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ABSTRACT

Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope
(Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian im-
munodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins
to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and
biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-
scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only tran-
sient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of
diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals,
and (iv) remained detectable >1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold im-
munogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results
represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaf-
fold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from
which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally de-
signed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and
SHIV.

IMPORTANCE

Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such
antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly
cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an ac-
tivity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that
focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity
that has been associated with protection from infection with HIV, SIV, and SHIV.

Nonneutralizing antibodies (Abs) can protect against various
viral infections, contributing to protection from alphavi-

ruses, flaviviruses, respiratory syncytial virus (RSV), and cytomeg-
alovirus, among others (reviewed in references 1 and 2). While the
specificity and affinity of nonneutralizing Abs are dependent on
the Fab fragment of Abs to target virions and infected cells, many
of the biologic activities of these Abs are a function of the Fc
fragment. Such activities include Ab-dependent cellular cytotox-
icity (ADCC), Ab-dependent cellular phagocytosis (ADCP), Ab-
dependent cell-mediated virus inhibition (ADCVI), complement
activation and fixation, degranulation, and the release of proin-
flammatory cytokines (3). Specific examples include protection
from herpes simplex virus 2 in mice by nonneutralizing Abs which
mediate ADCC (4–6) and protection from influenza virus in mice
by nonneutralizing Abs targeting the head or stalk of the influenza
virus hemagglutinin (7, 8).

Fc-mediated nonneutralizing Ab functions also play a role in
reducing and preventing infection with simian immunodeficiency
virus (SIV), simian-human immunodeficiency virus (SHIV), and
human immunodeficiency virus (HIV) and in controlling virus

replication in vivo (9–18). As early as 2004, vaccine-elicited Abs
were shown to mediate ADCC, which correlated with reduced
acute viremia in rhesus macaques challenged with SIVmac251 (19,
20). Subsequently, a myriad of studies have shown that nonneu-
tralizing Abs mediating ADCC and other Fc-dependent activities
can prevent or contribute to control of SIV (21–23) and SHIV
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(23–26). Significantly, Abs that mediate ADCC have been found
in human breast milk and correlate with reduced risk of transmis-
sion from mother to infant (27).

Several streams of data from the RV144 clinical vaccine trial
also suggest that reduced rates of HIV infection are associated with
Abs that mediate ADCC and ADCP, but, notably, no correlation
with the presence of serum neutralizing Abs was identified in
RV144 vaccinees (10–18). The protective role for Fc-mediated Ab
function is further supported by the finding that specific alleles of
Fc�RIIc (which carries the extracellular sequence of Fc�RIIa, a
critical participant in ADCP) were associated with RV144 vaccine
efficacy (10). Moreover, the V2-specific IgG Ab levels, which were
an independent correlate of a reduced infection rate in RV144
vaccinees (13, 28–31), appear to have played a role in the Fc-
mediated vaccine-induced antiviral activities in that V2 Abs con-
tributed to ADCC responses (14, 16) and were found to synergize
with constant region 1 (C1)-specific Abs that were also induced by
the vaccine (11). V2-specific Abs have also been identified as cor-
relates of protection after immunization and challenge with SIV
(32–34).

Given these findings in monkeys and humans, we hypothe-
sized that targeting the Ab response to V2 with rationally designed
immunogens would improve the functional Ab quality and pro-
vide a basis for enhanced efficacy of HIV immunization protocols.
In the work described below, we tested the immunogenicity of 12
V1V2-scaffold protein immunogens. The results show the induc-
tion of V2-specific Abs that are reactive with V1V2 and with gp120
Envs from diverse strains and clades. After priming with gp120
DNA with or without V1V2-scaffold protein immunogens and
boosting with V1V2-scaffold proteins, a durable Ab response was
successfully focused on the V1V2 region. This is the first immu-
nogenicity study using rationally designed V1V2-targeting vac-
cine constructs. Similar to the results of previously published
studies with V3-scaffold immunogens (35, 36), the V1V2-scaffold
immunogens induced Abs that recapitulate the specificity and ac-
tivities of the human V1V2-specific monoclonal antibodies
(MAbs) whose epitopes were used as templates for the design of
the V1V2-scaffold immunogens (37); importantly, the induced
Abs display a biologic activity—in this case, Fc-mediated ADCP—
which has been associated with protection from infection with
HIV, SHIV, and SIV (12, 18, 24, 38).

MATERIALS AND METHODS
Use of a codon-optimized HIV Env DNA, recombinant V1V2-scaffold
proteins, and various protein and peptide antigens. Codon-optimized
gp120 DNA expressing env from HIV clade C primary isolate ZM109F

(39) was prepared in the pJW4303 vector with a tissue plasminogen acti-
vator (tPA) leader sequence, as described previously (40, 41). The genes of
the following proteins were used to prepare the scaffolds of the V1V2-
scaffold immunogens: PDB accession number 1FD6 (42), typhoid toxin
subunit B (TTB) (43), and PDB accession numbers 2J9C (44) and 2F5K
(45). The V1V2 sequences of the full-length V1V2 regions used as inserts
into the scaffolds are listed in Table 1. Genes of the V1V2 scaffolds were
chemically synthesized and cloned into the pVRC8400 plasmid, followed
by expression in HEK293 GnTI�/� cells and purification by affinity chro-
matography (46). Details of the design and construction of the immuno-
gens are described separately (47). The V1V2-tags protein of strain 1086
(V1V21086-tags) and V1V2A244-tags were provided by H. Liao (Duke Uni-
versity), V1V2CaseA2-gp70 and V1V292TH023-gp70 were provided by A
Pinter, and gp120A244 was provided by Global Solutions for Infectious
Diseases (South San Francisco, CA). gp120BaL, gp120ZM53, and
gp120ZM233 were purchased from Immune Tech (New York, NY), and a
clade C V3 consensus linear, nonbiotinylated 23-mer peptide (NNTRKS
IRIGPGQTFYATGDIIG) and the cyclic V292TH023 (cV292TH023, clade E)
biotinylated peptide were purchased from BioPeptide (San Diego, CA). A
C5 linear nonbiotinylated 22-mer peptide (amino acids 495 to 516 of
gp120, KIEPLGVAPWKAKRRVVQREKR) was purchased from PolyPep-
tide Group (Torrance, CA).

Immunization protocol. Female New Zealand White rabbits, 6 to 8
weeks old (with a body weight of �2 kg), were purchased from Harlan
Laboratories (Indianapolis, IN) and housed in the animal facility man-
aged by the Department of Animal Medicine at the University of Massa-
chusetts Medical School in accordance with an IACUC-approved proto-
col. Three to five rabbits were included in each immunization group. All
rabbits received three DNA immunizations using a Bio-Rad Helios gene
gun (Bio-Rad Laboratories, Hercules, CA). The gp120 DNA vaccine plas-
mids were coated onto 1.0-�m gold beads at a ratio of 2 �g of DNA per mg
of gold. Each gene gunshot delivered 1 �g of DNA into a total of 36
nonoverlapping sites on the shaved abdominal skin of each rabbit at each
of the three priming immunizations. Several groups of rabbits received
protein immunogens simultaneously with the three DNA priming immu-
nizations as described below; in addition, all animals received two protein
boosts. Each dose of protein immunogen was delivered as a bolus of 100
�g intramuscularly together with adjuvant. Blood was collected prior to
immunization and 2 weeks after each immunization. Rabbits were bled
periodically for up to 76 weeks after the initiation of the immunization
protocol to assess the longevity of the Ab response. The immunization
schedule for each of four rabbit experiments is shown in Table 2.

Enzyme-linked immunosorbent assay (ELISA) method. Immulon 4
plates were coated using 100 �l/well of the designated antigen at a con-
centration of 1 �g/ml in carbonate buffer, pH 9.6, and incubated over-
night at 4 °C. Plates were then washed six times with phosphate-buffered
saline (PBS)– 0.05% Tween. Subsequently, 100 �l/well of rabbit serum
was added to the plates after dilution in RPMI medium containing 15%
fetal bovine serum. Plates were incubated for 1.5 h at 37°C. After six
washes, bound Abs were detected by the addition of 100 �l/well of a

TABLE 1 Sequence of V1 and V2 variable loops in immunogens and antigensa

Strain (clade) V1 sequence V2 sequence

1086 (C) CVTLNCTNVKGNESDTSEVMKN CSFKATTELKDKKHKVHALFYKLDVVPLNGNSSSSGEYRLINC
A244 (E) CVTLHCTNANLTKANLTNVNNRTNVSNIIGNITDEVRN CSFNMTTELRDKKQKVHALFYKLDIVPIEDNNDSSEYRLINC
92TH023 (E) CVTLNCTNANVTNVKNITNVPNIIGNITDEVRN CSFNMTTELRDKKQKVHALFYKLDIVPIEDNTSSSEYRLINC
Case A2 (B) CVTLNCIDLRNATNATSNSNTTNTTSSSGGLMMEQGEIKN CSFNITTSIRDKVQKEYALFYKLDIVPIDNPKNSTNYRLISC
YU2 (B) CVTLNCTDLRNATNTTSSSWETMEKGEIKN CSFNITTSIRDKVQKEYALFYNLDVVPIDNASYRLISC
ZM109 (C) CVTLNCTSPAAHNESETRVKH CSFNITTDVKDRKQKVNATFYDLDIVPLSSSDNSSNSSLYRLISC
CAP45 (C) CVTLRCTNATINGSLTEEVKN CSFNITTELRDKKQKAYALFYRPDVVPLNKNSPSGNSSEYILINC
ZM53 (C) CVTLNCSKLNNATDGEMKN CSFNATTELRDKKKQVYALFYKLDIVPLDGRNNSSEYRLINC
cV2a (E) CSFNMTTELRDKKQKVHALFYKLDIVPIEDNTSSSEYRLINC
a Cyclic V292TH023 peptide.
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1:2,000 dilution (in PBS– 0.05% Tween) of alkaline phosphatase-conju-
gated mouse anti-rabbit IgG (Southern Biotech, Birmingham, AL) and
incubated for 1.5 h at 37 °C. After six washes, 100 �l/well of 10% dietha-
nolamine substrate was added, and after 30 min, the plates were read at
405 nm using a Sunrise Tecan microplate reader equipped with Magellan
6 software. All samples were tested in duplicate. Various V2 MAbs were
used as positive controls, and MAb 1418, specific for parvovirus B19, was
used as a negative control in each experiment. For assessment of MAb
reactivity, the same method was employed, using 10 �g/ml of MAb and
alkaline phosphatase-conjugated goat anti-human IgG (Southern Bio-
tech) as the secondary Ab.

Measurement of Ab-dependent cellular phagocytosis. Using the as-
say developed by Ackerman et al. (48), 10 �g of biotinylated cV292TH023

was conjugated to fluorescent NeutrAvidin beads (Invitrogen) according
to the manufacturer’s instructions. In addition, 20 �g of gp120ZM53 (Im-
mune Technology) or V1V2YU2-1FD6 was biotinylated using EZ-Link
sulfo-NHS-LC-LC-biotin (sulfosuccinimidyl-6-[biotinamido]-6-hexan-
amido hexanoate; Thermo Scientific), and these reagents were also con-
jugated to fluorescent NeutrAvidin beads. Conjugated beads were washed
and resuspended in 0.1% bovine serum albumin (BSA)-PBS to a working
dilution of 1:100. A total of 9 � 105 beads were aliquoted per well in
round-bottom 96-well plates. Fourfold dilutions of a MAb or 2-fold dilu-
tions of individual serum samples were added, incubated for 2 h at 37°C,
and washed. A total of 2.5 � 104 THP-1 cells (ATCC) were added to each
well and incubated overnight. Phagocytosis was measured by flow cytom-
etry. ADCP scores were calculated as follows: (percentage of bead-positive
cells � MFI of bead-positive cells)/106, where MFI is mean fluorescence
intensity.

RESULTS
Immunogenicity study design. Eighteen different vaccination
regimens were performed during the course of four rabbit exper-
iments (H1 to H4) (Table 3) using 95 rabbits to test the immuno-
genicity of 12 vaccines constructed with six V1V2 sequences pre-
sented on one of nine protein scaffolds and administered
intramuscularly with one of two adjuvants. Each immunization
regimen was tested in three to five animals. All groups (with the

TABLE 2 Immunization schedule

Week
no. Expt H1 Expt H2 Expt H3 Expt H4

0 DNA prime 1 DNA prime 1 DNA prime 1 DNA prime 1
2 DNA prime 2 DNA prime 2 DNA prime 2
4 DNA prime 3 DNA prime 3 DNA prime 3 DNA prime 2
6
8 DNA prime 3
10 Protein boost 1 Protein boost 1 Protein boost 1
12
14 Protein boost 2 Protein boost 2 Protein boost 2 Protein boost 1
16
18 Protein boost 2

TABLE 3 Immunization protocol and ELISA results for rabbit experiments H1 to H4a

a The reactivity of prebleed sera diluted 1:100 against each of the antigens gave an optical density reading of �0.12.
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exception of group 3 from experiment H4 [H4/3]) (Table 3) were
primed with codon-optimized DNA of gp120 from clade C strain
ZM109F, as indicated in Table 3; the timing of each immunizing
dose is shown in Table 2. Five groups of animals were coimmu-
nized with DNA and protein, followed by protein-only boosting
(Table 3).

Characterization of the Ab response. Rabbits were bled prior
to and 2 weeks after each immunization. For all rabbits, the sera
drawn 2 weeks after the last boost were used at 1:100 dilutions
to screen by ELISA for reactivity against various V1V2 anti-
gens. The results in Table 3 show the mean optical densities
(ODs) from all animals in each group when sera were tested for
Ab reactivity with a variety of antigens carrying the V1V2 re-
gion from various clades and in various configurations. Thus,
cV292TH023 (clade E), V1V21086-tags (clade C), V1V2A244-tags
(clade E), and V1V292TH023-gp70 (clade E) were present in an
unconstrained configuration since the mobility of the V1V2 re-
gion was not limited by the structure of, or the placement in, the
scaffold. In contrast, the flexibility of the V1V2 regions present in
V1V2YU2-1FD6 (clade B), V1V2ZM109-1FD6 (clade C), and the
N160K mutant of V1V2ZM109-1FD6 was constrained by its place-
ment in the 1FD6 scaffold (49). The reagents used here have been
described previously (16, 30, 49, 50). Reactivity of prebleed sera,
diluted 1:100, against each of these antigens gave OD readings of
�0.12. Sera drawn from animals after two boosts with all of the
immunization regimens were reactive above the prebleed back-
ground levels with essentially all antigens, indicating that all of the
various V1V2-scaffold proteins were immunogenic and induced
Abs that were highly cross-clade reactive with epitopes displayed
by diverse V1V2 regions. The pattern evident from the heat map of
ELISA reactivities shown in Table 3 indicates that the strongest
responses were in animals immunized with immunogens bearing
constrained V1V2 epitopes (displayed on scaffolds 1FD6, 2J9C,
1FD6-Fc, TTB, and 2F5K) and tested with ELISA antigens display-
ing V1V2-constrained epitopes [V1V2YU2-1FD6, V1V2ZM109-
1FD6, and V1V2ZM109(N160K)-1FD6]. The P value using a one-
tailed Student t test was 0.0035 when the OD values derived using
the three V1V2-constrained ELISA antigens and sera of animals
immunized with V1V2-constrained immunogens were compared
to the OD values of ELISAs derived from sera of rabbits immu-
nized with V1V2-unconstrained immunogens (displayed as part
of gp70, tags, gp120, or Fc). The Ab response was also stronger
when protein immunogen was included with the DNA priming
immunization and not just in the boost (H2/2 versus groups H3/4
and H4/2, where the protein immunogen was V1V2ZM53-2J9C
[P � 0.001 by the one-tailed Mann-Whitney test]). This repro-
duces previously published data (51).

As shown previously, V1, V2, and V3 form the apex of the
envelope trimer on the surface of virions and infected cells (52–
54). Three categories of Abs have been described which are specific
for different epitope regions in V1V2 (55, 56), as follows.

(i) V2p Abs target a linear epitope represented by a peptide
from the C strand of V2, which assumes a helical structure when
bound to V2p MAbs. Only a few such human V2p-specific MAbs
have been described, and these appear to be quite limited in their
neutralizing ability but are able to mediate ADCC (16, 57). V2p-
specific Abs were generated in the studies described herein as rab-
bit sera bound to the cyclic peptide cV292TH023 (Table 3), a reagent
which is recognized only by V2p-specific monoclonal Abs (MAbs)
(Fig. 1).

(ii) V2i Abs target a highly conformational epitope that in-
cludes the integrin binding site at residues 179 to 181 (55, 56).
Many V2i MAbs have been described, and serum V2i Abs exist in
the majority of infected individuals (58–60); these polyclonal and
monoclonal Abs do not react with V2-derived peptides but are
highly cross-reactive with monomeric gp120 from diverse strains
and clades (61) as well as with V1V2-scaffolded proteins such as
V1V2CaseA2-gp70 (Fig. 1) (58, 59). Binding of serum Abs to
V1V2CaseA2-gp70 was correlated with the reduced HIV infection
rate in RV144 vaccinees, demonstrating that the RV144 vaccine
regimen induced V2i-like Abs (13, 28, 30). Several of the reagents
used to interrogate rabbit immune sera were able to bind to V2i
MAbs, as shown in Fig. 1. V1V2ZM109-1FD6, for example, binds to
several V2i MAbs, but V2i MAbs do not bind to the cV292TH023

peptide. As shown in Table 3, immune sera from all rabbits bind
strongly to V1V2ZM109-1FD6.

(iii) V2q, also designated as V2 apex Abs, such as MAbs PG9
and CH01 (62, 63) preferentially target a V1V2 peptidoglycan
which is part of the structure created by the quaternary interaction
of the three V1V2 domains in the Env trimer (62, 64). These MAbs
mediate broad and potent neutralization, and, for avid binding,
these V2q MAbs require the presence of the glycan at position
N160 (62, 64). To determine if V2q-specific Abs were induced in
immunized rabbits, we tested their ability to bind to an N160K
mutant of V1V2ZM109-1FD6. As shown in Table 3, Abs in rabbit
serum bound as well to V1V2ZM109(N160K)-1FD6 as to V1V2ZM109-
1FD6. In addition, rabbit immune serum did not mediate neutral-
ization (see below). These data indicate that the Abs induced in the
rabbits immunized with V1V2 scaffolds did not have the immu-
nochemical or functional characteristics of the potent and broadly
neutralizing V2q Abs.

To further characterize the responses to the various immuno-
gens used here, Ab reactivities were compared when the boosting
regimen used gp120 protein instead of various V1V2-scaffold im-
munogens. The data are shown in Fig. 2, in which immune sera
from all animals in experiments H2, drawn 2 weeks after the sec-
ond boost, were tested for reactivity with V1V2ZM109-1FD6. As
expected, the prebleed sera showed no reactivity, while sera from
all immunized rabbits reacted with V1V2ZM109-1FD6. Of particu-
lar import is that the levels of Abs in the animals boosted with
various V1V2-scaffold immunogens (with the exception of
V1V21086-Fc) were comparable to the levels of Abs achieved in
rabbits boosted with the gp120ZM109 protein. Notably, the recip-
rocal of the geometric mean titer for 50% neutralization
(GMT50

�1) in gp120ZM109-boosted animals (Fig. 2, group H2/1)
was 280 compared to the GMT50

�1 value of 838 for animals
boosted in the same experiment with V1V2ZM109-1FD6-Fc (P �
0.03, by a one-tailed Mann-Whitney analysis). There appeared to
be little if any contribution of anti-scaffold Abs to the GMT50

�1

values (data not shown), which is consistent with the relatively
small size and expected poor immunogenicity of the scaffolds; e.g.,
the molecular mass of 1FD6 is 6.3 kDa, that of TTB is 12.5 kDa,
that of 2F5K is 10.6 kDa, and that of 2J9C is 12.9 kDa.

Comparison of the efficacies of various immunization regi-
mens. To compare a series of variables, radar plots were developed
to indicate the mean levels in animal sera of Abs against six differ-
ent antigens (Fig. 3). Each of the graphs (Fig. 3A to E) shows the
mean OD values of all animals in each of two groups immunized
to test a single variable. In all cases, the response of one group was
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consistently stronger to all six antigens. For example, animals that
were coprimed with gp120 DNA plus a V1V2-scaffold protein
(either V1V2ZM109-TTB or V1V2ZM53-2J9C) and that received
two boosts with the same V1V2-scaffold protein gave consistently

stronger Ab responses against six V1V2 antigens than animals
primed with gp120 DNA alone and boosted with a V1V2-scaffold
protein (Fig. 3A and B).

The specifics of each panel in Fig. 3 are provided in Fig. 3F,

FIG 1 Monoclonal antibody (MAb) reactivity against various V1V2 scaffolds. The optical densities (ODs) of the ELISA reactions between several human MAbs
(used at dilutions of 10 �g/ml) and various V1V2-scaffold antigens are shown. MAbs are designated specific for the V2i, V2p, or V2q epitope, as defined in the
text. Diagrams of V1V2A244-tags, of V1V2ZM109-1FD6, and of cV292TH023, which were used as antigens in these ELISAs, are shown. For V1V2ZM109-1FD6, V1V2
is shown in purple, and 1FD6 is in gray. The four strands, A, B, C, and D, of V1V2 are marked. Negative controls consisted of human MAb 1418, specific for
parvovirus B19, and human MAb 2299, specific for gp70 of murine leukemia virus.

FIG 2 Titration of immune rabbit sera against V1V2ZM109-1FD6. Pools of prebleed sera (bleed I) from each group or serum drawn 2 weeks after the last boost
from individual animals (numbered 26 to 50) in each of the six groups of animals immunized as part of experiment H2 (Table 3) were titrated in ELISAs.
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which also shows the GMT50
�1 values against one of the antigens,

V1V2ZM109-1FD6, for each group. For example, for the data
shown in Fig. 3A where V1V2ZM109-TTB was used as the protein
immunogen, the GMT50

�1 levels for the two different priming
strategies (DNA plus protein versus DNA alone) were 959 and
160, respectively; similarly, for the data shown in Fig. 3B where
V1V2ZM53-2J9C was used as the protein immunogen, the
GMT50

�1 levels for the two different priming strategies (DNA plus
protein versus DNA alone) were 2,246 and 171, respectively

(Fig. 3F). The P values generated with a one-tailed Mann-
Whitney test are shown to be significant for each of the pairs
compared (Fig. 3F).

Animals that were coprimed three times with DNA and the
V1V2ZM53-2J9C protein and then boosted with V1V2ZM53-2J9C
using incomplete Freund’s adjuvant (IFA) gave stronger re-
sponses than animals receiving the same immunization regimen
using alum as an adjuvant (Fig. 3C). The GMT50

�1 values of the
sera from the animals in these groups, when titrated against

FIG 3 Radar graphs showing antibody responses in sera obtained from immunized rabbits drawn 2 weeks after the second boost. (A to E) Mean OD values are
shown for sera diluted 1:100. (F) Details of the immunization of each group of animals, along with the geometric mean reciprocal half-maximal titers of sera from
individual rabbits in each group (GMT50

�1), are shown for ELISAs in which V1V2ZM109-1FD6 was used as the coating antigen. *, underlining denotes the
difference in the immunization regimens between the two experiments in each pair compared.
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V1V2ZM109-1FD6, were 149 and 37 for the IFA and alum groups,
respectively (Fig. 3F).

Animals that were coprimed with DNA plus V1V2ZM53-2J9C
scaffold protein and boosted with the homologous V1V2ZM53-
2J9C scaffold protein gave a better response than animals
primed with DNA plus the V1V2ZM53-2J9C scaffold protein
and boosted with the heterologous V1V2A244-2J9C scaffold
protein (Fig. 3D). The GMT50

�1 values for the homologous
versus heterologous prime and boosting regimens were 149
and 22, respectively (Fig. 3F).

The V1V2ZM53-2F5K protein immunogen gave a stronger re-
sponse than the V1V2ZM53-2J9C immunogen, as shown in Fig. 3E.
The GMT50

�1 values for titration against V1V2ZM109-1FD6 for
these two groups were 1,412 and 171, respectively (Fig. 3F).

Durability of the Ab response. To determine the durability of
the immune response elicited with various immunogens and vac-
cine regimens, selected groups of rabbits were housed for up to
76 weeks and bled at various times after each immunization.
The kinetics and the duration of the Ab responses against
various antigens are shown for three groups of animals in Ta-
bles 4, 5, and 6. When gp120ZM109F DNA was used alone for the
priming immunization, Abs reacted poorly with all antigens
except gp120ZM233 (Table 4, experimental group H1/5). After a
boost with gp120ZM109F protein, reactivity of gp120ZM233-directed
Abs increased and remained strong, and Abs to V1V2CaseA2-gp70
were significantly elevated although reactivity to other antigens
remained weak. Antibody levels began to wane at week 21, which
was 11 weeks after the last boost. In contrast, when DNA plus
V1V2-scaffold immunogens were used for the three priming
doses, followed by boosting with V1V2-scaffold proteins carrying
the homologous or heterologous V1V2 regions in the epitope scaf-
fold boosting immunogen (Tables 5 and 6, respectively), robust
responses were generated against both V1V2 antigens and gp120
after the second or third priming dose. Antibody levels to the

V1V2-scaffold antigens increased after the protein boosts. Rabbits
were maintained and bled periodically for the longest period of
time in the experiment where rabbits received DNA plus
V1V2ZM53-2J9C as the prime immunization and V1V2ZM53-2J9C
for the boost (Table 5, experiment H3/4). The Ab response to
V1V2 antigen constructs from clades B (V1V2YU2-1FD6) and C
(V1V2ZM109-TTB) were clearly enhanced by the protein boosts
and were maintained at peak activity through weeks 26 to 36,
which corresponded to 16 to 26 weeks after the last protein boost;
after that there was a very gradual decline. Ab responses were still
detectable at week 76, which was 66 weeks after the last boost. As
seen in Table 3, V1V2-specific Abs reacted most strongly when the
V1V2 domain was held in a constrained position by the scaffold
proteins (in this case V1V2YU2-1FD6 and V1V2ZM109-TTB) as op-
posed to antigens that harbored the V1V2 domain in an uncon-
strained configuration (gp120ZM233 and V1V2CaseA2-gp70).

The data in Tables 4, 5, and 6 also indicate that the Ab response
is focused on V1V2. Antibodies reactive with a V3 consensus C
peptide were induced, as expected, in the rabbits immunized with
gp120ZM109 DNA and gp120ZM109 protein (Table 4), but in ani-
mals primed with DNA gp120ZM109 plus V1V2 scaffolds and
boosted with the V1V2 scaffolds, V3 Abs were detectable only at
levels just above background and only during the immunization
with the priming gp120 DNA (Tables 5 and 6). Further data are
presented in Fig. 4 indicating that the Ab responses were focused
on V1V2 to the exclusion of other gp120 epitopes. Here, the sera of
animals primed with DNA and boosted with the V1V2-scaffold
protein immunogen V1V2ZM109-1FD6 (Fig. 4A) or V1V2ZM53-
2J9C (Fig. 4D) are shown to react after the boost with only
V1V2ZM109-1FD6 and not with the C5 and V3 peptides, which are
two of the most immunogenic epitopes in gp120 (65, 66). In con-
trast, several of the animals that were primed with DNA and
boosted with the gp120ZM109 protein reacted with either the C5
and/or the V3 peptide (Fig. 4B and C). Additionally, the data

TABLE 4 Duration of the antibody response during and after priming with gp120ZM109 DNA and
boosting with gp120ZM109 (experimental group H1/5)a

a Values are the mean ODs at 405 nm of five sera tested at 1:100. Data from 36 prebleed sera in various experiments were used to
calculate a cutoff value (mean � 3 standard deviations) of �0.14. The results during priming are shown in bleeds I to V, and
those during and after boosts are represented in bleeds VI to IX. Abbreviations for the prime-boost regimen use the following
form: 2wp1p, 2 weeks post-1st prime; 2wp1b, 2 weeks post-1st boost. V3 ConsC, V3 consensus C peptide.
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shown in Fig. 4 indicate that the gp120 DNA priming induced only
weak Ab responses, and these responses were against C5, V1V2,
and/or V3. The subsequent protein boost was responsible for the
induction of the strong Ab responses, and in the case of the ani-

mals receiving the V1V2-scaffold protein immunogens, the
prime-induced weak responses to C5 and V3 had waned com-
pletely (Fig. 4A and D). Thus, Ab responses induced by the ratio-
nally designed V1V2-scaffold protein immunogens focused the

TABLE 5 Duration of antibody response during and after priming with DNA plus V1V2ZM53-2J9C and
boosting with V1V2ZM53-2J9C (experimental group H3/4)a

a Values are the mean ODs at 405 nm of five sera tested at 1:100. Data from 36 prebleed sera in various experiments were used to
calculate a cutoff value (mean � 3 standard deviations) of �0.14. The results during priming are shown in bleeds I to IV, and those
during and after boosts are represented in bleeds V to XIII (indicated by the black line). Abbreviations for the prime-boost regimen use
the following form: 2wp1p, 2 weeks post-1st prime; 2wp1b, 2 weeks post-1st boost. V3 ConsC, V3 consensus C peptide.

TABLE 6 Duration of the antibody response during and after priming with DNA � V1V2ZM53-2J9C and
boosting with V1V2A244-2J9C (experimental group H4/4)a

a Values are the mean ODs at 405 nm of five sera tested at 1:100. Data from 36 prebleed sera in various experiments were used to
calculate a cutoff value (mean � 3 standard deviations) of �0.14. The results during priming are shown in bleeds I and II, and those
during and after boosts are represented in bleeds III to IX (indicated by the black line). Abbreviations for the prime-boost regimen use
the following form: 2wp1p, 2 weeks post-1st prime; 2wp1b, 2 weeks post-1st boost. V3 ConsC, V3 consensus C peptide.
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Ab response on the V1V2 region to the exclusion of other Env
antigens.

Biologic function of Abs induced by V2-targeting vaccines.
V2i-specific MAbs have little to no neutralizing activity (59), and
while there was a correlation between reduced risk of infection in
RV144 vaccinees and the level of V1V2 binding Abs, there was no
correlation with serum neutralizing activity (15). Thus, we did not
expect the immune sera from the rabbits immunized in these
studies to display neutralizing activity. To test for neutralizing
activity of immune rabbit sera, a modified, more sensitive version
of the TZM.bl assay was used (67) in which virus and sera were
incubated together for 24 h prior to application to cells. Indeed,
there was no neutralizing activity when sera from the five animals
in one of the best groups (H3/4; primed with gp120ZM109F DNA
plus V1V2ZM53-2J9C and boosted with V1V2ZM53-2J9C) were
tested against BaL.26, YU2, and SF162 (data not shown).

Since increasing attention has been focused on Fc-dependent
Ab functions, we chose to test the ability of the serum Abs from
immunized rabbits to mediate phagocytosis (12, 18, 24, 38). We
used the assay that was first described by Ackerman et al. (48) to
assess the phagocytic activity of THP-1 cells incubated with vari-
ous HIV Env-specific human MAbs bound to beads coated with
biotinylated gp120ZM53. Figure 5A shows the Ab-dependent cel-
lular phagocytosis (ADCP) scores generated using the optimized
assay described in the Materials and Methods section. Robust
phagocytosis was achieved with beads coated with gp120ZM53 and
then bound to V2i MAb 830A or 697 or to the V3-specific MAb

3869. This activity is shown to be Fc dependent, as illustrated by
the ability of cytochalasin D and human Fc receptor blocking re-
agent (Fig. 5, Fcblock) to inhibit phagocytosis. The V2p-specific
MAb CH58 was also shown to be capable of mediating ADCP of
beads coated with the cV2 peptide. This optimized assay was next
used to test the phagocytic activity of serum from each rabbit in
several groups of immunized animals. Immune sera were each
titrated from a dilution of 1:6 to 1:486 for phagocytic activity
against beads coated with V1V2ZM109-1FD6, and the mean ADCP
score for each group of rabbits at each of five serum dilutions is
plotted in Fig. 5B. Similar levels of phagocytic activity were de-
tected in sera from rabbits in three of the six groups tested: H3/1
(primed with gp120 DNA and boosted with V1V2ZM53-2F5K),
H3/4 (primed with gp120 DNA plus V1V2ZM53-2J9C protein and
boosted with V1V2ZM53-2J9C), and H4/4 (primed with gp120
DNA plus V1V2ZM53-2J9C protein and boosted with V1V2A244-
2J9C). In contrast, little or no activity was detected in sera from
animals in H1/5 (primed with gp120 DNA and boosted with
gp120 protein), H2/4 (primed with DNA and boosted with
V1V2ZM109-1FD6-Fc), and H2/5 (primed with DNA and boosted
with V1V2ZM109-TTB). A similar pattern was found for sera tested
at a dilution of 1:20 derived from the same six groups of animals
and tested using beads coated with V1V2YU2-1FD6 (Fig. 5C). It is
particularly striking that boosting with gp120 protein does not
induce Abs with phagocytic activity (group H1/5) while three
groups boosted with V1V2ZM53-2F5K, V1V2ZM53-2J9C, or
V1V2A244-2J9C displayed strong activity in this assay; this denotes

FIG 4 Specificity of the Ab response. The average OD values of replicates from ELISAs are shown on the y axis for sera from individual animals tested for
reactivity against BSA, C5 peptide, V1V2ZM109-1FD6, and a consensus C V3 peptide. The responses are shown for sera diluted 1:100 from each animal (numbered
on the x axis). The left half of each graph shows the results with sera collected 2 weeks after the third priming immunization. The right half of each graph shows
the responses obtained with sera collected 2 weeks after the second boost.
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a significant qualitative difference in the Abs induced by trimeric
V1V2-scaffold immunogens as opposed to gp120 protein, dimeric
immunogens, or pentameric immunogens. It is noteworthy that
there is no correlation between phagocytic activity with
V1V2ZM109-1FD6-coated beads and Ab reactivity of the same se-
rum in ELISAs against V1V2ZM109-1FD6 (Fig. 5B and D). These
data are not contradictory in that phagocytosis is a function of an
Fc-mediated activity (as shown in Fig. 5A) while ELISA reactivity
reflects binding of Abs to the antigen via the Fab fragment.

DISCUSSION

The experiments described here were designed to focus a vaccine-
induced Ab response on the V1V2 region of the HIV-1 gp120
envelope glycoprotein since Abs to this region have been associ-
ated with reduced rates of HIV and SIV infection (12, 13, 18, 28,
30, 31, 32, 33, 34, 68). The results show that when different im-
munization regimens employing gp120 DNA and various V1V2
protein scaffold immunogens were used, the V1V2 region was
targeted by the Ab response, with little or no induction of Abs to
other Env epitopes. The response was durable, with Abs detectable
for �1 year after the last immunization. The vaccine-induced Abs
were (i) highly cross-reactive with the V1V2 regions and gp120

molecules derived from diverse strains and clades, (ii) directed at
linear and conformational epitopes in V2, and (iii) able to mediate
phagocytosis, a function that has been correlated with protection
from HIV, SIV, and SHIV as well as other viral diseases (12, 18, 24,
38). The specificities of the vaccine-induced rabbit Abs were sim-
ilar to those of human-derived V2i-specific MAbs on the basis of
their ELISA reactivities with various V1V2-scaffold immunogens
(Table 3 and Fig. 1), their inability to neutralize viruses, and their
ability to mediate Fc-dependent phagocytosis (Fig. 5).

The rationale for using an epitope-specific approach to vaccine
design was based on studies in the literature indicating that target-
ing specific epitopes of infectious organisms could protect against
infection by various pathogens, an approach termed reverse vac-
cinology (69). For example, targeting the factor H-binding pro-
tein of Neisseria meningitides with an experimental vaccine pre-
vented meningococcal meningitis and sepsis in mice (70), and
targeting the site Ø of the fusion glycoprotein of respiratory syn-
cytial virus (RSV) elicited high levels of RSV-specific Abs with
neutralizing activity (71). Moreover, focusing the immune re-
sponse on the V3 region of HIV gp120 with V3-scaffold immuno-
gens induced cross-clade neutralizing Abs and recapitulated the
binding and biologic activity of V3-specific human MAbs (35, 36).

FIG 5 Phagocytosis assay with monoclonal antibodies (MAbs) and rabbit immune sera. The ADCP assay was performed and reported as ADCP scores as
described in Materials and Methods. (A) Beads were coated with either gp120ZM53 and then incubated with the designated MAb (V2i-specific MAb 830A or 697
or V3-specific MAb 3869) or with cV2 peptide and incubated with V2p-specific MAb CH58. Cells that had been preincubated for 30 min at 37°C with either 30
�l of FcR blocking agent (Fcblock; Miltenyi Biotec) or 10 �l of 10 �g/ml cytochalasin D (CytoD; Sigma) or were untreated and then added to the bead-MAb
complexes. Controls consisted of gp120ZM53-coated beads without bound MAb (no MAb) or incubated with MAb 1418, specific for B19 parvovirus (1418
control). (B) Titration of phagocytic activity in rabbit immune sera using beads coated with V1V2ZM109-1FD6. Data shown are the means of values from
individual rabbits in each group 	 standard errors of the means. (C) ADCP scores for rabbit immune sera diluted 1:20 when beads coated with V1V2YU2-1FD6
were used. Data shown are the means from individual rabbits in each group 	 standard errors of the means. (D) Immunization regimen used for each of the six
rabbit groups studied and the mean OD determined from ELISAs with a 1:100 dilution of serum from each individual rabbit in each group tested for reactivity
with V1V2ZM109-1FD6.
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Here, we describe a successful reverse vaccinology approach using
immunogens that target the V1V2 portion of gp120. This study
and the successful reverse vaccinology studies cited above stand in
marked contrast to several unsuccessful attempts to use epitope
scaffold immunogens to elicit polyclonal responses designed to
recapitulate the specificity and function of broadly neutralizing
MAbs that target HIV sites of vulnerability (72–76).

It has been suggested that nonneutralizing mechanisms, such
as phagocytosis, neutrophil activation, and ADCC, are likely to
play a role in both HIV prevention and reservoir-eliminating ther-
apeutic approaches (77, 78). This is supported by the RV144 clin-
ical trial where a correlate of reduced infection was found with
various Fc-mediated activities but not with neutralization (9–18).
In addition, a myriad of studies have shown an association be-
tween Fc�-dependent Ab functions and reduced infection with
SIV and SHIV (22, 24, 32, 33, 38).

The mechanism by which Abs mediate various Fc-dependent
antiviral functions is the subject of ongoing studies. The protective
role of HIV Abs in binding to Fc receptors was established in
passive immunization experiments (79). In addition, the nature of
Fc-glycan structures was shown to selectively promote Fc-effector
functions independent of Ab specificity for HIV epitopes, and
particular Ab glycan structures were associated with enhanced
ADCC as well as ADCP activity (80). Further studies have indi-
cated that Fc� receptor-mediated activity is associated with pref-
erential engagement of activating, but not inhibitory, Fc� recep-
tors (81). Thus, biologic functions of nonneutralizing Abs are
affected by many factors, including isotype, subtype, affinity for Fc
receptors, and ability to activate complement—all of which are
functions of the Fc rather than the Fab fragment of immunoglob-
ulins (82). It is notable, therefore, that in targeting the immune
response to V1V2, we have induced Abs that, as expected on the
basis of previous data (59), have no neutralizing activity but me-
diate ADCP. Notably, there was no phagocytic activity in the sera
of rabbits immunized with gp120 DNA and gp120 protein (exper-
imental group H1/5) whereas the immune sera we tested from
animals immunized with selected gp120 DNA and V1V2-scaffold
proteins (experimental groups H3/1, H3/4, and H4/4) displayed
this activity (Fig. 5), indicating that there was a qualitative differ-
ence between the immune responses induced by gp120 and those
induced by V1V2-scaffold immunogens.

The induction of ADCP by immunogens V1V2-2F5K and
V1V2-2J9C, in contrast to the failure to induce ADCP with gp120
protein, may bear on the differing conformations of these anti-
gens. V1V2 is presented by the 2F5K and 2J9C scaffolds as an
apical trimeric structure whose conformation is constrained by
their insertion in these scaffolds (47). In contrast, the V1V2 region
in gp120 is presented as a monomeric, unconstrained domain.
The V1V2-2J9C design was based on the V1V2 structure as ob-
served in complex with V2q MAb PG9 (49), while the V1V2-2F5K
design was based on the V1V2 structure in complex with V2i MAb
830A (37). The geometry of the trimeric configuration (position
and orientation with respect to the trimer axis) of the V1V2 do-
mains in both designs was guided by the low-resolution cryo-
electron microscopy (EM) structure of the SOSIP trimeric spike in
complex with MAb PG9 (53) before the higher-resolution struc-
ture became available (54).

In summary, we have used the structure of V1V2 epitopes rec-
ognized by various human MAbs that target the V1V2 region of
gp120 to design V1V2-scaffold immunogens which induced Abs

in rabbits that recapitulated the specificity and functional activity
of human V2i MAbs. The vaccine-induced rabbit serum Abs were
focused on the V1V2 region, were cross-clade reactive, mediated
Ab-dependent phagocytosis, and were detectable �1 year after the
last immunizing dose. The data demonstrate the success of a re-
verse vaccinology approach to HIV vaccine design and the poten-
tial for specifically targeting sites of vulnerability with rationally
designed immunogens.
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