
Heterodimers as the Structural Unit of the T�1 Capsid of the Fungal
Double-Stranded RNA Rosellinia necatrix Quadrivirus 1

Daniel Luque,a,b Carlos P. Mata,a Fernando González-Camacho,b José M. González,a* Josué Gómez-Blanco,a Carlos Alfonso,c

Germán Rivas,c Wendy M. Havens,d Satoko Kanematsu,e Nobuhiro Suzuki,f Said A. Ghabrial,d Benes L. Trus,g José R. Castóna

Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spaina; Centro Nacional de Microbiología/ISCIII,
Carretera de Majadahonda-Pozuelo, Majadahonda, Madrid, Spainb; Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spainc;
Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USAd; Institute of Fruit Tree Science, National Agriculture and Food Research Organization
(NARO), Morioka, Iwate, Japane; Institute of Plant Science and Resources, Okayama, Japanf; Imaging Sciences Laboratory, CIT, NIH, Bethesda, Maryland, USAg

ABSTRACT

Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T�1 lattice
consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative com-
plex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of
nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a
dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and
dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into �450-Å-diameter capsids. We used three-dimen-
sional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1
virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T�1 lattice
built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into
several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization simi-
lar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T�1 capsid with a het-
erodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit
capsid is a conserved assembly that supports dsRNA replication and organization.

IMPORTANCE

Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and
provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our
understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Ro-
sellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy
and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1
(RnQV1). The RnQV1 capsid is a T�1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic infor-
mation used by RnQV1 to construct a simple T�1 capsid is probably related to the numerous virus-host and virus-virus interac-
tions that it must face in its life cycle, which lacks an extracellular phase.

Double-stranded RNA (dsRNA) viruses are a diverse group that
infect hosts from bacteria to eukaryotes, including fungi, proto-

zoa, plants, and animals (1). Their genome complexity varies from a
single segment, like the L-A virus of the yeast Saccharomyces cerevi-
siae (ScV-L-A) (2), to 12 dsRNA molecules, like the rice dwarf virus
(3). Capsid complexity is also quite variable and ranges from a single
shell to multilayered concentric capsids. dsRNA viruses nevertheless
share many general architectural and functional principles, which
indicates parallel strategies in the viral life cycle (4). For example, a
specialized T�1 icosahedral capsid that remains undisturbed
throughout the dsRNA virus life cycle encompasses its genome and
its RNA-dependent RNA polymerase (RdRp).

The T�1 capsid has a dual function, as it provides a platform
for RNA transcription and replication and isolates the viral ge-
nome from host sentinels to avoid triggering defense mechanisms.
The stoichiometry of the T�1 capsid is highly conserved among
dsRNA viruses, probably because structural proteins participate
in organizing the RdRp complex(es), as well as the dsRNA. Al-
though the simplest icosahedral capsids are built from 60 identical
subunits that assemble into 12 pentamers (a T�1 capsid), dsRNA

virus T�1 capsids are formed by 60 asymmetric dimers of a single
protein (a 120-subunit T�1 capsid) (5).

T�1 capsids have been described in members of the families
Reoviridae and Picobirnaviridae (6–10), in the family Cystoviridae
(11, 12), and in the families Totiviridae (13–15), Partitiviridae (16,
17), and Megabirnaviridae (18) (Table 1 ). The ubiquitous T�1
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capsid is referred to as the inner core in reoviruses and cystovi-
ruses. Members of the family Birnaviridae are exceptions, as they
lack the T�1 core (19, 20). Birnaviruses have a single T�13 shell
that encapsidates a polyploid dsRNA genome organized as ribo-
nucleoprotein complexes (21, 22). Chrysoviruses, a group of
dsRNA mycoviruses with a multipartite genome, have a T�1 cap-
sid with 60 subunits of a single 982-amino-acid capsid protein
(CP) (23–25). The CP is formed by a repeated �-helical core,
indicative of gene duplication, and the capsid architecture is sim-
ilar to that of the 120-subunit T�1 layer of reoviruses, cystovi-
ruses, megabirnaviruses, and totiviruses (26).

Here, we used complementary electron microscopy and bio-
physical analysis to study the capsid structure of Rosellinia neca-
trix quadrivirus 1 (RnQV1) of the Quadriviridae (27, 28). RnQV1
is associated with latent infections (i.e., it causes no apparent slow-
ing of host growth) and has a multipartite genome consisting of
four monocistronic dsRNA segments (genome sizes range from
3.7 to 4.9 kbp). dsRNA-1 (4,942 bp) codes for a protein of un-
known function (1,602 amino acid residues), dsRNA-2 (4,352 bp)
encodes the P2 capsid protein (1,356 amino acids), dsRNA-3
(4,099 bp) codes for the RdRp (1,117 amino acids), and dsRNA-4
(3,685 bp) codes for the P4 capsid protein (1,061 amino acids).
Like many other dsRNA mycoviruses, quadriviruses lack an extra-
cellular phase in their life cycle but have efficient means for both
horizontal and vertical transmission (29). Based on multiple
alignments of RdRp sequences, quadriviruses appear to be more
closely related to totiviruses (with a single genome segment) than
to chrysoviruses (with four segments).

The filamentous ascomycete Rosellinia necatrix can be in-
fected by dsRNA viruses belonging to at least five families (30).
We analyzed RnQV1 strains 1075 and 1118 (isolated from two
independent field strains of R. necatrix) using three-dimensional
cryo-electron microscopy (3D cryo-EM) and analytical ultracen-

trifugation. We found that RnQV1 has a single-shelled T�1 cap-
sid with 60 P2-P4 heterodimers in which one or two dsRNA seg-
ments are likely to be encapsidated in a similar particle.

MATERIALS AND METHODS
Virion preparation. R. necatrix strains infected with Rosellinia necatrix
quadrivirus 1 strain W1075 (RnQV1-W1075) or RnQV1-W1118 were
used for virion purification, as described previously (31) with modifica-
tions. Mycelium was harvested from 14-day stationary-phase cultures
grown at room temperature (22 to 25°C) in potato dextrose broth containing
0.5% (wt/vol) yeast extract and homogenized in a Waring blender with 0.1 M
sodium phosphate buffer (pH 7.4) containing 0.2 M KCl and 0.5% (vol/vol)
�-mercaptoethanol. The homogenate was mixed with an equal volume of
chloroform, and the emulsion was broken by centrifugation (8,000 � g; 20
min). The aqueous layer was subjected to two cycles of differential centrifu-
gation (27,000 rpm, 150 min, Beckman type 30 rotor; 10,000 rpm, 10 min,
Beckman JA-20 rotor). The pellets were resuspended in buffer A (50 mM
Tris-HCl buffer, pH 7.8, 5 mM EDTA, 150 mM NaCl). The final purification
step was rate zonal centrifugation in sucrose density gradients (100 to 400
mg/ml in buffer A; 24,000 rpm, 150 min, Beckman SW28 rotor). All centrif-
ugation steps were carried out at 4°C. The two UV-absorbing bands, corre-
sponding to empty particles (upper band) and full particles (lower band),
were withdrawn separately with a syringe from the side of the tube, diluted
with buffer A, and concentrated by centrifugation (40,000 rpm, 12 h, 4°C,
Beckman 50Ti rotor). The pellets were resuspended in buffer A.

Analytical ultracentrifugation of RnQV1-W1075 capsids. For sedi-
mentation velocity experiments, viral capsids or complete virions in the
0.5- to 1.0-mg/ml range were used. Samples were equilibrated in buffer A.
Sedimentation velocity experiments were carried out in an XLI analytical
ultracentrifuge (Beckman-Coulter; 10,000 rpm, 20°C), and Rayleigh in-
terference or absorbance at 280 nm was recorded. Sedimentation co-
efficient distributions were calculated by least-squares boundary mod-
eling of sedimentation velocity data using the c(s) and ls-g*(s)
methods (32, 33), as implemented by the SEDFIT program (http://www
.analyticalultracentrifugation.com/default.htm). S values were corrected
to standard conditions (water, 20°C, and infinite dilution) (34) using the

TABLE 1 Features of T�1 capsid proteins and genome in dsRNA viruses

Virusa

dsRNA features Capsid features

No. of segmentsb Size (kbp) Massc (MDa) CP (residues) �/rd (nm) dsRNA density (bp/100 nm3)e

Reoviridae
Orthoreovirus 10 �23.5 16 1,275 �60/24.5 38
Rotavirus 11 �18.5 12.6 880 �52/23.5 34
Orbivirus, BTV 10 �19.2 13.1 901 �52/22 43
Aquareovirus, GCRV 11 �23.6 16 1,027 �60/23 46
Phytoreovirus, RDV 12 �25.7 17.5 1,019 �57/26 35
Cypovirus, CPV 10 �31.4 21.4 1,333 �58/24 54
Mycoreovirus, MyRV1 11 23.4 16

Picobirnaviridae 2 �4.2 2.9 590 �35/14
Cystoviridae, phage �6 3 �13.4 9.1 769 �50/20 40
Totiviridae, ScV-L-A 1 �4.6 3.1 680 �43/17 22
Partitiviridae, PsV-S 1 (2) �1.7 (3.3) 1.2 (2.2) 420 �35/12 23
Chrysoviridae, PcV 1 (4) �3.2 (12.6) 2.2 (8.6) 109 �40/16 19
Megabirnaviridae, RnMBV1 1 (2) �8.1 (16.2) 5.5 (11) 135 �52/19 28
Quadriviridae, RnQV1 1–2 (4) �4.3 (17.1) 2.9 (11.7) 1,356 � 1,061 �47/16 25 (50)f

a BTV, bluetongue virus; GCRV, grass carp reovirus; RDV, rice dwarf virus; CPV, cytoplasmic polyhedrosis virus; MyRV1, mycoreovirus 1; PsV-S, Penicillium stoloniferum virus S;
RnMBV1, Rosellinia necatrix megabirnavirus 1.
b For PsV-S, PcV, and RnMBV1 dsRNAs, the genome is formed by two, four, or two dsRNA molecules, respectively, but a mean value was calculated for 1 dsRNA molecule/particle
in each column.
c Masses were calculated assuming a mass of 682 Da/bp.
d �, outer diameter; r, inner radius.
e Densities when the volume of a perfect sphere is assumed and any other internal components are ignored.
f A value of 25 if there is one dsRNA molecule/particle or 50 if there are two dsRNA molecules/particle.
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SEDNTERP program (35) to obtain standard S values (S20,w [i.e., 20°C,
water]).

Dynamic light scattering. For dynamic-light-scattering experiments,
we used a Protein Solutions DynaPro-MS/X instrument (Protein Solu-
tions, Charlottesville, VA). Viral capsids and complete virions were cen-
trifuged (10,000 � g; 10 min) to remove dust particles; 50-	l samples were
loaded in 90° light-scattering cuvettes and measured at 20°C. Transla-
tional diffusion coefficients (D) of the viral particles were determined
from the scattering data with DYNAMICS autocorrelation analysis soft-
ware v. 6 (Protein Solutions). Experimental values were buffer and con-
centration corrected (34) to obtain standard D0 coefficients.

SDS-PAGE. Concentrated gradient fractions (2 to 5 	l) were added to
Laemmli sample buffer to a 1� final concentration (62.5 mM Tris-HCl,
2% SDS, 5% glycerol, 0.012% bromophenol blue, 2 mM dithiothreitol,
pH 6.8), heated (3 min; 100°C), and resolved in 11% polyacrylamide gels.

Cryo-electron microscopy. Samples (5 	l) were applied to acetone-
treated Quantifoil R 2/2 holey grids, blotted, and plunged into liquid
ethane in a Leica EM CPC cryofixation unit. Micrographs were recorded
at a nominal �50,000 magnification under low-dose conditions (10 e
/
Å2) with a FEI Tecnai G2 electron microscope operating at 200 kV and
equipped with a field emission gun.

Image processing. General image-processing operations were per-
formed using Xmipp (36; http://xmipp.cnb.csic.es/) and Spider (37;
http://www.wadsworth.org/spider_doc/spider/docs/) software pack-
ages. Graphic representations were produced with UCSF Chimera (38;
http://www.cgl.ucsf.edu/chimera/).

A Nikon Super CoolScan 9000 ED scanner was used to digitize 423 and
324 micrographs for RnQV1 strains W1075 and W1118, respectively, at a
6.35-	m step size to yield a 1.27-Å pixel size in the specimen. X3d (39) and
the Xmipp picking routine were used to manually select 26,729 and 36,582
individual particle images for RnQV1 strains W1075 and W1118, respec-
tively. A 0.7- to 3.8-	m defocus range was determined with CTFfind (40),
and contrast transfer function (CTF) phase oscillations were corrected in
images by flipping them in the required lobes, and virion particles were
extracted and normalized. The Xmipp iterative projection-matching rou-
tine was carried out to determine the origin and orientation of each par-
ticle using the structure of Penicillium chrysogenum virus (PcV) (EMD-
1610 [26]), low-pass filtered to 30 Å, as a starting model. After each
refinement iteration, the resolution was assessed from two independent
half data sets using the 0.3 criterion of the Fourier shell correlation (FSC).

A total of 24,056 (for RnQV1 W1075) and 23,926 (for W1118) particles
were included in 3D reconstructions. The amplitude decay profile of the
cryo-EM maps was adjusted to match the profile of the X-ray ScV-L-A
capsid map (Protein Data Bank [PDB] accession no. 1m1c, [13]). The
fitted function was applied to cryo-EM maps in the frequency range from
196 Å to the maximum resolution achieved, and a soft low-pass filter was
applied.

The structural asymmetric unit boundaries were established by con-
touring the map at different � levels, based on its compactness and con-
tacts with neighboring densities. The asymmetric unit and P2-P4 subunits
were segmented using Segger (41) in Chimera and refined iteratively to
avoid subunit overlap or loose density. To test whether the selected den-
sity corresponded to a single asymmetric unit, the complete capsid map
was restored in each cycle after applying icosahedral symmetry to the
selected density. The secondary-structure elements (SSE) in the RnQV1
density were identified and modeled using the SSEHunter program (42)
integrated in the Gorgon software (43). For difference map calculations,
spherically averaged radial density profiles were calculated, normalized,
and scaled to match the fit between the cryo-EM map and quasi-atomic
model profiles. A difference map was obtained by subtraction.

Secondary-structure predictions. The Web addresses used for second-
ary-structure prediction programs were as follows: UniProt, http://www
.uniprot.org/; PsiPred, http://bioinf.cs.ucl.ac.uk/psipred/; Jnet, http:
//www.compbio.dundee.ac.uk/www-jpred/; Porter, http://distill.ucd.ie
/porter; Sable, http://sable.cchmc.org; Gor, https://npsa-prabi.ibcp.fr/NPSA
/npsa_gor4.html; Yaspin, http://www.ibi.vu.nl/programs/yaspinwww/; Prof-
sec, http://www.predictprotein.org/; and GeneSilico, http://genesilico.pl
/meta2/.

Accession number(s). The 3D reconstructions have been deposited in
the EMBL-EBI database (http://www.ebi.ac.uk/) under accession num-
bers emd-3437 (full RnQV1 strain W1075) and emd-3438 (empty RnQV1
strain W1118).

RESULTS
RnQV1 capsid three-dimensional structure at 8-Å resolution.
Purified full and empty RnQV1-W1075 particles were analyzed by
SDS-PAGE (Fig. 1A, left). Excluding mycoreoviruses (44),
RnQV1 is the only mycovirus with several major structural pro-
teins encoded by more than one segment, segments dsRNA-2 and

FIG 1 Biochemical and cryo-EM analyses of RnQV1 strains W1075 and W1118. (A) Coomassie blue-stained SDS-11% PAGE gels of purified full and empty
RnQV1-W1075 (left) and empty RnQV1-W1118 (right) virions used for cryo-EM data acquisition. P4 and P4-related bands are indicated in gray and P2 and
P2-related bands in black. Molecular mass markers (10
3 Da) are on the left. (B) Cryo-EM of full RnQV1 strain W1075 (the arrows indicate two empty capsids).
(C) Cryo-EM of empty RnQV1 strain W1118. Bar � 50 nm.
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-4. As reported for these particles (27, 28), in addition to lower-
mobility bands corresponding to P2 and P4 structural proteins,
the proteins were also cleaved in several polypeptides; P2-derived
bands had electrophoretic mobilities equivalent to those of pro-
teins with molecular masses of 100, 60, and 40 kDa (Fig. 1A, black
arrowheads), whereas P4-related bands were 110, 75, and 30 kDa
(Fig. 1A, gray arrowheads). It was unclear whether the P2 and P4
cleavage products were produced in the infected fungal host
and/or during virion purification. We also analyzed a second
quadrivirus strain, RnQV1-W1118 (which has 81 and 82% P2
and P4 sequence identity with those of RnQV1-W1075), but
P2- and P4-related degradation products were basically absent
(Fig. 1A, right). RnQV1-W1075 and RnQV1-W1118 P4 and P2
were detected as 110- and 100-kDa bands, which contrasted
with the predicted sizes based on the coding capacities of dsR-
NA-4 and dsRNA-2, which would encode proteins of 1,061
(113,243 Da) and 1,356 (147,420 Da) amino acids, respectively.
This discrepancy could be due to anomalous electrophoretic
mobilities or, more probably, to further proteolysis at the C
terminus.

Full RnQV1-W1075 (Fig. 1B) and empty RnQV1-W1118
(Fig. 1C) particles were considered appropriate for independent
cryo-EM analysis, and their 3D reconstructions were calculated.
Raw cryomicrographs of full and empty RnQV1 particles showed
visible surface projections on most particles. The final resolutions
of the reconstructions for full W1075 and empty W1118 were
estimated to be 8.2 and 9.1 Å, based on a 0.3 FSC threshold (Fig.
2A). The relatively limited resolution could be due to some struc-
tural heterogeneity of the purified virions and/or to the imaging
conditions used for the study. The central sections of the 3D maps
showed no marked structural differences in the protein shell be-
tween full and empty capsids (Fig. 2B and C). This interpretation
was supported when we used full and empty particles for differ-
ence map calculation, which detected only minor differences (see
below). In addition, when FSC resolution curves were calculated
either for the full and empty maps refined independently or for
full and empty particles subjected to joint refinement cycles, the
estimated resolutions were 8 to 9 Å, indicating that the two maps
were virtually identical (not shown). The data also indicated that
the two maps were virtually identical, independently not only of

FIG 2 Three-dimensional cryo-EM of RnQV1 virions. (A) Assessment of the resolution of full (W1075) and empty (W1118) RnQV1 reconstructions. FSC
resolution curves were calculated for full (blue) and empty (red) capsids. Each set of particle images was subdivided randomly into two subsets, and independent
reconstructions were computed from the data. Resolutions for which correlations were �0.3 are indicated. For the 0.3 threshold, the values for full and empty
RnQV1 capsids were 8.2 and 9.1 Å, respectively. (B and C) Central sections from the 3D reconstruction of full (B) and empty (C) capsids, viewed along a 2-fold
axis. Protein and RNA are dark. The two protein shells are virtually identical, and the RNA density of the full capsid is seen as concentric circles inside the capsid.
(D) Stereo view of the radially color-coded outer surface of the full capsid, viewed along a 2-fold axis of icosahedral symmetry. The most prominent features are
120 outward-protruding densities (orange). The map is contoured at 2.5 � above the mean density. Bar � 100 Å. (E) Surface-shaded virion capsid viewed along
an icosahedral 5-fold axis showing the five A (blue) and B (yellow) structural subunits in a pentamer. (F) Inner surface of the RnQV1-W1075 capsid (for clarity,
only the density between 145- and 210-Å radii is shown). Icosahedral-symmetry axes are indicated (red symbols).
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the presence of dsRNA, but also of the processing level of the
structural proteins P2 and P4.

The outer diameter of the capsid was 470 Å, measured from
spherically averaged radial density profiles of maps, and the aver-
age capsid shell thickness was 75 Å. The capsid has a T�1 lattice,
the most outstanding feature of which is the 120 outward-pro-
truding densities (Fig. 2D, orange). Each pentameric capsomer is
formed by an inner ring of five connected, elongated structures
(Fig. 2E, blue) surrounded by an outer ring of five slightly larger,
partially intercalated structures (Fig. 2E, yellow). Whereas there
are marked depressions at the 2- and 3-fold icosahedral-symmetry
axes, the capsid is slightly raised at the 5-fold axis positions. The
uneven outer surface of the RnQV1 capsid was less defined than
the smooth inner surface, where we observed numerous rod den-
sities that probably correspond to �-helices of different lengths
(Fig. 2F).

By varying map contour levels, we established structural asym-
metric unit boundaries that include the elongated subunits (Fig.
2E, blue and yellow structures). The capsid map was restored
computationally after applying icosahedral symmetry to this se-
lected asymmetric unit.

Two structural proteins for the RnQV1 capsid. The topo-
graphic features of RnQV1-W1075 and RnQV1-W1118 corre-
sponded to the 120-subunit capsid predicted for the ubiquitous

T�1 lattice of most dsRNA viruses, in which the asymmetric unit
is a CP asymmetric homodimer. Independently of the CP process-
ing level, the RnQV1 capsid was built of P2 and P4 heterodimers,
as they were found at similar ratios, as deduced from the biochem-
ical profile of purified RnQV1-W1118 virions (Fig. 1A). The
asymmetric unit is a rectangular prism, �85-Å maximum height
with an �150- by �83-Å base (Fig. 3A). The two elongated struc-
tures that form the asymmetric RnQV1 capsid unit, and which
differ slightly in size, correspond to P2 and P4; at this resolution,
their concise boundaries cannot be delimited within the asymmet-
ric unit, nor can P2 or P4 be assigned to either of the elongated
structures. In addition, P2 and P4 might contribute to both struc-
tures by inter- and intradimeric interactions mediated by loops
and/or secondary-structure elements that interwine both sub-
units, as well as domain swapping between the two protomers
within each heterodimer. Following established nomenclature
(7), we refer to these elongated structures as the A subunit for
those that participate directly in interactions at the 5-fold axis
(Fig. 2A and 3A, blue) and the B subunit for those intercalated
between A subunits (Fig. 2A and 3A, yellow).

RnQV1 A and B subunits, which make up 42% and 58% of the
total unit volume, have similar general morphologies consisting of
a prominent protruding (P) domain (with similar sizes for PA and
PB domains) and a 460-Å-thick shell (S) domain (SB is much

FIG 3 Structure of the RnQV1 capsid and model of the heterodimer fold. (A) Segmented asymmetric unit (A-B heterodimer). The dashed line highlights the
rectangular shape. Subunits A (blue) and B (yellow) are indicated. The map is contoured at 2.5 � above the mean density. Icosahedral-symmetry axes are
indicated (red). The insets highlight P and S domains of CP (height is indicated). (B) SSE of subunits A and B, using the color scheme and orientations in panel
A; cylinders, �-helices; planks, �-sheets. The arrows indicate the subunit A �-helix that forms the 5-fold axis (middle) and the subunit B �-sheet that forms the
3-fold axis (right). (C) RnQV1 capsid pores at the 5-fold axis (�16-Å diameter) and the 3-fold axis (�18-Å side).
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larger than SA) (Fig. 3A, insets). SSE in the asymmetric unit were
identified with Gorgon software (which includes the SSE Hunter
program). We identified 21 �-helices and four �-sheet regions in
the A subunit and 25 �-helices and four �-sheet regions in the B
subunit (Fig. 3B). Most �-helices face the inner capsid surface.
The bundle of five helix-like structures at the 5-fold axis forms a
narrow, 16-Å-diameter channel, and three �-sheet-like structures
define the triangular pores (�18-Å sides) at the 3-fold axis (Fig.
3B, red arrows, and C).

The A and B subunits of classic 120-subunit capsids consist of
two conformers of the same protein with relatively limited con-
formational changes, and superposition of the A and B structures
matches most SSE. Previous analysis indicated that sequence sim-
ilarity between P2 and P4 is negligible (27). At the resolution
achieved, RnQV1 A and B subunits showed no clear structural
resemblance at the SSE level, even in the shell domains, where
�-helices are abundant and well defined. When we compared the
RnQV1 capsid with other T�1 proteins of dsRNA viruses by su-
perimposing structures that maintain the same orientation in the
capsid, we observed no resemblance. SSE prediction based on the
sequences of P2 (1,356 amino acids) and P4 (1,061 amino acids)
for strains W1075 and W1118 indicated high �-helical content, as
we observed directly in the cryo-EM maps (Fig. 4). The SSE pre-
dicted for P2 and P4 did not match.

dsRNA packaged within the capsid. A radial density profile of
the full RnQV1 particle showed additional density inside the cap-
sid (r � 161 Å) that corresponds to dsRNA (Fig. 5A and B, green).
In the empty capsid, with the same inner and outer shell radii (162
and 235 Å, respectively), the internal density was similar to that of
the external solvent (Fig. 5B, red). The difference map calculated
by arithmetic subtraction of the density values in both structures
showed, in addition to the genome densities, small difference den-
sities at the shell, in the 175- to 195- and 205- to 220-Å radius
ranges (Fig. 5B, black arrows). These difference densities, visual-
ized as spurious islands of density rather than large density islands
(not shown), can be ascribed to small sequence and structure dif-
ferences between strains W1075 and W1118 and/or to minor con-
formational changes in P2 and P4.

After icosahedral symmetry was imposed, the (full) RnQV1-
W1075 radial profile showed several concentric shells of RNA
density in the particle interior, spaced �35 Å apart (Fig. 5B, green
arrows). Although it is unlikely that this indicates dsRNA organi-
zation, 35 Å is the predominant spacing between dsRNA mole-
cules. The radial profile of dsRNA layers for ScV-L-A (Fig. 5B,
blue) (45, 46) was similar to that of RnQV1-W1075; both profiles
showed matching dsRNA peaks and indicated almost no protein-
RNA interactions between the inner capsid surface and the first
underlying dsRNA density shell (Fig. 5B).

Biophysical analysis of RnQV1 particles. To estimate an in-
dependent molecular weight for the RnQV1-W1075 virions, we
used analytical ultracentrifugation analysis of empty capsids and
complete virions; the sedimentation velocity behavior of these
particles is shown in Fig. 6. The main peaks of sedimenting parti-
cles for empty and full capsids showed standard sedimentation
coefficient values (S20,w) of 132  15 and 189  15 S, respectively.
Dynamic-light-scattering experiments with samples from the
same viral particle gave standard translational diffusion coeffi-
cients (D20,w) for the main scattering species of 7.3  0.5 (empty)
and 7.2  0.5 10
12 m2 s
1 (full particles). The combined S20,w

and D20,w coefficients, calculated using the Svedberg equation

(34), allow the molar mass of the viral particles to be determined
in a shape-independent manner. We determined that the main
species of empty particles has a molar mass of 15.9  3 MDa, and
that of the full virions is 20.6  4 MDa. Considering the molar
masses of the P2 and P4 structural CP, the molecular mass for a
T�1 capsid with a heterodimer as the asymmetric unit would be
�15.6 MDa or �12.8 MDa, depending on whether P2 was intact
or processed, respectively. The experimental values are compati-
ble with a capsid with intact P2 proteins, although processed P2
could not be ruled out.

Given the average size of the dsRNA segments (�4.3 kbp) and
assuming a molar mass of 682 Da/bp, the molar mass of a single
genome component is �3 MDa. Whereas our biophysical and
biochemical analyses showed that the molar mass of the capsid is
compatible with a T�1 capsid structure with 60 copies each of P2
and P4, the dsRNA segment/capsid ratio could not be determined
unequivocally.

DISCUSSION

The quasiequivalence theory introduced by Caspar and Klug (47)
implies that identical CP subunits interact to form quasiequiva-
lent bonds for the construction of stable icosahedral capsids with
multiples of 60 subunits (48, 49). The T�1 capsid, common
among dsRNA viruses, is built from 60 copies of a dimer of chem-
ically identical subunits. This 120-subunit capsid has a packing
arrangement distinct from that of standard T�1 capsids. It does
not follow classical quasiequivalence theory because the two sub-
units have nonequivalent bonding environments. The PcV T�1
capsid is based on a T�1 lattice (with 60 subunits), but it is a
variant of the 120-subunit capsid, as the CP has two motifs with
the same fold (26). Our analysis using 3D cryo-EM combined with
complementary analytical ultracentrifugation showed that the
RnQV1 capsid is a T�1 120-subunit layer composed of 60 het-
erodimers, a previously unreported organization that allows non-
equivalent packing of heterogeneous subunits as dimers. All of
these dsRNA virus capsids, exemplified by ScV-L-A (and reovirus
inner cores), PcV, and RnQV1, show structural variations of the
same framework optimized for RNA metabolism, with 60 asym-
metric dimers of a single protein (for ScV-L-A), dimers of similar
domains (for PcV), or dimers of two different proteins (for
RnQV1) (Fig. 7).

Of all the reported T�1 shells, the RnQV1 capsid requires the
largest dedication of the viral genome to CP (2,417 amino acid
residues; P2 � P4 � �270 kDa). This suggests apparent waste of
the limited virus coding capacity.

Due to their impact on human and animal health, mammalian
viruses are the best-characterized dsRNA virus group. These vi-
ruses have a multishelled icosahedral capsid, and each shell has a
specific associated role. Whereas the outer shell is protective and is
involved in cell entry, the innermost shell (or inner core) has 120
copies of a plate-like protein and is dedicated exclusively to ge-
nome and RdRp organization for transcription- and replication-
related activities. Except for fungal reoviruses, which like their
mammalian counterparts have several protein layers, most
fungal dsRNA viruses have a single-shell icosahedral capsid, as
they are transmitted by cytoplasmic interchange without leav-
ing the host. The 120-subunit capsids act as a molecular sieve
and contain the genome, as well as enzymes involved in dsRNA
metabolism (50, 51).

In addition to avoiding dsRNA-mediated intracellular defense
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FIG 4 Sequence alignment and secondary-structure consensus prediction for RnQV1 P2 and P4 CP amino acid sequences. The sequences of P2 (1,356 amino
acids for W1075; 1,357 amino acids for W1118) (A) and P4 (1,061 amino acids for W1075; 1,059 amino acids for W1118) (B) were obtained from the UniProt
database [H1ACC6, M1VMJ0, H1ACC8, and M1VHN2, respectively). Several SSE prediction methods (PsiPred, Jnet, Porter, Sable, Gor, Yaspin, and Profsec) were
used to test correlation with our models of the structural subunits. A consensus SSE prediction was obtained by simple majority at each sequence position. Identical
residues (white on red background) and partially conserved residues (red) are indicated. The arrows indicate �-strands, and the spirals indicate �-helices.
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mechanisms, the close relationship between the fungal dsRNA
virus and its host probably placed many constraints on the virus
that it overcame by increasing CP complexity. Fungal hosts are
often infected by multiple viruses (52, 53), and virus-virus inter-
actions can also be a major evolutionary determinant. In the fila-
mentous ascomycete R. necatrix, yado-kari virus 1 (YkV1), a pos-
itive-sense single-stranded RNA [(�)ssRNA] virus, hijacks the CP
of yado-nushi virus 1 (YnV1), a dsRNA virus that resembles toti-
viruses, to pack its genome and RNA polymerase. The 120-sub-
unit capsids of fungal dsRNA viruses share a corrugated outer
surface with protuberances rising above the continuous protein
shell. Whereas the average 120-subunit T�1 CP thickness for
mammalian dsRNA viruses is 15 to 30 Å, fungal virus CPs are
thicker. In ScV-L-A virus, the CP has an extra domain with decap-
ping activity that transfers cap structures from the 5= end of cellu-
lar mRNA to the 5= end of viral RNA (54, 55). Detailed analysis of
the chrysovirus CP (built of two similar domains) showed similar
extra domains on the outer capsid surface with unknown func-
tions (26).

Unlike the T�1 core in complex eukaryotic dsRNA viruses,
fungal dsRNA viruses consistently show a low degree of genome
compaction; in other words, they have spacious capsids (Table 1).
Members of the family Reoviridae have an average dsRNA density
of �40 bp/100 nm3. At an appropriate underfocus, cryo-EM pro-
jection images of encapsidated dsRNA in reoviruses and rotavi-
ruses, as well as dsDNA of bacteriophages (56, 57) and herpes
simplex virus (58), have a “fingerprint” motif with 25- to 30-Å
interstrand spacing, indicative of tight packing (59–62). A high
degree of condensation corresponds to a dsRNA density of 40 to
50 bp/100 nm3 or more. ScV-L-A dsRNA is loosely packed, with a
genome density of �20 bp/100 nm3 and spacing between fila-
ments of 40 to 45 Å (45). Similar values for packed dsRNA were
determined for PcV and partitiviruses, all of which also have a
single dsRNA molecule (31, 63). The megabirnaviruses contain

FIG 5 Genomic dsRNA within the RnQV1 virion particle. (A) A 50-Å-thick RnQV1-W1075 slab. Capsid shell coloring is the same as in Fig. 2, contoured at 1.2
�; dsRNA (green) is represented as three concentric layers contoured at 1.0 �. (B) Radial density profiles from 3D maps of full (W1075) and empty (W1118)
RnQV1 particles. Both profiles are superimposable at the protein shell (radius, �162 to 235 Å). A difference map was calculated by arithmetic subtraction of the
density values for both structures (full minus empty capsid; dashed line). Small differences in the protein shell are indicated at radii 175 to 195 and 205 to 220
(black arrows); major differences in the genome region are seen as density peaks at radii of 80, 113, and 147 Å (green arrows). The radial density profile from the
3D map of full ScV-L-A virions is also shown (L-A).

FIG 6 Analytical ultracentrifugation analysis of RnQV1-W1075. Sedimenta-
tion velocity experimental data (A) and sedimentation coefficient distribution
obtained by c(s) analysis (B) of empty capsids (solid line) and virions or full
particles (dashed line).
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one segment per capsid that yields a density of �28 bp/100 nm3

(18) (Table 1). For RnQV1, the analytical ultracentrifugation/dy-
namic-light-scattering data were insufficiently accurate and did
not allow us to determine the number of dsRNA molecules pack-
aged per capsid. The results nevertheless suggested that a single
RnQV1 virion is not replication competent, as the infectious unit
would require several viral particles (at least four if there is one
dsRNA molecule/particle). Comparison of the (full) RnQV1-
W1075 and ScV-L-A radial density profiles suggested one dsRNA
molecule per particle, as the predominant spacing between
dsRNA molecules is �35 Å. Considering the volume available
(17,160 nm3 based on an average internal capsid radius of 160 Å)
and an �4,270-bp average genome size, the density of a single
packed dsRNA molecule would be 25 bp/100 nm3 and that of two
packed dsRNA molecules would be 50 bp/100 nm3 (Table 1). Im-
ages of full RnQV1 particles showed uniformly dense capsids with
punctate and/or swirl motifs (as for ScV-L-A and PcV), which
indicates loose dsRNA packaging. This relatively low packed ge-
nome density is common among fungal viruses that package only
a single genomic dsRNA segment per particle and is probably
linked to improved template motion during transcription and
replication in the more spacious capsids.

The RnQV1 capsid is the T�1 lattice with the largest known
capsid proteins (P2 plus P4). Future studies that solve the RnQV1
atomic structure will help to define important aspects of dsRNA
virus evolution, i.e., whether P2 and P4 share the folding signature
of most dsRNA virus CPs, and of virus-host interaction, i.e.,

whether the protruding domains have enzyme activity, as for
other fungal CPs.
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