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Fast and simple decycling and 
dismantling of networks
Lenka Zdeborová1,*, Pan Zhang2,* & Hai-Jun Zhou2,*

Decycling and dismantling of complex networks are underlying many important applications in network 
science. Recently these two closely related problems were tackled by several heuristic algorithms, 
simple and considerably sub-optimal, on the one hand, and involved and accurate message-passing 
ones that evaluate single-node marginal probabilities, on the other hand. In this paper we propose a 
simple and extremely fast algorithm, CoreHD, which recursively removes nodes of the highest degree 
from the 2-core of the network. CoreHD performs much better than all existing simple algorithms. 
When applied on real-world networks, it achieves equally good solutions as those obtained by the state-
of-art iterative message-passing algorithms at greatly reduced computational cost, suggesting that 
CoreHD should be the algorithm of choice for many practical purposes.

In decycling of a network we aim to remove as few nodes as possible such that after the removal the remaining 
network contains no loop. In network dismantling we aim to find the smallest set of nodes such that after their 
removal the network is broken into connected components of sub-extensive size. These are two fundamental 
network-optimization problems with a wide range of applications, related to optimal vaccination and surveil-
lance, information spreading, viral marketing, and identification of influential nodes. Considerable research 
efforts have been devoted to the network decycling and dismantling problems recently1–8.

Both the decycling and the dismantling problems belong to the class of NP-hard problems6,9, meaning that it is 
rather hopeless to look for algorithms to solve them exactly in polynomial time. However, finding the best possi-
ble approximate solutions for as large classes of networks as possible is an open and actively investigated direction. 
Recent theoretic and algorithmic progress on both these problems1–3,5,6 came from the fact that, on random sparse 
networks with degree distributions having a finite second moment, methods from physics of spin glasses provide 
accurate algorithms for both decycling and dismantling. These sparse random networks are locally tree-like and 
do not contain many short loops. On such networks the decycling is closely linked to dismantling and asymp-
totically almost the same set of nodes is needed to achieve both5,6,10. Even on real-world networks that typically 
contain many small loops, best dismantling is currently achieved by first finding a decycling solution and then 
re-inserting nodes that close short loops but do not increase too much the size of the largest component5,6.

Both the algorithms of refs 5 and 6 achieve performance that is extremely close to the theoretically optimal 
values computed on random networks. However, both these algorithms are global, they need to iterate certain 
equations on the whole network in order to select the suitable candidate nodes. Although they are both scalable 
and can be run on networks with many millions of nodes, they are not completely straightforward to understand 
and require some experience with spin glass theory. The close-to-optimal performance of these algorithms is the-
oretically justified only on random networks. Despite their good performance observed empirically on networks 
with many loops, there might still exist even better and analyzable strategies for real-world networks.

As usual in applied science, in many potential applications we are at first not even sure that optimal disman-
tling or optimal decycling is the best strategy to answer the question in hand (e.g., the problem of social influ-
ence maximization11–14). Therefore it is extremely important to have a really very simple and fast decycling and 
dismantling strategy that can provide an accurate assessment of whether this approach is at all interesting for a 
given practical problem. However, existing simple strategies, such as removing adaptively high degree nodes15,16, 
are very far from optimal performance and therefore not very useful. Recently the authors of ref. 4 claimed that a 
heuristics based on the so-called collective influence (CI) measure can be a perfect candidate for this purpose. This 
algorithm has attracted a lot of enthusiasm in the network science community. However, more systematic investi-
gations performed in refs 5, 6 and 8 revealed that the CI algorithm is still considerably far from being optimal. The 
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CI algorithm is also not particularly competitive in terms of computational time because a large neighborhood of 
a node needs to be considered in order to evaluate the CI measure.

In the present paper we introduce the CoreHD algorithm that is basically as simple and fast as the adaptive 
removal of high degree nodes, yet its performance is much closer to optimal than the CI algorithm or its extended 
versions, and comparably close as the best known message-passing methods5,6 while several orders of magnitude 
faster. It hence provides simple and tractable solutions for networks with many billions of nodes. The method is 
simply based on adaptive removal of highest-degree nodes from the 2-core of the network. Apart of its simplicity 
and speed the performance of the CoreHD algorithm is basically indistinguishable from the performance of the 
message-passing algorithms on random graphs with long-tailed degree distributions. On all real-world network 
instances we tested the result by CoreHD is within few nodes from the best one found by message-passing and 
on some instances we found that it is even slightly better. On top of all that, the simple structure of CoreHD 
might be amenable to rigorous analysis providing guarantees for loopy networks that are not accessible for the 
message-passing methods.

For all the above reasons we argue that in many applications of decycling and dismantling CoreHD should be 
the first choice. The simple algorithmic idea generalizes easily to the problem of destroying optimally the k-core 
of a network - one focuses on the current k-core and adaptively removes highest degree nodes.

Results
In this section we evaluate the CoreHD algorithm for both random and real-world networks, by comparing 
the minimum fraction of nodes we need to remove in order to break the network into a forest or components 
with size smaller than 0.01 N. We compare to the Belief Propagation guided Decimation (BPD)5 and Collective 
Influence method (CI)4 (CI4 results are obtained using the original code of ref. 4).

First, we notice that on some simple examples, e.g. regular random graphs with degree 3, the CoreHD algo-
rithm reaches the exact optimal decycling fraction ρ =​ 0.25. This matches the performance of a greedy method of 
ref. 17 that for this particular case is provably optimal.

In Fig. 1 we compare the performance of the above algorithms on an Erdös-Rényi random network with 
N =​ 50000 nodes and average degree c =​ 3.5. In the left panel we plot the fraction of nodes in the largest connected 
component (LCC, denoted q) as a function of the fraction of removed nodes, denoted ρ. We see that compared to 
HD and CI the CoreHD algorithm works the best by a large margin, breaking the network into small component 
with size smaller than 0.01 N after removing fraction of only 0.1846 of nodes. While CI and HD need to remove 
fraction 0.2014, and 0.2225 of nodes respectively. This is compared to the close-to-optimal performance of the 
iterative message passing BPD that needs to remove fraction 0.1780 of nodes, and to the theoretical prediction for 
the asymptotically optimal value 0.17531–3,6,7.

We also see from the figure that the fraction of nodes in the LCC obtained by CoreHD encounters a first order 
transition at ρdec =​ 0.1831, this is because at this point (just at the beginning of the discontinuity) the remaining 
network becomes a forest. The greedy tree-breaking procedure then quickly breaks the forest into small compo-
nents. While the other algorithms do not have this phenomenon, the size of the LCC goes to zero continuously. 
In the right panel of Fig. 1 we plot the fraction q of nodes in the 2-core as a function of ρ. We can see that for 
CoreHD, q reaches zero at ρ =​ 0.1831 indicating that the remaining network contains no loop, thus is a forest. 
While for other algorithms the 2-core remains extensive until the network is dismantled. On a larger ER random 
network with N =​ 106, c =​ 3.5, the difference between the sizes of decycling and the dismantling sets the CoreHD 
algorithm finds is not distinguishable within the precision of 4 valid digits and is 0.1830 for both. Note that this 
result is (slightly) better than yet another approach suggested recently in the literature8 that achieves 0.1838 with 
an algorithm still considerably more involved than CoreHD.

Besides performing much better than CI, the CoreHD is also much faster: the 2-core of the network can be 
computed efficiently using a leaf-removal process with O(N) operations. After deleting a node, one only needs 
to update the 2-core, which requires on average O(1) operations in sparse networks, and is clearly much faster 
than updating the CI score. Actually, in sparse networks when the size of the 2-core is much smaller than the size 
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Figure 1.  Fraction of nodes in the largest connected component (LCC) (left) and in the 2-core (right) as a 
function of fraction of nodes removed, for HD, CI4, CoreHD and BPD on an Erdös-Rényi random graph 
with number of nodes N = 5 × 104, and average degree c = 3.5. In all four methods nodes are removed one by 
one.
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of the network, CoreHD is even faster than the HD algorithm which removes one by one nodes from the whole 
network.

The computational times for the CoreHG, CI and BPD algorithms as the system size grows are shown in 
Fig. 2 for ER network with mean degree c =​ 3. The BPD algorithm performs slightly better than the CoreHD 
algorithm but it is much slower. For example, for an ER network with c =​ 3 and N =​ 2 ×​ 108, the solution obtained 
by CoreHD has relative dismantling/decycling set size ρ ≈​ 0.1407 (computing time is 64 minutes), which is only 
slightly larger than the value of ρ ≈​ 0.1357 obtained by BPD (computing time is 23.5 hours5). We note that in these 
experiments, in each step of removal, BPD and CI4 remove 0.1% of nodes (e.g., 10000 nodes for N =​ 107), while 
CoreHD removes only 1 node per step. Even this way the computational time of CoreHD is shorter than the time 
used for reading the network from the data file (edge-list format). We note that in the current implementation we 
use ordering of lists of N elements. This could be improved further, but we saw little point in doing so since the 
bottleneck was loading the graph, rather than the algorithm for decycling and dismantling.

Figure 3 presents results for Erdös-Rényi random graphs, regular random graphs, and scale-free random 
networks of varying average degree. In all cases CoreHD works better than CI and worse than BPD, with the best 
performance obtained for scale-free networks. The good performance of CoreHD for the scale-free networks is of 
particular interest because almost all real-world networks have a heavy-tailed degree-distribution.

A set of experiments on real-world networks is presented in Table 1. We list the fraction of nodes we need to 
remove in order to remove all cycles, and in order to break the network into small components with size smaller 
than 0.01 N. For dismantling, in addition to Algorithm 6 we do a refinement by inserting back some deleted nodes 
that do not increase the largest component size beyond the 0.01 N. We can see that CoreHD works excellently for 
real-world network instances, giving decycling and dismantling sets very close to the state-of-art BPD and much 
smaller than CI. It is also surprising to see that in some networks e.g. RoadEU, IntNet1 and RoadTX, CoreHD 
even outperforms BPD slightly. Table 1 clearly demonstrates the time superiority of CoreHD for real-world net-
works as compared with both CI and BPD.

Note that in recent work6 authors stressed that in random graphs there are many dismantling sets of size close 
to the optimum, and a given node can be included in some and not included in others. Such an observation is 
quite common to many optimization problems on networks where typically the ground state of a given optimi-
zation problem is degenerate and different low-energy configurations may disagree on a considerable number of 
nodes. The CoreHD algorithm is also able to find different dismantling sets since nodes to be removed are chosen 
among the typically numerous ones in the core having the largest degree, by running the algorithm with different 
random number initialization for the ER network of average degree 3.5 we typically observed that two different 
dismantling sets obtained by the CoreHD algorithm agree in 74% of nodes. From this observation we conclude, 
in agreement with6, that the concept of dismantling set is a result of highly correlated choice and not addition of a 
set of particularly important nodes (sometimes refer to as influential nodes or super-spreaders4.

Discussion
We have presented that iteratively removing nodes having the highest degree from the 2-core of a network gives 
an ultra-fast while very efficient algorithm for decycling and dismantling of networks. Our algorithm is so fast 
that its running time is shorter than the time of reading the network file.

It is still surprising to us that such a simple algorithm could work much better than more sophisticated algo-
rithms: We have tried running CI (see SI), adjacency matrix centrality on the 2-core of the network, and HD on 
3-core of the network, they are all slower but perform no better than CoreHD. Our experiments also show that 
CoreHD outperforms centrality measures using left and right eigenvector of the non-backtracking matrix18, an 
idea that originally inspired us to propose the CoreHD algorithm. More detailed understanding of why this is the 
best performing strategy is let for future work.

On the real-world networks which typically have many short loops and motifs, decycling is quite different 
from dismantling. A natural idea to generalize our CoreHD would be consider a factor graph treating short loops 
and motifs as factors, then do CoreHD on the 2-core of the factor graph.

Figure 2.  Performance of the CoreHD algorithm (magenta squares) and its comparison with the BPD 
algorithm (blue circles) and the CI algorithm (parameter = 44, grey diamonds) on ER networks of 
average degree c = 3 and size N. (A) The relationship between the total running time τ and N. The simulation 
results are obtained on a relatively old desktop computer (Intel-6300, 1.86 GHz, 2 GB memory). (B) The 
relationship between the fraction ρ of removed nodes and N. The dotted horizontal line denotes the 
theoretically predicted minimum value.
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Finally, CoreHD can be generalized naturally to removal of the k-core, again running the adaptive HD heu-
ristics on the k-core or the current graph. Comparison of this strategy to existing algorithms2,19 is in progress.

Methods
We now describe CoreHD as an extremely fast algorithm for decycling and dismantling of huge complex net-
works with close-to-optimal outcomes. Let us begin with some motivating discussions.

Perhaps the simplest algorithms one can propose for decycling and dismantling is adaptive removal of 
highest-degree nodes. We call this method HD, it is indeed extremely fast, but empirically does not perform very 
well. One reason why HD does not work well is that some nodes of large degree, such as node i in Fig. 4, do not 

Figure 3.  Fraction ρ of removed nodes for (A) Erdös-Rényi (ER) random networks of mean degree c, (B) 
Regular Random (RR) networks of degree K, and (C) Scale Free (SF) networks of average degree c and decay 
exponent γ =​ 3.0 generated as in ref. 20. Each data point obtained by CoreHD is the over 96 instances of size 
N =​ 105. The results of CI4 and the results of BPD are from ref. 5. In BPD and CI4, at each iteration a fraction f of 
nodes are removed (with f =​ 0.01 for BPD and f =​ 0.001 for CI4, decreasing f does not improve the performance 
visibly), while in CoreHD nodes are removed one by one.

Network N M

decycling dismantling Time for dismantling

CoreHD BPD CI CoreHD BPD CI CoreHD BPD

RoadEU21 1177 1417 90 91 209 148 152 0.18 <​0.001 0.1

PPI22 2361 6646 365 362 424 357 350 0.91 <​0.001 2.09

Grid23 4941 6594 519 512 476 327 320 1.00 <​0.001 0.66

IntNet124 6474 12572 217 215 198 156 161 5.19 <​0.001 11.32

Authors25 23133 93439 8311 8317 3588 2600 2583 87.55 0.09 40.04

Citation24 34546 420877 15489 15390 14518 13523 13454 4166 0.2 383.91

P2P26 62586 147892 9557 9285 10726 9561 9292 520.59 0.21 50.24

Friend27 196591 950327 38911 38831 32340 27148 26696 5361 1.37 588.19

Email25 265214 364481 1189 1186 21465 1070 1064 6678 0.39 151.57

WebPage28 875713 4322051 208509 208641 106750 51603 50878 2275 9.67 2532

RoadTX28 1379917 1921660 243969 239885 133763 20289 20676 273.69 4.07 421.15

IntNet224 1696415 11095298 229034 228720 144160 73601 73229 19715 35.84 4243

Table 1.   Comparative results of the CoreHD method with CI and the BPD algorithm on a set of real-world 
network instances. N and M are the number of nodes and links of each network, respectively. The number of 
nodes deleted by CI, CoreHD, and BPD are listed in the 4th, 5th, and 6th column. The CI and BPD results are 
from ref. 5. The time (seconds) for dismantling is the running time of algorithms, i.e. with time for reading 
network from the data file excluded.

Figure 4.  Illustration of a network with dangling trees. Each circle denotes a node in the network, each line 
connecting circles denotes an edge, and the cloud represents the other part (nodes and edges) of the network.
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belong to any loop, and hence do not have to be removed for decycling. Due to the property that trees can always 
be dismantled by a vanishing fraction of nodes10, nodes such as i of Fig. 4 are also not useful for dismantling. Note 
that the CI method of ref. 4 shares this problem, see the SI for the argument on why our algorithm outperforms CI.

The above observation motivates a very natural idea that dismantling and decycling algorithms should always 
focus only on the 2-core of the network. The 2-core is a sub-network that is obtained after adaptive removal 
of all leaves (nodes with only a single attached edge). The simplest and fastest strategy is then to remove the 
highest-degree nodes from the remaining 2-core. To our surprise this simple idea provides much better per-
formance than other comparably simple approaches existing in the literature. We call the resulting algorithm 
CoreHD, it is detailed in Algorithm 1.

Algorithm 1: CoreHD

  Input: A network.
  Output: A forest of small trees.

    1. Find the 2-core of the network, and obtain the degree of every node within this 2-core (edges to outside nodes not considered).

    2. �Identify the node i with the largest degree in the 2-core. If there are more nodes with the same largest degree, randomly choose one  
of them.

    3. �Remove node i, update the 2-core and the degrees of all its nodes. If the 2-core is empty, then do tree-breaking and stop; otherwise  
go to step 2.

For the decycling problem, CoreHD simply removes highest-degrees nodes from the 2-core in an adaptive 
way (updating node degree as the 2-core shrinks), until the remaining network becomes a forest. For dismantling, 
after decycling, CoreHD also breaks the trees into small components, see SI that follows tree-breaking strategy 
from refs 5 and 6. In case the original network has many small loops, a refined dismantling set is obtained after a 
reinsertion of nodes that do not increase (much) the size of the largest component, again as proposed recently in 
refs 5 and 6. For details on implementation of the reinsertion algorithm we refer to the SI.

References
1.	 Zhou, H.-J. Spin glass approach to the feedback vertex set problem. Eur. Phys. J. B 86, 455 (2013).
2.	 Altarelli, F., Braunstein, A., Dall’Asta, L. & Zecchina, R. Optimizing spread dynamics on graphs by message passing. Journal of 

Statistical Mechanics: Theory and Experiment 2013, P09011 (2013).
3.	 Guggiola, A. & Semerjian, G. Minimal contagious sets in random regular graphs. Journal of Statistical Physics 158, 300–358 (2015).
4.	 Morone, F. & Makse, H. A. Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015).
5.	 Mugisha, S. & Zhou, H.-J. Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016).
6.	 Braunstein, A., Dall’Asta, L., Semerjian, G. & Zdeborová, L. Network dismantling. Proceedings of the National Academy of Sciences 

113, 12368–12373 (2016).
7.	 Qin, S.-M., Zeng, Y. & Zhou, H.-J. Spin glass phase transitions in the random feedback vertex set problem. arXiv preprint 

arXiv:1603.09032 (2016).
8.	 Clusella, P., Grassberger, P., Pérez-Reche, F. J. & Politi, A. Immunization and targeted destruction of networks using explosive 

percolation. arXiv:1604.00073 (2016).
9.	 Karp, R. M. Reducibility among combinatorial problems. In Complexity of computer computations, 85–103 (Springer, 1972).

10.	 Janson, S. & Thomason, A. Dismantling sparse random graphs. Combinatorics, Probability and Computing 17, 259–264 (2008).
11.	 Richardson, M. & Domingos, P. Mining knowledge-sharing sites for viral marketing. In Proceedings of 8th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 61–70 (ACM, New York, NY, 2002).
12.	  Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence through a social network. Theory of Computing 11, 

105–147 (2015).
13.	 Jung, K., Heo, W. & Chen, W. Irie: Scalable and robust influence maximization in social networks. In 2012 IEEE 12th International 

Conference on Data Mining, 918–923 (IEEE, 2012).
14.	 Borgs, C., Brautbar, M., Chayes, J. & Lucier, B. Maximizing social influence in nearly optimal time. In Proceedings of the Twenty-Fifth 

Annual ACM-SIAM Symposium on Discrete Algorithms, 946–957 (Society for Industrial and Applied Mathematics, 2014).
15.	 Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).
16.	 Cohen, R., Erez, K., ben-Avraham, D. & Havlin, S. Breakdown of the internet under intentional attack. Physical review letters 86, 

3682 (2001).
17.	 Bau, S., Wormald, N. C. & Zhou, S. Decycling numbers of random regular graphs. Random Structures & Algorithms 21, 397–413 

(2002).
18.	 Zhang, P. Nonbacktracking operator for the ising model and its applications in systems with multiple states. Phys. Rev. E 91, 042120 

(2015).
19.	 Pei, S., Teng, X., Shaman, J., Morone, F. & Makse, H. A. Collective influence maximization in threshold models of information 

cascading with first-order transitions. arXiv preprint arXiv:1606.02739 (2016).
20.	 Goh, K.-I., Kahng, B. & Kim, D. Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001).
21.	 Šubelj, L. & Bajec, M. Robust network community detection using balanced propagation. Eur. Phys. J. B 81, 353–362 (2011).
22.	 Bu, D. et al. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31, 

2443–2450 (2003).
23.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ netowrks. Nature 393, 440–442 (1998).
24.	 Leskovec, J., Kleinberg, J. & Faloutsos, C. Graphs over time: densification laws, shrinking diameters and possible explanations. In 

Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, 177–187 (ACM, New 
York, 2005).

25.	 Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge 
Discovery from Data 1, 2 (2007).

26.	 Ripeanu, M., Foster, I. & Iamnitchi, A. Mapping the gnutella network: Properties of large-scale peer-to-peer systems and 
implications for system design. IEEE Internet Comput. 6, 50–57 (2002).

27.	 Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: User movement in localation-based social networks. In ACM SIGKDD 
International Conference o Knowledge Discovery and Data Mining, 1082–1090 (San Diego, CA, USA, 2011).

28.	 Leskovec, J., Lang, K. J., Dasgupta, A. & Mahoney, M. W. Community structure in large networks: Natural cluster sizes and the 
absence of large well-defined clusters. Internet Math. 6, 29–123 (2009).



www.nature.com/scientificreports/

6Scientific Reports | 6:37954 | DOI: 10.1038/srep37954

Acknowledgements
H.J.Z was supported by the National Basic Research Program of China (grant number 2013CB932804), the 
National Natural Science Foundation of China (grant numbers 11121403 and 11225526), and the Knowledge 
Innovation Program of Chinese Academy of Sciences (No. KJCX2-EW-J02).

Author Contributions
L.Z., P.Z., and H.Z. conducted the experiment(s), analyzed the results and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zdeborová, L. et al. Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 
37954; doi: 10.1038/srep37954 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Fast and simple decycling and dismantling of networks

	Results

	Discussion

	Methods

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Fraction of nodes in the largest connected component (LCC) (left) and in the 2-core (right) as a function of fraction of nodes removed, for HD, CI4, CoreHD and BPD on an Erdös-Rényi random graph with number of nodes N = 5 × 104, and avera
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Performance of the CoreHD algorithm (magenta squares) and its comparison with the BPD algorithm (blue circles) and the CI algorithm (parameter 4, grey diamonds) on ER networks of average degree c = 3 and size N.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Fraction ρ of removed nodes for (A) Erdös-Rényi (ER) random networks of mean degree c, (B) Regular Random (RR) networks of degree K, and (C) Scale Free (SF) networks of average degree c and decay exponent γ =​ 3.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Illustration of a network with dangling trees.
	﻿Table 1﻿﻿. ﻿  Comparative results of the CoreHD method with CI and the BPD algorithm on a set of real-world network instances.



 
    
       
          application/pdf
          
             
                Fast and simple decycling and dismantling of networks
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37954
            
         
          
             
                Lenka Zdeborová
                Pan Zhang
                Hai-Jun Zhou
            
         
          doi:10.1038/srep37954
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep37954
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep37954
            
         
      
       
          
          
          
             
                doi:10.1038/srep37954
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37954
            
         
          
          
      
       
       
          True
      
   




