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Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of
differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we exam-
ined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic
acinar cell in vivo. Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A
maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a
highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct
on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that
overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by dere-
pression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell
homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.

Loss of cellular identity has long been associated with tissue injury
and a first step in cancer progression (for examples, see references

1 and 2). Maintenance of a specific cellular phenotype depends on
the continued transcription of cell-type-specific genes, largely
through open chromatin architecture (3, 4) maintained by a small
group of lineage-restricted DNA-binding transcription factors
(TFs) (5, 6) that establish a unique transcriptional regulatory net-
work (7). Many physiologic or pathophysiologic perturbations
can affect the differentiated state of a cell quantitatively, but fewer
affect the state of differentiation qualitatively. Qualitative changes
involve the acquisition of characteristics of another cell type (or
types), often defined by one or a few cell-specific markers, in ad-
dition to the diminution of the original phenotype. Despite prog-
ress with cellular reprogramming (for example, see reference 8),
the molecular and genetic mechanisms that maintain cellular
identity within the context of adult organs remain incompletely
understood. In this report, we show that inactivation of the tran-
scriptional regulatory gene Ptf1a in adult pancreatic acinar cells
has pleiotropic effects on gene expression that cause quantitative
and multigene qualitative changes of acinar differentiation.

The acinar cell of the pancreas has been an informative model
of terminal cellular differentiation (9). Common cellular pro-
cesses are greatly exaggerated in support of the prodigious synthe-
sis, processing, storage, and exocytosis of secretory proteins. The
pancreatic acinar cell has the most ribosomes (10) and the highest
rate of protein synthesis (11) of any mammalian somatic cell; it
synthesizes, stores, and secretes its weight in protein daily. Special-
ized cellular functions and architecture establish the machinery
for this extreme level of protein synthesis. Whereas the embryonic
development of the pancreas, including the acinar compartment,
is well studied, relatively little is known of the transcriptional
mechanisms that maintain the extreme phenotype and cell type
identity of the mature pancreatic acinar cell.

PTF1A, a sequence-specific, DNA-binding, basic helix-loop-
helix (bHLH) TF, is among the best-studied regulators of pancre-

atic development. Ptf1a-null embryos fail pancreatic organogen-
esis at its earliest stage; only a tiny rudiment of pancreatic/
hepatobiliary-like duct forms (12, 13). Ptf1a is required early for
the expansion of the nascent pancreatic bud epithelium and its
commitment to pancreatic fate (12), including the formation of
pancreatic multipotent progenitor cells (14), and is believed to
drive the subsequent specification and differentiation of the acinar
lineage (15, 16). Ptf1a expression in adults is nearly exclusively
restricted to acinar cells of the pancreas and drives transcription of
several acinar cell markers (17–21); other exocrine glands do not
use Ptf1a. PTF1A disappears during acinar-to-ductal metaplasia
caused by acinar cell injury (22) and during the formation of aci-
nus-derived precancerous lesions, known as PanINs (23). Con-
versely, inactivation of Ptf1a in adult acinar cells greatly augments
neoplastic transformation by activated KRAS in a mouse model of
pancreatic ductal adenocarcinoma (23). These observations imply
that PTF1A is the key transcriptional regulator of pancreatic aci-
nar cell identity.

The transcriptional activity of PTF1A requires cooperative in-
teractions within a complex of three sequence-specific, DNA-
binding proteins. In addition to PTF1A, the complex contains one
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of the common bHLH E proteins (TCF3/E12/E47, TCF4/E2.2, or
TCF12/HEB) (18) and an RBP subunit, either RBPJ or RBPJL (21,
24). PTF1A and the common E protein form a heterodimer that
binds an E-box (CANNTG). The heterodimer has little, if any,
transactivating potential and requires an RBP subunit for its
known functions (21, 25). The three-subunit complex binds DNA
cooperatively; it is unable to bind a lone E-box and requires an
RBP recognition sequence (TC-box; TTCCCA) spaced one, two,
or three DNA turns away from an E-box (21, 26). RBPJ (RBPJ�/
CSL) is also the obligate transcription factor of the canonical ver-
tebrate Notch signaling pathway (27, 28). The RBPJ form of the
complex (PTF1-J) is required for early pancreatic development: a
single-amino-acid change in PTF1A that disrupts its binding to
RBPJ (but not to RBPJL) reproduces the apancreatic phenotype of
the Ptf1a-null mouse (25).

RBPJL is the vertebrate-restricted paralog of RBPJ and is not
involved in Notch signaling (21, 29). The Rbpjl gene is activated at
the onset of acinar cell differentiation by PTF1-J (25), and the
RBPJL form of the complex (PTF1-L) then drives acinar differen-
tiation to completion (19). In mature acinar cells, PTF1-L pre-
dominates (more than 80% of PTF1A-bound sites also bind
RBPJL), and the colocalization of RBPJL with PTF1A at sites in
acinar chromatin signifies a functional PTF1 complex.

The regulatory scope of PTF1A in the adult has not been de-
fined experimentally, and its presumed role in sustaining the pan-
creatic acinar phenotype is unproven. Here, we describe the wide
range of gene control by PTF1A that maintains the specific char-
acteristics of pancreatic acinar cell identity as well as many other
properties shared by differentiated exocrine cells. PTF1A controls
the pancreatic acinar transcription program by direct action at a
thousand genes and in collaboration with other less cell type-re-
stricted factors to ensure acinar cell homeostasis and to suppress
other cell-type-specific programs. We discuss how the role of
PTF1A in acinar cell identity relates to the pathophysiologies of
pancreatitis and pancreatic cancer.

MATERIALS AND METHODS
Mice. The generation of the mouse lines with the genotypes Ptf1aCreER/�

and Ptf1afl have been described (16, 23). Ptf1aCreER/� has the mRNA cod-
ing region of the Ptf1a locus replaced with that of CreERTM (30). Ptf1afl

has flanking loxP sites at kb �1.7 and �2 relative to the Ptf1a transcrip-
tional start site; this region encompasses both Ptf1a exons. Details of
the genomic modifications will be provided elsewhere (C. V. E. Wright,
unpublished data). To inactivate the floxed allele, adult Ptf1aCreER/fl

(Ptf1a-cKO) mice were administered tamoxifen (TAM) at 0.25 mg/g of
body weight by corn oil gavage once a day for three consecutive days. The
first day of tamoxifen treatment was day 0. Control mice (Ptf1aCreER/�)
were treated in an identical manner. Pancreatic tissue samples for histol-
ogy, immunofluorescence, and RNA isolation were taken after midday on
days 6 and 14. The University of Texas Southwestern Institutional Animal
Care and Use Committee approved all of the animal experiments.

RNA-Seq and data analysis. Total RNA was isolated from pancreas of
tamoxifen-treated adult control and Ptf1a-cKO mice using the guanidine
thiocyanate-guanidine hydrochloride method (31, 32) or a modification
wherein the RNA precipitated from the initial guanidine thiocyanate ho-
mogenate was dissolved in an equal volume of TRIzol (Thermo Fisher)
and then purified by following the manufacturer’s protocol for a TRIzol
homogenate. The average RNA integrity number values measured by an
Agilent Bioanalyzer were 7.0 for the five 6-day posttamoxifen treatment
Ptf1aCreER/� mice, 7.3 for the three 6-day Ptf1a-cKO mice, 6.0 for the three
14-day Ptf1aCreER/� control mice, and 6.9 for the three 14-day Ptf1a-cKO
mice. Individual transcriptome sequencing (RNA-Seq) libraries were pre-

pared with 1 �g of pancreatic RNA from each mouse using an Illumina
TruSeq kit. Fifty-base-pair reads were collected with an Illumina
HISEQ2500 instrument. The data sets for three control mice and three
Ptf1a-cKO mice 14 days after the beginning of tamoxifen treatment have
been reported previously (GEO accession number GSE70542) (23). The
RNA-Seq data sets for five 6-day TAM-treated control mice (40, 42, 34, 33,
and 31 million aligned reads) and three 6-day TAM-treated Ptf1a-cKO
mice (41, 44, and 49 million aligned reads) for this study were acquired in
the same manner (GEO accession number GSE86261).

The quantification of pancreatic mRNA levels by RNA-Seq is compli-
cated by the peculiar composition of the acinar cell mRNA population. A
remarkable 90 to 95% of the mRNA molecules in a pancreatic acinar cell
encode fewer than 30 proteins, the secretory enzymes (33). Acini compose
85 to 90% of the mass of the pancreas (34), and therefore acinar mRNAs
also dominate the total mRNA population isolated from the gland. More-
over, the amylase 2a and trypsinogen gene families have nearly identical
members that account for approximately half of the total number of
mRNA molecules. Changes in a single predominant mRNA, such as
Amy2a, can compromise calculations of differential gene expression. The
edgeR (35) and DESeq (36) normalization strategies correct for the com-
putational anomalies that can arise due to these quirks in the mRNA
population. Of the two, edgeR identified functionally relevant acinar
genes more effectively (see Fig. S6 in the supplemental material). Proper
edgeR normalization was verified by quantitative reverse transcriptase
PCR (qRT-PCR) quantification of 23 mRNAs representing high- and
low-abundance transcripts with large, small, or no changes in levels post-
PTF1A depletion (see Fig. S2). edgeR analyses used the default TMM
settings of 0.3 for trim of log ratios (M values), 0.05 for trim of combined
absolute levels (A values), and an false discovery rate (FDR) cutoff
of �0.05 (37). For the comparison with edgeR results, default conditions
were applied for the DESeq default normalization method with the me-
dian to compute location for size factor estimation and an FDR cutoff
of �0.05 (36).

The RNA-Seq analyses for four pancreases from 18.5-day-postcoitus
(dpc) mouse embryos were acquired similarly (GEO accession number
GSE86568), and the edgeR differential expression analysis was made with
data sets from four normal C57/Bl6 adult pancreases without TAM treat-
ment. The hierarchical cluster analysis of transcriptomes was performed
using the R Stats package (38).

qRT-PCR assays were performed with SYBR green and an Applied
Biosystems 2500 fast instrument. The nucleotide sequences of the primer
pair that amplifies all four amylase 2a genes (pan-Amy2a) and the primer
pair for four indistinguishable trypsinogen genes (pantrypsin) are pro-
vided in Fig. S2 in the supplemental material. Measurement of the ratio of
spliced to unspliced Xbp1 mRNA was performed by RT-PCR as described
previously (39).

ChIP-Seq and data analysis. Preparation of mouse pancreatic chro-
matin immunoprecipitation (ChIP), preparation of Illumina sequencing
libraries, and their analyses were performed as described previously (26),
with details and modifications reported by Hale et al. (40). The antibodies
are described in Table S4 in the supplemental material.

Histology, immunodetection, and image analyses. Tissue from adult
mouse pancreas was prepared for histology with Carnoy’s fixative (60%
ethanol, 30% chloroform, 10% acetic acid). For immunodetection or lec-
tin detection, tissue was fixed in 4% paraformaldehyde, 0.1 M sodium
phosphate buffer, pH 7.4, at 4°C overnight and embedded in paraffin or
cryoembedded in OCT. Table S4 in the supplemental material provides
the source of antibodies and working dilutions. Micrographs are repre-
sentative for three animals of each genotype-treatment combination.
Samples for electron microscopy were fixed in 2.5% glutaraldehyde, 2.5%
paraformaldehyde, and 0.05% picric acid in 0.1 M sodium cacodylate, pH
7.3, for 2 to 4 h at 4°C, washed extensively in 0.1 M sodium cacodylate,
postfixed in 1% osmium tetroxide, dehydrated, and embedded in Epon.
Thin sections were contrasted with uranyl acetate and lead citrate and
examined with a Zeiss EM 109S electron microscope.
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Acinar cells depleted of PTF1A were lineage traced by tamoxifen-in-
duced CreER-mediated recombination of the Rosa-CAG-LSL-tdTomato
locus (MGI:3809524) (41) in Ptf1aCreER/� and Ptf1aCreER/fl mice. Cell type
expression of tdTomato was determined by coimmunofluorescent stain-
ing for tdTOM and acinar and ductal markers with pancreases 6 and 14
days after tamoxifen initiation.

The mean circumference of acinar cells was quantified with ImageJ.
Approximately 200 cells were measured for each of three animals of each
genotype and treatment. Acinar cells were identified by clear apical-basal
organization and with an apex facing a lumen, as revealed by E-cadherin
and laminin immunostaining. The frequency of apoptotic cells was quan-
tified from the number of cells staining with the antibody to the activated
form of caspase 3 in a 5� microscopic field and corrected for the increased
cell density of the Ptf1a-cKO pancreatic tissue, measured with the aid of
ImageJ. All values are expressed as means � standard deviations (SD).
Statistical analyses were preformed using a 2-tailed Student unpaired t
test. A P value of �0.05 was used to exclude the null hypothesis.

Accession numbers. RNA-Seq and ChIP-Seq data sets determined in
the course of this work were deposited in the GEO database under acces-
sion numbers GSE86261, GSE86262, and GSE86568.

RESULTS

To examine the effects of PTF1A depletion on adult acinar gene
expression and homeostasis, we used Ptf1a-cKO mice, with the
coding sequence of one Ptf1a allele replaced by that of CreER
(Ptf1aCreER) (16) and the other allele flanked by loxP sites (Ptf1afl)
(23). Adult Ptf1a-cKO mice and age-matched heterozygous con-
trol mice (Ptf1a�/CreER) were treated with tamoxifen to inactivate
the floxed allele, and RNA was isolated from pancreases 6 or 14
days after the onset of the treatment (Fig. 1A). The extent of dele-
tion of Ptf1a by two measures was 87 to 97% (see Fig. S1 in the
supplemental material). Analysis of changes in the mRNA popu-
lation by RNA-Seq at 6 days was chosen to detect early effects of
PTF1A depletion and at 14 days to confirm gene expression
changes and to examine the secondary effects of prolonged deple-
tion. The highly unusual composition of the pancreatic mRNA
population requires a rigorous RNA-Seq normalization strat-
egy such as edgeR (see Materials and Methods). Requantifica-
tion using qRT-PCR of 23 mRNAs representing high- and low-

FIG 1 Ptf1a is required for all cellular processes for producing the acinar digestive enzymes. (A) Tamoxifen dosing scheme. (B) Differential expression analyses
by edgeR of RNA-Seq quantification of mRNA changes, with an FDR cutoff of �0.05. (C) KEGG cellular processes enriched for genes with decreased expression
6 and 14 days after initiation of tamoxifen-induced Ptf1a inactivation. (D) Processes enriched for genes with increased expression. The asterisk indicates the value
for cell infection response pathways is the log10 P value average (-Log10 adjP-value) of seven KEGG pathways for cellular infection. (E) All processes in the
production pathway for digestive enzymes were adversely affected. Newly identified or understudied acinar cell-restricted genes are listed beside their cellular
process.
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abundance transcripts with large, small, or no changes after
Ptf1a inactivation verified the edgeR-calculated RNA-Seq val-
ues of differential expression (see Fig. S2).

The sets of genes with decreased mRNA levels in Ptf1a-cKO
pancreas at 6 days (518 genes) and 14 days (1,508 genes) (Fig. 1B;
see also Table S1 in the supplemental material) were greatly en-
riched in cellular pathways for the production of large amounts of
the digestive enzymes, especially synthesis, processing, packaging,
and secretion, as well as the regulation of those processes (Fig. 1C
and E). In contrast, genes with increased mRNA after Ptf1a inac-
tivation (434 at 6 days, 1,586 at 14 days) were more often associ-
ated with cellular stress, acinar epithelial integrity, and inflamma-
tion (Fig. 1D). The genes of these categories were generally
induced in response to the disruption, evident at 6 days, of
many critical acinar functions. Because acinar cells dominate
the composition of the pancreas and have severalfold higher
levels of mRNA per cell than islet or duct cells, major changes
in mRNA levels derive from acinar cells; we verified key exam-
ples by cell type-based immunofluorescence analyses. The mR-
NAs for marker genes of the endocrine pancreas (insulin 1 and
2, glucagon, somatostatin, ghrelin, and pancreatic polypep-
tide) did not change.

To illustrate the breadth and depth of the direct regulatory
responsibilities of PTF1A, we describe the effect of PTF1A deple-
tion on vital acinar cell processes and the subsequent PTF1A-
independent induction of homeostatic and pathological re-
sponses. We previously reported the effects of Ptf1a-cKO at 14
days (23); at this late stage, secondary effects of PTF1A loss pre-
dominate. In the current study, we use the 14-day results to dis-
tinguish secondary (indirect) effects from primary (direct) effects
of PTF1A depletion on gene expression evident at 6 days and to
confirm early trends.

Decreased acinar cell differentiation. The mRNAs for 27 of 30
hallmark secretory digestive enzymes and cofactors decreased at 6
days (29 at 14 days) by as much as 96% (Fig. 2A and B). All but
four of the affected genes have PTF1A bound to regulatory se-
quences, as shown by the coassociation of PTF1A with RNA poly-
merase II (RNAPII) and the transcriptional activation mark
H3K4me2 by ChIP-Seq analyses (e.g., Cpa1) (Fig. 2I). Because the
PTF1A-E protein heterodimer does not have transcriptional ac-
tivity, we also show the presence of RBPJL, the predominant RBP
subunit of the functional PTF1 complex in adult acinar cells. Here,
we use the term “direct target” for genes with PTF1A bound (as-
sociated using GREAT [42]) and with decreased mRNA early (at 6
days), suggestive of an acute effect of PTF1A depletion. Genes for
the support mechanisms for the prodigious protein synthesis were
also affected by the inactivation of Ptf1a, including genes for 14
amino acid transporters, biosynthetic enzymes for 9 of the 10 non-
essential amino acids, and components for ribosome biosynthesis,
including 22 of the 78 ribosomal proteins, 11 of the 31 tRNA
charging enzymes, and 13 translation-initiation factors (see Table
S2 and Fig. S3A in the supplemental material), as well as the gene
for mTOR-controlled translational regulator EIF4EBP (Fig. 2J).
In addition, genes of the AKT/MTOR pathway, which controls
many aspects of acinar protein synthesis and growth (43), were
misregulated (see Fig. S4).

This analysis of the pancreatic mRNA population indicated
that PTF1-deficient acinar cells lost the ability to produce large
amounts of the secretory enzyme mRNAs. This led to greatly re-
duced secretory enzyme stores and much smaller acinar cells. The

decrease of carboxypeptidase A1 (Cpa1) mRNA was representa-
tive of most of the secretory protein mRNAs (Fig. 2). CPA1 pro-
tein was partly depleted at 6 days and nearly absent from most
acinar cells by 14 days (Fig. 2E to G). Cells that retained normal
levels of CPA1 had escaped inactivation of Ptf1a (see Fig. S1 in the
supplemental material); thus, the effects of PTF1A depletion were
cell autonomous, and CPA1 is an effective proxy for PTF1A. Not
all acinar secretory protein genes were affected equally. For exam-
ple, amylase mRNA (Fig. 2C) and protein levels (Fig. 2H) were
affected much less by the status of PTF1A, which illustrates the
range of dependence of secretory protein gene expression on
PTF1A. By 14 days, the PTF1A-depleted cells had shrunk to about
one-eighth their normal volume (Fig. 2D).

Genes for the high-capacity intracellular processing of secre-
tory protein were also affected early, including those encoding
proteins of signal peptide recognition, cleavage, and protein im-
port into the rough endoplasmic reticulum (RER), protein folding
and disulfide bond formation, monitoring protein folding with
N-glycan registration, ER stress control, protein transport to the
Golgi complex, and packaging into and maturation of zymogen
granules (Fig. 3A and B). Decreased expression for at least 66% of
these genes is due to direct PTF1A control (asterisks). For exam-
ple, AQP12 is the intracellular water pump that concentrates se-
cretory proteins during passage to and within zymogen granules
(44). Its mRNA decreased to 24% by 6 days, and PTF1A and
RBPJL bind a control region occupied by RNAPII and methylated
H3K4 near its transcriptional start site (Fig. 2K). We identified 12
understudied acinar target genes based on their high, pancreas-
restricted expression and strong decrease after PTF1A depletion
(Fig. 3E). Each appears to enhance a potential rate-limiting step in
secretory protein production and to be a direct PTF1A target (e.g.,
Cabp2) (Fig. 3M).

Altered expression of genes for ER functions, ER-associated
degradation (ERAD), and autophagy (see below) indicated that
PTF1A-deficient acinar cells undergo ER stress from the accumu-
lation of unfolded secretory protein. The status of the unfolded
protein response (UPR) can be estimated by the ratio of spliced to
unspliced cytoplasmic mRNA for XBP1 (39), which is a key tran-
scriptional activator of UPR genes. In control mice, the ratio in the
pancreas was 2.5:1 (Fig. 3C). Despite decreased secretory protein
mRNA levels, the UPR was further induced after Ptf1a inactiva-
tion, coincident with the lost expression of ER chaperones, disul-
fide isomerases that assist folding, regulators of the UPR, and
ERAD proteins (Fig. 3B). Genes with decreased mRNAs for key
components of these processes (e.g., Sel1l for ERAD and Atf6 for
UPR control) are direct targets of PTF1A (Fig. 3N and O). The
spliced to unspliced ratio was doubled by 6 days and more than
doubled again at 14 days (Fig. 3C). With increasing ER stress, ER
chaperones and components of ERAD not dependent on PTF1A
were then induced at 14 days, as were six known pancreatic
stress response proteins (Fig. 3D). The level of the stress pro-
tein clusterin increased in PTF1A-deficient cells as early as 6
days later (Fig. 3F to H). With the stress response compro-
mised, the mRNAs of apoptotic initiators rose (Fig. 3B) and the
frequency of apoptotic cells (staining for activated caspase 3)
increased 16-fold (Fig. 3I to L).

To examine the broad changes of acinar cell differentiation, we
compared the transcriptomes of control pancreas, pancreas after
Ptf1a inactivation, and late-stage prenatal (embryonic day 18.5
[E18.5]) pancreas. The gene expression profile at 14 days of
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PTF1A depletion was more similar to that of the prenatal pancreas
than to that of control adult pancreas (Fig. 4A). The status at 6
days was intermediate between the control and 14-day pancreases,
indicating a decline in differentiation as PTF1A diminished and
secondary effects accrued. Fifty-one percent of the mRNAs that

decreased after depletion of PTF1A in the mature pancreas in-
creased during normal postnatal maturation (Fig. 4B). These
changes involved cellular processes characteristic of the differen-
tiated acinar phenotype: the synthesis, processing, intracellular
transport, and secretion of the digestive enzymes (Fig. 4C). Other

FIG 2 Loss of acinar cell differentiation: manufacture of secretory proteins. (A and B) Fold changes in the expression of genes for Ptf1a-cKO at 6 and 14 days
relative to control TAM-treated, Ptf1a�/CreER pancreases. Asterisks indicate genes with bound PTF1A in pancreatic chromatin. (C) qRT-PCR measurements of
total amylase or trypsinogen mRNAs (n 	 3; *, P � 0.05). (D) Measurements of the circumference of acinar cells. *, P � 0.05. CT, control. (E to G) Laminin,
E-cadherin, and CPA1. Outlined regions are examples of acini. Scale bar, 20 �m. (H) Higher-magnification immunostaining of amylase and CPA1 after PTF1A
depletion. Bar, 10 �m. (I to K) PTF1A binding to representative direct target loci occurs at sites with markers of active enhancers (RNA polymerase 2, RNAPII;
histone3-lysine4-dimethylation, H3K4me2) and the coassociation of the PTF1A cofactor RBPJL (shaded regions). The shaded region of Cpa1 is an enhancer with
pancreatic acinar specificity in transgenic mouse assays (26).
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features of acinar differentiation, such as specific aspects of energy
metabolism, were unaffected by the loss of PTF1A (Fig. 4D). De-
spite the decrease of the differentiation properties that define the
acinar phenotype, inactivation of Ptf1a did not reactivate embry-
onic genes representative of an early pancreatic progenitor cell
status (e.g., Pdx1, Prox1, and Nkx6.1).

Alteration of acinar cell identity. To evaluate qualitative
changes of differentiation, we asked whether mutant acinar cells
induced genes characteristic of other cell types. Because pancre-

atic injury can cause acinar cells to acquire ductal properties, a
process termed acinar-to-ductal metaplasia (ADM), we examined
whether the often-used ductal markers SOX9 and cytokeratin-19/
KRT19 appeared. Sox9 mRNA increased 2.8- and 4.6-fold at 6 and
14 days after Ptf1a inactivation, respectively (Fig. 5A), whereas the
Krt19 mRNA level did not change. SOX9 and KRT19 are readily
detected in pancreatic duct cells and the duct-like centroacinar
cells but also are present in mature acinar cells at very low (16) and
often undetectable levels (Fig. 5D and G). By our analysis, SOX9

FIG 3 Loss of PTF1A disrupts the expression of genes for protein processing, packaging, and secretion, and it induces ER stress. (A and B) Changes in the
expression of genes for the import of secretory protein into the RER, folding with disulfide bond formation, monitoring folding and ER stress control, ERAD, and
apoptosis. (C) Quantification of the ratio of spliced to unspliced Xbp1 mRNA (n 	 3 or 4 for each condition; *, P � 0.05). (D) Induction of the mRNAs of
pancreatic stress proteins at 14 days; all FDR cutoffs were �10�8. (E) Decreased expression of newly identified or understudied genes highly expressed and largely
restricted to the pancreas; all FDR cutoffs were �10�6, except for Rph3al (0.004). (F to H) Induction of clusterin (CLU) in acinar cells that lost PTF1A
(arrowheads, examples of CLU� cells; dashed lines, cells with PTF1A that do not stain for CLU; bar, 20 �m). (I to K) Increase of apoptotic cells (arrowheads) with
activated caspase 3. Bar, 40 �m. (L) Relative number of apoptotic cells per field, corrected for cell density (n 	 3 for each genotype/treatment; *, P � 0.05). (M
to O) PTF1A binding in association with H3K4me2, RNAPII, and RBPJL at Cabp2, Sel1l, and Atf6.
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and KRT19 proteins appeared in PTF1A-deficient acinar cells as
early as after 6 days and were prevalent at 14 days (Fig. 5E, F, H,
and I). The induction of KRT19 must be controlled principally
posttranscriptionally. Other instructive ductal markers, HNF1B
and HNF6, did not change.

This rapid acquisition of ductal markers is a direct response to
the depletion of PTF1A rather than to cumulative and progressive
changes in response to pathologies over time. Several lines of evi-
dence indicate that the SOX9/KRT19-positive duct-like cells
formed by conversion of acini rather than expansion of ducts: the
change was rapid, and intermediate ADM structures marked by
residual CPA1 and amylase were readily apparent; ductal cell rep-
lication did not increase, and there was insufficient acinar cell
apoptosis to allow an increased proportion of duct-like cells via
the death of acinar cells. Moreover, lineage tracing of acinar cells
by TAM-induced Rosa-CAG-LSL-TdT activation in Ptf1a-cKO
pancreas demonstrated that the new CK19(�) and SOX9(�) de-
rived from acinar cells (see Fig. S1 in the supplemental material).

More striking was the predominance of known stomach-spe-
cific markers among the mRNAs, with the greatest increases after
14 days of PTF1A depletion. Half of the 28 genes with the highest
induction ratios (see Table S3 in the supplemental material) were
highly expressed differentiation markers of the major epithelial
cell types of the gastric gland: mucous, parietal, or chief cells (Fig.
5A). MUC5AC is an acidic mucin of the pit/tip cells, and CHIA1 is

a digestive enzyme of chief cells (Fig. 5J). Chia1 mRNA was in-
duced 47- and 97-fold at days 6 and 14 in Ptf1a-cKO pancreas, and
CHIA1 protein appeared in the PTF1A-depleted acinar cells
(compare Fig. 5B and C). Most of these gastric genes are not nor-
mally expressed in pancreatic ducts. In contrast, we found that
KRT19, SOX9, and CAR2, routinely considered ductal markers,
are present at high levels in the glandular stomach (Fig. 5J).
KRT19 is in the MUC5AC-positive mucous tip/pit cells. SOX9 is
in cells of the neck region (45, 46) that overlap GSII-stained mu-
cous cells and a subset of Ki67-positive progenitor cells of the
isthmus (47). CAR2 is in the acid-secreting parietal cells. The am-
biguity of the ductal markers, the absence of induction of more
instructive ductal markers such as HNF1B or HNF6, and the large
number of induced gastric markers suggest that the change in
acinar cell identity involves the acquisition of aspects of gastric
rather than pancreatic ductal identity.

MECOM (EVI1/PRDM3) is a DNA-binding transcription fac-
tor partly restricted to the glandular stomach and linked to the
transcription of five of the gastric gland-restricted genes (Gif,
Kcne2, Chia, Pga5, and Pgc) (48) induced after PTF1A depletion.
These five gastric mRNAs were increased in the pancreas 6 days
after Ptf1a inactivation, when Mecom mRNA levels had risen
3.8-fold (see Fig. 7B). Other gastric genes without detectable
mRNA in the normal pancreas were activated after 14 days,
when Mecom expression had increased further. Whereas the

FIG 4 Ptf1a maintains acinar differentiation. (A) Cluster analysis of the relationships among the gene expression patterns of TAM-treated normal adult (CT),
Ptf1a-cKO adults after 6 and 14 days, and untreated E18.5 fetal mouse pancreases. (B) Gene expression changes during the last stage of acinar differentiation
(E18.5 to normal adult) and in response to PTF1A depletion in adult (Ptf1A-cKO at 14 days versus CT). The number of genes affected and the percentage of genes
in the overlap for each category are shown. (C) Similar cellular pathways are enriched with genes downregulated after PTF1A depletion (down in adult 14-day
cKO mice) and with increased expression during the postnatal stage of pancreatic differentiation (higher in adult versus E18.5 pancreases). (D) Divergent effects
for pathways of energy production and responses to cell injury. TCA, tricarboxylic acid.
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early-induced gastric genes had PTF1A and RBPJL bound at
prospective control regions and RNAPII and methylated H3K4
at transcribed regions in normal acinar cells, the gastric genes
induced late did not (data not shown). Thus, the late gastric
genes appeared to be activated de novo after PTF1A depletion,
as Mecom reached a threshold.

Acinar cell degeneration is a delayed consequence of Ptf1a
inactivation. The inability to respond effectively to stress in the
wake of sudden loss of PTF1A led to acinar cell injury and in-
creased cell death. The insulin, RTK/RAS/mitogen-activated pro-
tein kinase (MAPK), and phosphatidylinositol 3/calcium signal-
ing pathways maintain the physiologic tone of acinar cells

FIG 5 Acinar cells acquire ductal and gastric markers. (A) RNA-Seq quantification of mRNAs for markers of pancreatic duct cells and epithelial cell types of the
stomach. Asterisks indicate genes expressed in ductal pancreas as well as stomach. (B to I) Ductal and gastric markers appear in acinar cells that lose CPA1 (i.e.,
PTF1A deficient) but not in cells that retain CPA1. (B and C) CHIA is readily detected in CPA1-depleted acinar cells (arrowheads indicate intense secreted CHIA
and CPA1 in ductules). Outlined regions are examples of a homogenous acinus (B) and a mixed acinus (C). Bar, 20 �m. (D to F) SOX9 in CPA1-depleted acinar
cells (arrowheads in panel D, SOX9� small duct; arrowhead in panel F, hybrid acinus). (G to I) KRT19 (arrowheads in panel G indicate KRT19� centroacinar
cells; asterisks in panels H and I indicate lumina). (J) Gastric genes induced in Ptf1a-cKO acinar cells. Arrowheads indicate examples of cells with colocalization
of Ki67/SOX9, Ki67/GSII� mucin, or SOX9/GSII� mucin. GSII is a fluorescein-conjugated lectin specific to a mucin of neck mucous cells. Bars, 40 �m. The
diagram of a gastric gland illustrates the expression domains of known gastric markers (left; all but ATP4B and the unknown mucin target of GSII were induced
in Ptf1-cKO pancreas) and additional gastric/ductal proteins induced in Ptf1a-cKO acinar cells (right). H&E, hematoxylin and eosin.
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(49–51). Each of these pathways was enriched for genes affected
early by the loss of PTF1A (see Fig. S3A in the supplemental ma-
terial). The output of the RAS/MAPK pathway, measured by the
level of phosphorylated RPS6, decreased in PTF1A-depleted aci-
nar cells coincident with the induction of the stress protein clus-
terin (see Fig. S4B and C). Changes also occurred in the Notch and
Wnt pathways (see Fig. S3A), which are necessary for acinar cell
regeneration after injury (52, 53). Increased mRNAs for compo-
nents of the adherens and tight junctions, extracellular matrix,
and cellular adhesion (see Fig. S3B) suggest induced repair of ep-
ithelial structure and integrity. Apical-basal polarity was also af-
fected: zymogen granules, normally positioned apically around a
central lumen (Fig. 6A), were more evenly distributed throughout
cells of an acinus (Fig. 6B) and were even present between the
plasmalemma and the nucleus in the basal region normally occu-
pied by RER (compare Fig. 6C and D). Acinar cell shrinkage (Fig.
2D) led to folded sheets of excess basal lamina (compare Fig. 6E

and F); an induced repair process (54) may account for the in-
creased mRNAs for extracellular matrix components detected in
the Ptf1a-cKO pancreas (see Fig. S5A).

Genes of the cellular response to injury, including intracellular
degradation pathways and inflammation, were induced during
the second week of PTF1A depletion (see Fig. S3B in the supple-
mental material), influencing autophagy, highly unusual phago-
cytosis of acinar cells by acinar cells (Fig. 6G and H), and cri-
nophagy in most affected acinar cells (Fig. 6J). Crinophagic
vacuoles can be distinguished by size (similar to zymogen granules
and much larger than lysosomes), high and heterogeneous elec-
tron density, and the absence of membranous substructure (com-
pare insets of Fig. 6I and J). Extensive crinophagy (e.g., Fig. 6K) is
a protective mechanism that degrades excess, potentially harmful
accumulated secretory products during stress (55). In addition,
unusual and excessive collections of cell fragments in acinar and
ductal lumina, including membrane-bound structures similar to

FIG 6 Ultrastructural changes in PTF1A-deficient pancreas. All panels are of 14-day cKO mice except for TAM-treated Ptf1a�/CreER controls in panels A, C, E,
and I. (A to D) Effects on apical-basal polarity; dashed lines outline individual acini. Zymogen granules (dark dots), normally clustered apically around lumina
(A), are decentralized in cKO pancreas (B; arrowheads indicate phagosomes). Zymogen granules, rarely basal to nuclei (C), are basal in cKO pancreas (D). The
inset shows zymogen granule apposed to basal plasmalemma. Arrowheads, basal lamina; arrows, lysosomes. (E and F) Excessive basal lamina (asterisk) of a
shrunken acinar cell (F) compared to normal acinar cells (E). Black arrowheads indicate basal lamina from which folds emanate; white arrowheads indicate basal
plasmalemma. (G) Phagocytic engulfment by acinar cells (dashed outline in panels B and G). (H) Thin band of cytoplasm bounded by plasmalemma is enlarged.
(I) Zymogen granules and lysosomes (arrowheads) in control cells. Insets show enlarged lysosome images. (J) Crinophagic vesicles (arrowhead) are the size of
zymogen granules. Insets show complex interior structures. (K) Extensive crinophagic fusions. (L to N) Frequent luminal debris, including lamellar membranes.
Size bar length units are micrometers. Ac, acinar cell; Cap, capillary; Mt, mitochondrion; N, nucleus; Z, zymogen granule.
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those that arise during cerulein-induced inflammatory pancreati-
tis (56), suggest the expulsion of acinar cell debris apically or lysis
of whole cells (Fig. 6L to N). The spectrum of acinar cell lesions
was accompanied by increased mRNA levels of inflammatory
genes, such as those for components of complement, cytokines,
and chemokines in acinar cells as well as activated pancreatic stel-
late cells (57) (see Fig. S5B) but without the increased numbers of
CD45� leukocytes that would indicate frank inflammation (data
not shown).

The presence in acinar cells of Ki67, which indicates an active
cell cycle, differed from the cell-autonomous status of Ptf1a.
Whereas the PTF1A-deficient acinar cells at day 14 had Ki67 at
about the same frequency (0.22% � 0.13% standard deviations)
as acinar cells of normal C57Bl6 and TAM-treated control mice
(0.27% � 0.17%), the frequency of Ki67 in the residual PTF1A-
positive acinar cells of the cKO pancreas was 
60-fold greater
(16% � 2%). The induction of the cell cycle in PTF1A� cells
correlates with partial regeneration of the acinar tissue. At 29
weeks after TAM treatment, the weight of the cKO pancreas was
67% of normal (see Fig. S5C in the supplemental material), largely

due to the restoration of CPA1 and PTF1A copositive acinar cells
(see Fig. S5D and E), presumably from restorative replication of
those acinar cells that avoided Ptf1a inactivation. Dispersed
PTF1A-deficient regions of tubular complexes expressing SOX9
and gastric mucin persisted (see Fig. S5D and E).

The PTF1A transcription factor network. To better assess
direct regulatory control by PTF1A binding to potential target
genes, we examined genome-wide binding of PTF1A in chro-
matin from adult acinar cells using four independent ChIP-Seq
data sets, two from each of two independently derived PTF1A
antibodies. Analysis using Homer identified 9,515 genomic
sites with bound PTF1A present in all four data sets, associated
with 7,210 genes (Fig. 7A). A total of 545 genes were both
bound and regulated by PTF1A. Genes dependent on PTF1A
were associated with pathways for acinus-specific cell functions
(Fig. 7B). Those induced by the loss of PTF1A were still en-
riched for gastric genes (not shown).

Thirteen additional acinar transcription factors are bound by
and dependent on PTF1A (Fig. 7C). The expression of each de-
creased 26 to 78% after Ptf1a inactivation, and PTF1A and RBPJL

FIG 7 PTF1A transcription factor network. (A) Number of PTF1A direct targets. Shown are genes associated with PTF1A-bound sites and with mRNA levels
affected at both 6 and 14 days after Ptf1a inactivation. (B) Functional classifications of PTF1A direct targets that require PTF1A. (C) Kinetics of changes for
mRNAs of TFs affected by PTF1A depletion. (D) PTF1A, RBPJL, and active chromatin marks colocalize at Myc. (E to J) Loss of NR5A2 (E and F), MYC (G and
H), and MIST1 (I and J) in CPA1-deficient cells but retention in CPA1� cells compared to controls (CT). CPA1 is an effective measure of Ptf1a status (see Fig.
S1 in the supplemental material). Outlined regions indicate acini with loss of CPA1; arrowheads indicate acinar cells retaining CPA1 and NR5A2, MYC, or
MIST1. Bars, 20 �m. (K) Functional classifications of the NR5A2-dependent genes that are also PTF1A dependent. (L) Functional classifications of MYC-
dependent genes (by IPA; Qiagen) that are also PTF1A dependent. QC, quality control. (M) Proven direct interactions of the Ptf1a transcription factor network.
Red lines and arrows are from data from this study; the dashed line indicates that repression may be indirect.
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bound their genes at sites also colocalized with RNAPII and
H3K4me2 (Fig. 7D and data not shown). Consistent with changes
in mRNA levels, NR5A2, MYC, and MIST1 diminished in the
PTF1A-depleted acinar cells but not in the small fraction of cells
that retained PTF1A (Fig. 7E to J). Ptf1a, Rbpjl, Nr5a2, Myc, and
Mist1 have specialized acinar cell functions and extensive cross-
regulation, and they appear to form the core of the gene regulatory
network. NR5A2 binds and regulates the genes of four members of
the network: Rbpjl, Mist1, Tead2, and Spdef (40, 58). Moreover,
half of the genes downregulated in adult Nr5a2-cKO pancreas
(223/452) (58) were also reduced by Ptf1a inactivation and en-
riched for acinus-enhanced functions and cell-specific products
(Fig. 7K). Similarly, 118 MYC-dependent genes (according to In-
genuity pathway analysis [IPA]; Qiagen) expressed in the pancreas
are also bound by and dependent on PTF1A. MYC enhances pro-
tein synthetic capacity by activating genes for ribosomal proteins
and rRNA processing (e.g., Nop56, Bop1, and Dkc1) (59) and stim-
ulates protein synthesis rates through genes for initiation factors
(e.g., Eif2b1, Eif2b4, Eif2s2, Eifra1, and Eif4g1) (see Table S1 in the
supplemental material), key acinar genes and functions also af-
fected by Ptf1a inactivation (Fig. 7L). Several MIST1 target genes,
including Rab3d, Ccpg1, Serpini1, Reg1, Nupr1, and Rab26 (60),
are coregulated directly by PTF1A.

The other members of the network (SPDEF, TEAD2, GFI1,
ATF6, TEF, NFATC1, and NFATC2) are partially cell type re-
stricted, although not as selectively to pancreatic acinar cells as
PTF1A and RBPJL; all have roles in differentiation, growth, meta-
plasia, or transformation (see Discussion). Increased mRNA levels
of the TF genes Mecom, Sox9, Pbx1, Nr4a2, and Ehf in PTF1A-
deficient pancreas (Fig. 7C) indicate that PTF1A suppresses their
expression. However, binding to these genes is low and may ac-
count for the low level of expression in normal pancreas. Consis-
tent with activation, H3K4me2 and RNAPII are present. Other
transcriptional activators might mediate the induction in the ab-
sence of PTF1A.

DISCUSSION
Pleiotropic control of the pancreatic acinar phenotype. Our
analysis of the effects of PTF1A depletion shows that PTF1A has
comprehensive regulatory duties that maintain the differentiated
phenotype of the pancreatic acinar cell by controlling genes of all
the major processes for the massive production of secretory diges-
tive enzymes. PTF1A accomplishes this from the top of a tran-
scriptional regulatory hierarchy that drives specialized genes re-
stricted to pancreatic acinar cells (e.g., the pancreatic secretory
proteins), others of the less restricted class of professional secre-
tory cells (e.g., secretory protein processing and packaging), and
specialized enhancements of broadly expressed genes (e.g., en-
zymes of amino acid metabolism, ribosomal proteins, and trans-
lation initiation factors) in support of secretory enzyme produc-
tion. The control of gene expression is direct, by binding and
transcriptional activation of many acinar genes, and also indirect,
through the direct control of other TFs enriched in acinar cells.
These other pancreatic transcriptional regulators have important
but limited regulatory roles in acinar cells. The effects of their
absence during late development (i.e., Mist1 or Rbpjl) or induced
depletion in the adult (Nr5a2) are modest (19, 58, 60) and limited
to loss of some differentiation characteristics but retention of cell
identity.

The initial effects of Ptf1a inactivation are principally at PTF1A

target genes, including those for acinar secretory enzymes and
their processing and packaging partners in the endoplasmic retic-
ulum, as well as many ER components for secretory protein fold-
ing and quality control. The early effects include reduced expres-
sion of several genes notable for high mRNA levels and highly
restricted expression that boost the capacity of protein folding in
the ER (Erp27 and Cabp2), direct transport to the Golgi complex
(Tmed11), concentrate secretory proteins in the Golgi complex
and condensing zymogen granules (Aqp12), organize the packag-
ing of the secretory proteins (Gp2, Sycn, Cuzd1, and Zg16), and
promote the proper organization of the apical cytoplasm (Rab26)
(61). These gene expression defects establish the conditions for the
subsequent disruption of cellular homeostasis. Due to the vast
production of secretory proteins, pancreatic acinar cells normally
have a chronically high level of unfolded protein and a precarious
homeostasis (62, 63). We find that after Ptf1a inactivation, the
contribution of secretory protein mRNAs to the total mRNA pop-
ulation declines from 90% to about 55%. This fraction can still
support an enormous amount of secretory protein synthesis. The
sudden disappearance of PTF1A creates an imbalance between the
continued production of secretory proteins and the decaying ca-
pacity of the ER to process or degrade unfolded proteins, and
ER stress increases further. By 14 days, further dysregulation
induces genes responding to cellular damage. The inability to
relieve ER stress in the face of only partly abated production of
secretory proteins leads to the induction of cellular destruction
processes (autophagy, phagosomes, and lysosomes) and in-
creased apoptosis.

The continued expression of Ptf1a is necessary for pancreatic
acinar cell homeostasis. PTF1A engenders a fundamental state of
instability by creating the burden of unfolded protein and RER
redox stresses through its fundamental role as the principal driver
of secretory enzyme gene transcription. PTF1A also counters such
instability, however, by its direct action on homeostatic genes,
such as UPR factors, ERAD components, and cell-specific folding
enzymes (e.g., ERP27 and CABP2), to moderate and contend with
high unfolded protein stress. The abrupt removal of PTF1A upsets
this precarious steady state and leads to the disruption of acinar
homeostasis in a cell-autonomous manner.

The adult PTF1A transcription factor network. Ten se-
quence-specific DNA-binding TFs form a pancreatic acinar tran-
scriptional network with extensive cross-regulation (Fig. 7M).
Ptf1a, Rbpjl, Myc, Nr5a2, and Mist1 play key roles in pancreatic
acinar development and the mature phenotype and form the net-
work core. RBPJL is the partner of PTF1A in the PTF1-L complex.
PTF1-L binds and controls the genes of this network. PTF1-L
binds and activates the autoregulatory enhancer of Ptf1a (64) as
well as the promoter of Rbpjl (25). Autoregulation of lineage-
specific TFs is a common mechanism to lock cell fate decisions
during development (65). In the adult pancreatic acinar cell, au-
toactivation by PTF1-L secures the continued transcription of
Ptf1a and Rbpjl and thereby enforces the differentiated acinar phe-
notype.

The other members of the network core have key roles in
acinar cell physiology. Myc is required for the replication of
prenatal pancreatic (66, 67) and adult acinar cells (68). In our
study, Myc mRNA was lost rapidly after Ptf1a inactivation, and
the MYC-depleted cells were selectively unresponsive to the call
for acinar cell regeneration. In many contexts MYC increases cell
size (69), in part by raising protein synthesis through enhanced
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expression of genes for ribosomal proteins and translation initia-
tion factors (70). More than a hundred Myc-dependent genes are
bound by and also dependent on PTF1A. Thus, PTF1A enhances
acinar cell growth and sustains the high capacity of acinar protein
synthesis by raising Myc expression and by collaborating with
MYC at many MYC-dependent genes.

NR5A2 complements the acinar regulatory functions of
PTF1A. During development, Nr5a2 is required to complete the
differentiation of acinar cells (40). Inactivation of Nr5a2 in adult
pancreas affected a limited set of genes principally associated with
acinar secretion (58). Unlike the effects of Ptf1a inactivation, how-
ever, the loss of Nr5a2 did not induce genes characteristic of duct,
stomach, or any other identifiable cell type. Half of the Nr5a2-
dependent genes (58) are also dependent on Ptf1a and are highly
enriched for acinus-specific functions of digestive enzyme synthe-
sis. Thus, NR5A2 has extensive acinar network responsibilities
separately and in collaboration with PTF1A.

The scaling TF MIST1 enhances the secretory phenotype of
many exocrine cells but does not specify a particular type of acinar
cell (71). The pancreatic acinar epithelium that forms in Mist1-
null mouse embryos is unstable, cellular architecture and gap
junction communication are disrupted, and regulated exocytosis
is affected adversely (72, 73). Several MIST1 target genes in pan-
creatic acinar cells, including Rab3d, Ccpg1, Serpini1, Reg1, Nupr1,
and Rab26 (60), are bound by PTF1A at control regions and also
are downregulated by inactivation of Ptf1a. Thus, PTF1A and
MIST1 also collaborate at target genes. Indeed, we have recently
shown that PTF1A and MIST1 collaborate extensively through
reiterated feed-forward regulatory loops controlling acinar genes
(102). The extensive regulatory relationships show that PTF1A
collaborates with the other network core factors in feed-forward
control strategies at large numbers of acinar genes.

PTF1-L binds and controls the genes of several additional
highly expressed TFs, including Gfi1, Tead2, Atf6, Nfatc1, Nfatc2,
Spdef, and Ehf. Roles for these downstream effectors of Ptf1a gene
regulation in acinar differentiation, growth, transformation, or
acinar-ductal metaplasia have been established for GFI1 (74),
TEAD1/2 (75–77), and NFATC1/2 (78–81). SPDEF and EHF are
key differentiation factors for other glandular cell types (82–86)
and may play similar roles for the acinar pancreas. Together, the
members of the network control a large fraction of the processes
characteristic of the specialized physiology of the pancreatic aci-
nar cell.

Pancreatic acinar cell identity. The adult pancreatic acinar
cell, previously thought to be terminally and irreversibly differen-
tiated, is now known to be surprisingly malleable (87–90). We
showed that two critical aspects of regulation by Ptf1a define the
acinar cell identity. First is the transcription of signature pancre-
atic acinar genes encoding the digestive enzymes and several
equally restricted genes for secretory protein folding, intracellular
transport, and zymogen granule packaging. The counterpoint is
the suppression of genes characteristic of other cell types, espe-
cially pancreatic ductal cells and gastric gland cells.

The pancreatic and gastric gene-regulatory and developmental
programs are related. Several pancreatic acinar secretory enzymes
are produced in chief cells (91), and gastric markers are expressed
at low levels in the normal pancreas (this study). The pancreas and
stomach arise from nearby domains of the endoderm, and Ptf1a
plays a key role in distinguishing the pancreas (12, 13, 25). Ectopic
expression of Ptf1a in the anterior foregut endoderm at the onset

of organogenesis is sufficient to redirect development of the pres-
tomach domain to the pancreas (92–94). Our results show a com-
plementary effect: inactivation of Ptf1a in pancreatic acinar cells
releases a suppressed gastric gene expression program encompass-
ing all gastric cell lineages.

The gastric transcription factor MECOM (95) links the specific
gastric genes and their induction in PTF1A-deficient pancreas.
MECOM is a potential regulator of gastric gland-restricted genes
(48), and the inherent low level of Mecom expression might be
responsible for the small amount of Chia, Pga5, Gif, Gkn3, Gcnt3,
and Kcnj15 mRNAs in normal pancreas. The increase of Mecom
expression soon after Ptf1a inactivation coincides with further
induction of these six gastric mRNAs, and the continuing increase
of Mecom mRNA correlates with the de novo activation of the set of
pancreas-silent gastric genes.

A similar change of acinar cell identity extends to the loss of
PTF1A and the appearance of gastric markers in early neoplas-
tic lesions (PanINs) of pancreatic adenocarcinoma (96–98).
MECOM has been proposed to play an early role in pancreatic
cancer, in part by stimulating the accumulation of KRAS mRNA
(48). An increase of active KRAS above a threshold through in-
duction by MECOM might alter the state of acinar differentiation
and increase susceptibility to malignant transformation (99).
Changes in cellular identity are often a prelude to neoplasia (100,
101). Because PTF1A depletion greatly sensitizes acinar cells to
KRAS-induced PanIN formation and pancreatic adenocarcinoma
(23), we propose that the disruption of acinar cell identity by the
loss of PTF1A establishes a more permissive state for transforma-
tion. In this scenario, the induction of gastric genes signals the
disruption of acinar cell identity and the emergence of potentially
oncogenic MECOM, linked properties of the permissive state.
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