortex where ARs
were also localized [38-41]. As expected fewer TUNEL-positive apop-
totic cells were observed in cerebellum samples (P < 0.05).

© 2016 The Authors.
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Fig. 6 The neuronal nuclei labelled by
TUNEL assay showed an intense, wide-
spread, positive reaction in the treated
group, especially in the frontal cortex:
confocal laser scanning  microscopy
shows a marked positive nuclear reaction
(in green apoptotic bodies) (A), and hip-
pocampus (B) samples. Spotted positive
nuclei were observed in cerebellum sam-
ples (in bleu) (C) and in the control group
(arrow) (D).

The mechanisms of the neuropathological effects of AASs have
not yet been completely clarified and are still largely unexplored; how-
ever, evidence has shown the recurrence of increased neuronal sus-
ceptibility to apoptotic stimuli as a source of the neurodegenerative
and neurotoxic potential of these compounds [1]. It is well known that
AASs can exert apoptotic stimuli in various tissues and organs [42,
43], and growing evidence is emerging that apoptotic mechanisms
are also partly involved in AASs induced neurotoxicity. Anabolic
androgenic steroids mechanisms are similar to the other steroid
hormones. In particular they exert their effects by binding to ARs at
cellular level, translocating to binding sites on chromatin, promoting
gene transcription, stimulating the production of mRNA and ulti-
mately increasing protein synthesis [42]. This classic genomic model
for steroid hormone action presumes that steroid hormones can
freely cross the plasma membrane, enter the cytoplasm, and bind to
and activate specific intracellular steroid receptor proteins [44]. An
apoptotic effect of high dosages of AASs acting on an AR-mediated
genomic pathway has been experimentally demonstrated in dopamin-
ergic neurons (N 27 cells) expressing ARs [45]. In this experimental
model, androgens enter the cell, bind to the classical intracellular ARs
and induce oxidative stress leading to mitochondrial dysfunction.
Release of cytochrome ¢ from the mitochondria activates the apop-
totic caspase cascade. This effect has been abrogated by the AR
antagonist flutamide [25, 45].

In addition to the classical intracellular AR via, AASs can exert
an apoptotic effect also through a non-genomic pathway, involving
the rapid rise of intracellular calcium concentration ([Ca]i) [46].
The rapidity of the calcium modulation response (from seconds to
minutes) leads us to presume that the androgen must bind to
some sort of receptor at the surface of the cell to achieve this
result [44]. Interestingly, not all cell types that demonstrate a rapid

© 2016 The Authors.

J. Cell. Mol. Med. Vol 20, No 4, 2016

androgen response express the classic nuclear ARs or are blocked
by ARs antagonists. Therefore, it is not yet known whether the
receptor located at the cell surface is the classic intracellular AR
coupled to other signal transduction machinery located in the
membrane or a unique protein, capable of binding androgens and
initiating signal transduction cascade [46]. Effects of AASs on intra-
cellular Ca®* represent a classic ‘non-genomic’ effect; Ca>* oscilla-
tions are a key point in neuronal apoptosis [47, 48]. High, supra-
pharmacological doses of testosterone for relatively short periods
initiate an apoptotic programme in neuroblastoma cells through a
rapid overactivation of intracellular Ca®* signalling pathways [49].
This rapid effect of testosterone on intracellular Ca®* signalling in
neurons occurs in the absence of ARs [33, 49]. The apoptotic role
of AASs is further supported by the study of Tugyan et al. [50]
who, in an animal model (rats), demonstrated that ND caused a
significant increase in apoptotic cells and a significant decrease in
neuronal counting in the parietal cortex, prefrontal cortex and hip-
pocampal regions of the brain. Neuronal death was induced in the
cortical neuronal cultures obtained from rats using high doses of
nandrolone. The glial component is important in AASs-induced neu-
rotoxicity: when ND was administered to mixed (neuronal and glial
cells) cortical cell cultures, low doses of the drug were enough to
initiate the apoptotic death programme. Similarly in cultures of pure
neurons, this toxic effect was inhibited by ARs antagonist flutamide
[25]. Conclusively, ND appears to be more potent in neurotoxicity
when the glial component is present in cell cultures, suggesting
that androgen-induced brain inflammation through the induction of
NF-kB [51] could synergize with androgen in reducing neuronal via-
bility [25]. These observations are consistent with our findings of
NF-xB immunoreactivity that showed a strong positive reaction in
brain samples of the treated rats compared to control group, par-
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ticularly in PFC, S and Hypp samples. The NF-xB family is a family
of transcription factors that are central, co-ordinating regulators of
immunity, inflammation, development, growth and cell survival. In
non-stimulated cells, most of the NF-xB complexes lie latent in the
cells’ cytoplasm interacting with 1kB family inhibitory proteins. A
great number of stimuli, including pro-inflammatory cytokines, bac-
terial products and stress, can activate NF-xB from these inactive
cytosolic pools. When adequate stimuli occur, the IkBs proteins are
quickly phosphorylated by the activating kB kinase complex. Phos-
phorylation of inhibitory IxB proteins initiates their ubiquitination
and subsequent proteosomal degradation, followed by the release
and nuclear translocation of active NF-xB dimers to regulate
expression of target genes, among which are the encoding numer-
ous cytokines, adhesion molecules, growth factors, immune recep-
tors and prosurvival anti-apoptotic proteins [52-60]. The NF-xB
system is widely expressed in the central nervous system (CNS).
Damage-associated molecular patterns, pathogen-associated molec-
ular patterns, cytokines, chemokines, neurotransmitters, neu-
rotrophic factors and neurotoxins are known to stimulate NF-xB
activation in the CNS [61], and the IKK/NF-xB signalling system is
thought to be critically involved in the pathogenesis of various neu-
rological diseases [56, 62, 63]. One of the earliest recognized
unconventional functions of the apoptotic apparatus is represented
by the death-receptor-mediated activation of NF«B-regulated inflam-
mation [64]. NF-xB is actually regarded as the matchmaker
between apoptosis and inflammation [65]. Ligand-bound death
receptors, in particular TNFR1, can potentially trigger a wide range
of cellular responses ranging from cell death, because of extrinsic
apoptosis or regulated necrosis, to NF-xB activation. Depending on
the cell type and specific context, NF-kB can transactivate genes
with anti-apoptotic functions, such as BCL-2, or leading to the
production of pro-inflammatory mediators including tumour necro-
sis factor-o. and interferon-y [58]. Many other components of the
extrinsic apoptotic pathway, such as some caspases, are also
involved in the inflammatory response. Nevertheless, the exact role
of the IKK/NF-xB system in CNS pathology is not yet fully under-
stood, it is argued that because of its pro-inflammatory function,
NF-kB activation is able to trigger neuronal dysfunction, ageing and
cell death, thereby increasing the severity of many CNS diseases
[62, 66-68]. Although this aspect has not yet been investigated, it
is tempting to speculate that the neurotoxic effect of high doses of
AAS can be mediated also by an inflammatory response through
the pro-inflammatory activity of some components of the apoptotic
machinery. A link between oxidative stress and NF-xB signalling
pathways is supported by our results. In addition to high levels of
oxidative stress, we consistently observed a strong immunopositiv-
ity to NF-xB. It has been argued that one of the pathways leading
to the activation of NF-xB could be under reactive oxygen species
(ROS)-mediated control. In fact, growing evidence suggests that,
although in limited doses, endogenous ROS may play an activating
role in NF-xB signalling, above a certain threshold, they may nega-
tively impact upon this signalling [96]. Reactive oxygen species are
thought to have an inhibitory effect on NF-xB activity. However, a
mutual crosstalk between ROS and NF-xB exists and recent studies
have shown that ROS activity is subject to negative feedback regu-
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lation by NF-xB, and that this negative regulation of ROS is the
means through which NF-xB counters programmed cell [69].

Bcl2 family members regulate the mitochondrial pathway of apop-
tosis. They are either pro apoptotic (Bak or Bax) or anti-apoptotic
(Bcl2 or Bel XL), both of which are essential for apoptosis driven by
the mitochondrial pathway. These proteins play a role in the
permeabilization of the mitochondrial outer membrane on receiving
apoptotic signals. Permeabilization leads to the release of cytochrome
¢, formation of apoptosome complex, activation of caspases, thus
triggering  morphological changes like membrane blebbing
and nuclear fragmentation. Cell survival or apoptosis relies on the del-
icate balance between the up- and down-regulation of Bcl2 and Bax
[70, 71]. Bax up-regulation leads to enhanced susceptibility to
apoptosis; on the contrary, Bcl2 up-regulation leads to neuronal sur-
vival [72].

Our findings that chronic exposure to ND can impact VMAT-2
levels are of interest. In particular, exposure to ND induced a signifi-
cant (P < 0.001) decrease in VMAT-2 immunoreactivity as assessed
in tissue samples prepared from rat brain. VMAT-2 is an important
regulator of intra-neuronal monoamine concentrations and disposi-
tion. It has been shown to be responsible for sequestrating cyto-
plasmatic neurotransmitters such as dopamine (DA) within synaptic
vesicles. Under physiological conditions, DA is largely confined to
synaptic vesicles where it is protected from metabolic breakdown.
Sequestration of DA into vesicles provides a protective environment
against the intracellular production of ROS. In the cytoplasm, free
DA can in fact give rise to the formation of cytotoxic free radicals.
Oxidative metabolites of DA may conjugate with «-synuclein to form
an adduct of DA-a-synuclein, which may stabilize the toxic form of
a-synuclein through a covalent bound to DA quinone [73], while
also promoting selective neurotoxicity [74]. Normally, the concen-
tration of cytoplasmic DA is kept at a minimum by continuous
pumping activity of VMAT-2 [75]. Cytosolic DA increases levels of
DA-generated oxy radicals ultimately resulting in degeneration of
DAergic neurons. Moving from the study of Cubells et al. [76], it
has been argued that the redistribution of DA from a smaller envi-
ronment inside synaptic vesicles to oxidizing environments outside
vesicles favoured the formation of ROS within the DA neurons
which contribute to DA loss [77]. Therefore, we can say that a
change in DA storage and release machinery is associated with DA
neurons loss, probably because of a caspase-independent ROS-
mediated apoptotic pathway [78].

VMAT-2 is currently considered a marker of dopaminergic
neurons integrity with neuroprotective function. Recently, its role in
neurodegenerative disorders, such as PD, has been unravelled [79,
80], thus focusing on the fact that VMAT2 defects may be an early
abnormality promoting mechanisms leading to nigrostriatal DA
neuron death in PD. Studies have indicated that several exogenous
substances influence VMAT-2 [81]. In particular, psycho-stimulants,
both the releasers (i.e. amphetamine analogous) and uptake blockers
(i.e. cocaine-like drugs) interfere with the activity and sub-cellular dis-
tribution of monoamine transporters (VMAT-2 and DAT — dopamine
transporter), and this mechanism is likely to be related to the neuro-
toxicity shown by these substances [81]. Several investigators have
assessed the impact of cocaine on cytoplasmic vesicles, wherein it
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Fig. 7 Mechanisms of the neuropathological effects of AASs: evidence has shown the recurrence of increased neuronal susceptibility to apoptotic
stimuli as a source of the neurodegenerative and neurotoxic potential of these compounds. ROSs represent a serious hazard for cells, because they
are powerful oxidizing molecules able to damage proteins, lipids and DNA. ROSs act as second messengers in various biological responses, among
which the induction of programmed cell death is of paramount importance in our understanding of many common diseases and degenerative condi-
tions. Growing evidence suggests that endogenous ROS may play an activating role in NF-kB signalling, and above a certain threshold, they may
negatively impact upon this signalling. ROS are thought to have an inhibitory effect on NF-kB activity.

was determined that cocaine administration increases DA transport
into this cytoplasmic vesicular fraction [82]. This effect was attributed
to a redistribution of VMAT-2 and associated vesicles from synapto-
somal membranes into the cytoplasm [83], thus elucidating the
mechanisms whereby cocaine alters DA signalling. Psycho-stimulants
like methamphetamine which act as releasers of DA by disrupting
vesicular pH gradients and allowing vesicular DA to redistribute into
the cytoplasm [75, 81], have been demonstrated to decrease striatal
VMAT-2 ligand binding [81]. Administration of several other agents
causing DA release decrease VMAT-2 activity and/or immunoreactiv-
ity in a similar manner; these include a single administration of AMPH
[81] and repeated injections of MDMA [84]. These drugs can
potentiate the oxidative mechanism of DA. VMAT-2 is able to take up
methamphetamine in monoaminergic vesicles, inducing the release of
DA to the cytosol which is important for methamphetamine neurotoxi-
city. The role of cytosolic DA in methamphetamine neurotoxicity has
been supported by the fact that the inhibition of DA synthesis
protects against methamphetamine neurotoxicity while the inhibition
of VMAT-2 and monoamine oxidase exacerbate methamphetamine
neurotoxicity [85].

On the basis of the data presented here and on our findings
showing a significant decrease in VMAT 2 immunoreactivity in ND
treated rats compared to control rats, we infer that ND chronically
administered could induce alterations in the VMAT machinery and
alter the VMAT-2-mediated DA uptake into monoaminergic vesicles,
which is known to be an important neuroprotective mechanism in
dopaminergic neurons.

Given previous experimental findings of ROS involvement in
pathways leading to the activation of programmed cell death [86,
87], in our experiment, oxidative stress involvement was evaluated
in different brain areas where apoptosis was detected and

© 2016 The Authors.

quantified. Our results clearly show that supra-physiological doses
of ND administered chronically are able to disrupt redox metabo-
lism in the brain, characterizing an oxidative stress state in all the
studied cerebral areas. The low significant statistical difference of
oxidative stress marker (MDA) in cerebellum specimens of treated
rats compared to control group may likely reflect the high per-
centage of cerebellar granule cells that have been demonstrated
less vulnerable to oxidative stress-induced cell death, via a mecha-
nism involving an up-regulation of the cellular antioxidant defence
[88].

Conclusions

Thus, these findings support the idea that oxidative stress plays a
pivotal role in AASs-induced neurotoxiticy. ROS represent a seri-
ous hazard for cells because they are powerful oxidizing molecules
able to damage proteins, lipids and DNA [89, 90]. Reactive oxygen
species act as second messengers in various biological responses,
among which the induction of programmed cell death is of para-
mount importance in our understanding of many common dis-
eases and degenerative conditions [91]. Holmes et al. [92]
investigated the effects of androgens under conditions of oxidative
stress to determine whether androgens play a neuroprotective or
neurotoxic role in DA neuronal functions. They found that
androgens, alone, increased mitochondrial function via a calcium-
dependent mechanism. Androgen pre-treatment protected cells
from oxidative stress-induced cell death. However, treatment with
androgens after the oxidative insult increased cell death, and these
effects were, in part, mediated by calcium influx into the mito-
chondria and the negative effects of androgens were not blocked
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by either androgen or oestrogen receptor antagonists [93]. A
membrane-associated AR was thought to be implicated. The
results of this study suggest that androgens are neuroprotective
when oxidative stress levels are minimal, but when oxidative
stress levels are elevated, androgens exacerbate oxidative stress
damage [92]. Similar results were reported by Cunningham et al.
[94] who demonstrated that testosterone appears to have negative
consequences on brain function under conditions of elevated
oxidative stress. In a pre-existing oxidative stress environment,
androgens can further exacerbate oxidative stress damage [95,
96]. A possible mechanism for androgen-induced neuroprotection
is preconditioning because androgens can moderately increase
oxidative stress and apoptosis [25]. These results suggest that the
level of oxidative stress determines whether androgens play a pos-
itive or negative role in neuronal function [91], and it is argued
that oxidative stress defines the neuroprotective and neurotoxic

properties of androgens, thus acting as a molecular switch for
androgen actions [94] (Fig. 7).
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