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ABSTRACT: Response rates to conventional chemotherapeutics remain unsat-
isfactory for hepatocellular carcinoma (HCC) due to the high rates of
chemoresistance and recurrence. Tumor-initiating cancer stem-like cells (CSLCs)
are refractory to chemotherapy, and their enrichment leads to subsequent
development of chemoresistance and recurrence. To overcome the chemoresistance
and stemness in HCC, we synthesized a Pt nanocluster assembly (Pt-NA)
composed of assembled Pt nanoclusters incorporating a pH-sensitive polymer and
HCC-targeting peptide. Pt-NA is latent in peripheral blood, readily targets
disseminated HCC CSLCs, and disassembles into small Pt nanoclusters in acidic
subcellular compartments, eventually inducing damage to DNA. Furthermore,
treatment with Pt-NA downregulates a multitude of genes that are vital for the
proliferation of HCC. Importantly, CD24+ side population (SP) CSLCs that are
resistant to cisplatin are sensitive to Pt-NA, demonstrating the immense potential of
Pt-NA for treating chemoresistant HCC.

■ INTRODUCTION

Hepatocellular carcinoma (HCC) is the second leading cause
of cancer-associated death worldwide.1 Most HCC patients are
inherently resistant to conventional chemotherapeutic drugs.2

Currently, sorafenib is the only FDA-approved target therapy
drug (since 2007) for advanced HCC which increases
progression-free survival by a dismal three months compared
to placebo. Recently, the adjuvant sorafenib for HCC failed in a
phase III, randomized, double-blind, and placebo-controlled
trial.3 Therefore, the development of more effective therapeutic
strategies is much needed. Moreover, treating HCC with
ineffective chemotherapeutics leads to the enrichment of a rare
subpopulation of tumor-initiating cancer stem-like cells
(CSLCs).4 It has been reported that resistance to cisplatin is
associated with the enrichment of CSLCs in ovarian,5 lung,6

and liver cancer.7 The self-renewal capacity of CSLCs plays
significant roles in the progression and recurrence of tumors.

Nanomedicine has emerged as a promising platform for the
development of novel cancer therapy strategies8−11 to target
cancer cells including CSLCs.12−14

During our massive screening of potential therapeutics
against drug-resistance and stemness of HCC, we are pleasantly
surprised that among many candidates, small-sized Pt nano-
clusters can effectively overcome the chemoresistance and
stemness in HCC. In fact, Pt nanoparticles are known to kill
cancer cells15−24 by the leached Pt ions under low pH
conditions such as the cell endosome.17,18 Especially when the
particle size is reduced to less than 3 nm, >50% of the atoms
will be located on the surface of the crystal,25,26 resulting in
increased oxygen adsorption and water oxidation for surface
corrosion,26 thus facilitating Pt ion release for enhanced activity.
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However, nonspecific targeting of Pt compound has a wide
range of toxicity to normal tissues.27,28 Consequently, targeted
delivery and controlled Pt ion release are essential to precise
cancer therapy. Unfortunately, to our best knowledge, thus far
there is no report on platinum-based nanomedicine which can
achieve both effective CSLC targeting and cellular environ-
mentally sensitive anticancer activity.
Self-assembly provides a reliable way of generating ensembles

of nanoparticles with controllable properties,29−31 and stimuli-
responsive nanoparticle assemblies have been thoroughly
examined as not only bio- or chemosensors in vitro32−37 but
also advanced drug delivery systems in vivo.38−42 We
hypothesized that the anticancer activity of platinum-based
nanomedicine can be adjusted via controlled clustering of
ultrasmall Pt nanoparticles using pH-sensitive surface ligands.

To demonstrate the proof of concept, we herein report on the
designed synthesis of a tumor pH-sensitive Pt nanocluster
assembly (Pt-NA) by immobilizing ultrasmall Pt nanoclusters
within pH-sensitive polymers and derivatizing with an HCC-
targeting peptide. Unlike the reported platinum nanoparticle-
based drugs,15−18 the resulting Pt-NA has several advanced
features for tumor treatment including (i) Pt-NA is latent in
peripheral blood and readily targets tumor cells including
CLSC because of the surface targeting peptide; (ii) protonation
of pH-sensitive polymers in an acidic intracellular environment
triggers Pt-NA disassembly into extremely small Pt nano-
clusters; (iii) the resulting extremely small Pt nanoclusters with
large specific surface accelerate the release of toxic Pt ions
inside the cells for an effective cancer treatment.

Figure 1. Design and characterization of HCC-targeted pH-sensitive Pt nanocluster assembly (Pt-NA). (A) Schematic representation of Pt-NA
synthesis, targeted HCC uptake and intracellular Pt ion release. (B) TEM image of the synthesized Pt nanoclusters. (C) TEM image of Pt-NA. (D)
High-resolution TEM image of Pt-NA. (E) Photographs of Pt-NA in pH 6.0 and 7.4. (F) Transmittance of a suspension of Pt-NA as a function of
pH. (G) DLS size measurement of Pt-NA (0.1 mg mL−1) as a function of pH. (H) pH profile of Pt-NA by acid−base titration.
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Our designed synthesis and anti-HCC strategy of Pt-NA are
schematically illustrated in Figure 1A. Briefly, Pt-NA is
prepared by assembling ultrasmall Pt nanoclusters in pH-
sensitive polymers, followed by derivatizing with the HCC-
targeting peptide. First, the assembly between Pt nanoclusters
and two designed ligands (MA-F127 and octadecylamine-
p(API-Asp)10) is performed via a unique hydrophobic force
through the dual solvent-exchange method.41 The unique
ligand design allows maleimide groups (from MA-F127) to
form on the surface of the assembled structure, which can
readily conjugate with the thiol group (−SH) of HCC cell-
specific peptide ligand SP9443 (H2N-SFSIIHTPILPLGGC-
COOH) via additional chemical reaction. We postulate that
following the intravenous administration, Pt-NA accumulates in
an HCC lesion via the enhanced permeability and retention
(EPR) effect,44,45 and SP94 specific ligands facilitate receptor-
mediated endocytosis into HCC cells.43 Furthermore, the
endolysosomal acidification46−48 collapses the assembled
structure to release Pt nanoclusters, by destroying the

hydrophilic−lipophilic balance in Pt-NA, and subsequently
increases the Pt ion release rate in HCC cells.

■ RESULTS AND DISCUSSION
Ultrasmall Pt nanoclusters of ∼2.5 nm were synthesized by
thermal decomposition of Pt(acac)2 at 170 °C (Figure 1B,
Figures S1 and S2). In order to obtain ultrasmall and uniform-
sized Pt nanoclusters, we added 1 equiv of oleic acid in the
reaction mixture containing Pt(acac)2 and oleylamine, and
superhydride was injected in the reaction mixture to synthesize
small-sized Pt nanoclusters (Figures S1C and S2). Interestingly,
when only one ligand was added in the reaction mixture
containing 1-octadecene as the solvent and Pt(acac)2, worm-
like Pt nanocrystals were obtained due to insufficient capping
agents (Figure S1A,D). The high concentration of oleic acid
leads to particle aggregation, while colloidal uniform Pt
nanocrystals are obtained when a high concentration of
oleylamine as both surfactant and solvent is applied (Figure
S1B,C,E). It was reported that small-sized nanoparticles

Figure 2. Pt-NA overcomes the stemness of cisplatin-resistant HCC cells and induces DNA damage. (A, B) Dose-dependent inhibition effect of Pt-
NA and cisplatin on cell growth in the cisplatin-resistant (A) HCCLM3 and (B) PLC/PRF/5-Cis cell lines. (C, D) Pt-NA significantly decreases the
stemness of cisplatin-resistant SP+CD24+ HCCLM3 and PLC/PRF/5-Cis cells. (E) Pt-NA induces DNA damage in cisplatin-resistant HCC cells
(scale bar, 50 μm).
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generally show very high activity, because the smaller the
nanoparticles are the faster the surface ion leaching is in
aqueous solution.49,50 As such, Pt ions release is much faster for
∼3 nm sized Pt nanoclusters than that for ∼10 nm sized Pt
nanoparticles (Figure S3). However, in order to control their
activity in vivo, two polymeric ligands are designed for tumor
targeted pH-sensitive Pt-NA formation: (i) maleimide-
functionalized pluronic F127 (MA-F127) (Figures S4A and
S5); (ii) a synthetic pH-sensitive polypeptide (octadecylamine-
p(API-Asp)10) composed of aspartic acid (10-mer) modified
with ionizable imidazole side chains and an octadecylamine tail

(Figure S4B). The successful conjugation of SP94 with pH-
sensitive Pt-NA was confirmed by Fourier transform infrared
(FT-IR) spectroscopy (Figure S6).
Transmission electron microscopy (TEM, Figure 1C,D)

reveals that the particle size of Pt-NA is ∼100 nm. Scanning
TEM and electron energy loss spectroscopy mapping further
verify the assembled structure (Figure S7). Measurement of
light transmittance as a function of pH (Figure 1E,F)
demonstrates a pH-dependent assembly/disassembly process
and a sharp drop in transmittance (% T) at a pH higher than
∼6.0. In particular, water-dispersible Pt-NA exhibits a hydro-

Figure 3. HCC targeting of Pt-NA. (A) Cellular uptake of Pt-NA in cisplatin-resistant and cancer stem-like SP+CD24+ cells. Pt-NA uptake is
minimal in the normal liver cell line MIHA (scale bar, 50 μm). (B) In vivo biodistribution of Pt-NA in SP+CD24+ HCCLM3 cells of representative
orthotopic HCC mice with different tumor sizes (2 h after injection, tumors are established from different number of sorted SP+CD24+ luciferase
expressing HCCLM3 cells, tumor of Mouse #1 was developed from 10 000 sorted cells, while tumor of Mouse #2 was developed from 1000 sorted
cells).
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Figure 4. Pt-NA induces DNA damage through downregulation of genes that are highly expressed in liver cancer. (A) The expression of ABCG2 and
CD24 in SP-CD24- and SP+CD24+ HCCLM3 cells with treatment of vehicle, Pt-NA or cisplatin. The expression of ABCG2 and CD24 was are
significantly higher in SP+CD24+ cells compared to SP-CD24- cells. Pt-NA (but not cisplatin) induced the downregulation of ABCG2 and CD24
expression in the SP+CD24+ cells of the cisplatin-resistant HCCLM3 cell line, as determined by RT-qPCR. (B) The expression of CCNB1, CDK1,
and TOP2A in the SP+CD24+ HCCLM3 cells with treatment of vehicle, Pt-NA or cisplatin. Pt-NA (but not cisplatin) induced the downregulation
of CCNB1, CDK1, and TOP2A expression in the SP+CD24+ cells of the cisplatin-resistant HCCLM3 cell line, as determined by RT-qPCR. (C) The
expression of CCNB1, CDK1, and TOP2A significantly increased in tissue samples from HCC patients compared to matched adjacent nontumor
tissues (T, tumorous liver tissue; MN, matched adjacent nontumor liver tissue) in our established HCC gene expression profile data set. (D) The
representative images of immunohistochemistry showing that the expression of CTNNB1, CDK1, and TOP2A are significantly upregulated in the
tumor tissues compared with matched normal tissues of HCC patients. (E) Fisher’s exact test and Kaplan−Meier analysis indicating that high
expression of CCNB1, CDK1, or TOP2A is correlated with poor survival in HCC patients. (The median values of CCNB1, CDK1, and TOP2A
expression were chosen as the cutoff points for determining high and low expression groups.)
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dynamic diameter about 180 nm (Figure 1G, at pH 7.4).
Besides, its stability in both pure PBS and PBS solution
containing 10% FBS is studied (Figure S8); maintaining
particle size in both solutions for 1 week indicates the good
colloid stability of Pt-NA. A slightly wider size distribution in
PBS solution containing 10% FBS seems to result from
insignificant protein binding.51,52 Moreover, the assembly is
highly sensitive to the acidity of the tumor and is readily
dissociated upon the pH drop, as confirmed by dynamic light
scattering (DLS) (Figure 1G) and TEM (Figure S9). In

addition, the acid−base titration curve confirms the strong
buffering capacity of aqueous Pt-NA dispersion (Figure 1H) in
the physiological pH range due to the presence of imidazole
rings, which is beneficial for endolysosomal escape of
nanoparticles.53

This sensitivity to tumor intracellular pH is a distinct
property of Pt-NA compared to the previously reported Pt
drugs.15−18 We demonstrate that Pt-NA is structurally stable
and latent at a physiological pH of 7.4, where Pt ion leaching is
highly restrained. However, the tumor intracellular pH of <6

Figure 5. Pt-NA overcomes the cisplatin resistance and stemness of HCC in vivo. (A) Representative images showing bioluminescence signals and
tumor-bearing livers of the orthotopic tumor xenografts at the therapeutic end point of different treatments. (B) Quantitative analysis of
bioluminescence signals of all mice in the four treatment groups measured on a weekly basis. (C) The survival analysis of all mice in the four
treatment groups. (D) Immunohistochemical staining for the expression of ABCG2 and CD24 in the tumors of mice in the different treatment
groups, scale bar, 100 μm. (E, F) The quantified ABCG2 (E) and CD24 (F) levels from immunohistochemical staining results according to the
percentage of cells with positive nuclei.
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triggers the dissociation of Pt-NA and consequently accelerates
Pt ion release (Figures S3 and S10). Moreover, these Pt
nanoclusters are more robust than small-molecule drugs such as
cisplatin, and they can remain inside hepatic CSLCs without
being affected by ATP-binding cassette (ABC) transport-
ers.54,55 The internalized Pt nanoclusters will constantly leak
cytotoxic Pt ions only inside the HCC cells, facilitating DNA
platination,56 and effectively induce DNA damage and kill the
cells (Figure S11). It is known that the platinum content of
only 9.0 × 106 atoms cell−1 (2.9 × 10−6 ng cell−1) can efficiently
kill cancer cells.57 Consequently, according to the previous
reports, the amount of Pt ions released inside HCC cells should
be enough for effective cytotoxicity.57,58

To verify our rationale, the cisplatin sensitivity of a panel of
>20 liver cancer cell lines was evaluated, which shows
heterogeneous sensitivity to cisplatin (Figure S12). And two
acquired cisplatin-resistant HCC cell populations (HuH7-Cis
and PLC/PRF/5-Cis) were established by treatment of a
stepwise increase in cisplatin concentrations (Figure S13).
Interestingly, we found that the SP+CD24+ CSLC population
is elevated in both primary resistant and acquired resistant
HCC cells by side population (SP) and HCC stem cell marker
CD24 analysis (Figure S14).59,60 Using a tumor sphere-forming
assay, we found that the self-renewal ability of SP+CD24+ cells
is much stronger than that of SP-CD24- cells (Figures S15 and
S16).
The effect of Pt-NA on overcoming the stemness of cisplatin-

resistant liver cancer cells was first explored in vitro and
compared to that of cisplatin (Figure 2). Pt-NA shows dose-
dependent inhibition of resistant SP+CD24+ cells (Figure
2A,B) and significantly decreases the sphere-forming ability of
cisplatin-resistant SP+CD24+ cells (Figure 2C,D). In contrast
to cisplatin, we further found that Pt-NA can effectively induce
DNA damage to resistant CSLCs (Figure 2E).
We next examined the in vitro cellular uptake efficiency of

cisplatin and Pt-NA in the sorted SP−CD24− and SP+CD24+
cells from the HCCLM3 and PLC/PRF/5-Cis cell lines. The
data shows that the amount of Pt taken up by sorted SP
+CD24+ is much less than that by SP−CD24− cells for
cisplatin, but such a difference is not observed for Pt-NA
(Figure S17A−D). Importantly, Pt-NA is specifically taken up
by the sorted SP+CD24+ cells rather than normal liver cells
(Figure 3A). Furthermore, in contrast to pH-insensitive Pt
nanoparticles, it is observed that most Pt-NA escapes from
endosome (Figure S17E) due to the proton sponge effect of
imidazole-containing polymeric ligands,53 facilitating the nuclei
localization of released Pt ions for DNA platination. On the
other hand, compared to cisplatin, Pt-NA shows significantly
lower toxicity to normal liver cells (Figure S18), implying that
Pt-NA is safer and shows less side effects than cisplatin. The
tumor targeting ability of Pt-NA is also demonstrated in vivo
(Figure 3B) using an HCC orthotopic mouse model,61 and the
data are compared with those in normal mice (Figure S19).
The location of tumors was further confirmed by anatomical
study (Figure S20). As shown in Figure S21, Pt-NA showed a
fair pharmacokinetic (PK) profile which is comparable to
clinically approved cis-diammineplatinum(II) (CDDP, cispla-
tin),62,63 and the biodistribution (BD) result of Pt-NA is very
similar to other nanomaterial-based anticancer medicines,
which mainly accumulates in liver and spleen.64−66

To clarify the molecular mechanism about overcoming the
stemness of cisplatin-resistant liver cancer cells, we conducted a
gene expression profile analysis on sorted SP+CD24+

HCCLM3 cells treated with Pt-NA. By comparing with our
established global gene expression profile database of human
HCC,67 many genes, which are prominently downregulated by
Pt-NA, are those known to be highly expressed in liver cancer
(Table S1). Ingenuity pathway analysis (IPA) demonstrates
that Pt-NA mainly modulates genes related to the cell cycle and
DNA damage-related pathways (Figures S22 and S23). These
microarray data are further validated by RT-qPCR, showing
that both ABCG2 and CD24 are highly expressed in the sorted
SP+CD24+ cells and are downregulated by Pt-NA but not
cisplatin (Figure 4A). Further RT-qPCR analysis also reveals
that Pt-NA downregulates CCNB1, CDK1, and TOP2A
expression, confirming its effects on the modulation of cell
cycle and DNA damage regulation (Figure 4B). Since
preclinical data regarding HCC appear to vary on a model-
by-model basis,68 the expression levels of CCNB1, CDK1, and
TOP2A were further examined in the clinical tissue samples
from HCC patients during operation, and their expression
levels are significantly overexpressed in tumor compared with
matched normal tissues (Figure 4C). The immunohistochem-
istry staining also shows that the expression of CTNNB1,
CDK1, and TOP2A is significantly upregulated in the tumor
tissues compared with matched normal tissues of HCC patients
(Figure 4D). The median values of CCNB1, CDK1, and
TOP2A expressions are chosen as the cutoff point for
determining high or low expression. Fisher’s exact test and
Kaplan−Meier analysis reveal that high expression of CCNB1,
CDK1, or TOP2A is correlated with poor survival in HCC
patients (Figure 4E). These data suggest that the Pt-NA-
mediated DNA damage can be attributed to downregulation of
many genes that show high expression in liver cancer.
Anti-HCC study demonstrates that Pt-NA shows superior

therapeutic efficacy compared to both cisplatin and sorafenib
(Figure 5A,B). After 3 months, the survival rate is highest for
the Pt-NA-treated mice at ∼60% (Figure 5C). Moreover, more
tumors became necrosed after being treated by Pt-NA
compared to other treatment groups (Figure 5D). The in
vivo anti-HCC effect of Pt-NA was further compared with
cisplatin-incorporating polymeric micelles (cisplatin loaded
poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex
nanoparticles, nanoplatin); it is not surprising that the
orthotopic tumor xenografts developed from isolated cispla-
tin-resistant cells were also resistant to cisplatin loaded
nanoparticles of nanoplatin, and consequently Pt-NA showed
significantly better tumor inhibition effects than nanoplatin at
the same Pt concentration (Figure S24). Immunohistochemical
staining shows that the expressions of CD24 and ABCG2 drop
in the Pt-NA-treated tumor tissues, while they increase in the
cisplatin-treated ones (Figure 5D−F). The real time RT-qPCR
results (Figure S25) show that the expression of CCNB1,
CDK1, and TOP2A of the tumors treated with Pt-NA also
remarkably decreases, compared with the tumors treated with
sorafenib or cisplatin. Finally, the liver/renal toxicity study
together with histopathological examination prove the good
biocompatibility of Pt-NA (Figure S26).

■ CONCLUSIONS
In summary, we synthesized a novel Pt nanocluster assembly
(Pt-NA) that effectively overcomes the cisplatin resistance and
heterogeneous stemness of HCC cells. The extremely small-
sized Pt nanoclusters in HCC cells lead to the high toxicity
resulting from a large surface area. The assembled structures of
Pt-NA are designed for HCC targeting and response to a HCC
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intracellular acidic stimulus, which can readily target the CSLCs
of HCC cells and further disassemble into small Pt nanoclusters
in acidic HCC subcellular compartments, where Pt ions are
released more quickly. Pt-NA can significantly kill HCC cells
via DNA damage and overcome the cisplatin resistance of
CLSCs. Moreover, we demonstrate the mechanism of these
effects at the molecular level, by which Pt-NA has a good
potential in clinical HCC treatment through downregulating a
multitude of genes that are highly expressed in liver cancer
patients.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscentsci.6b00197.

Experimental details including the synthetic scheme and
characterization of two polymeric ligands for Pt nano-
cluster assembly, TEM images of Pt nanocrystals
synthesized in different conditions, stability of Pt-NA in
serum conditions, in vitro cumulative Pt ions release,
DNA damage induced by Pt-NA, heterogeneity
sensitivity, Pt uptake in SP−CD24− and SP+CD24+
cells, IVIS imaging, in vivo pharmacokinetic (PK) and
biodistribution (BD) study, in vivo efficacy comparing to
CDDP-incorporating polymeric micelles (Nanoplatin),
gene expression in tumor tissues, and the liver and renal
toxicity of the Pt-NA (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: lingds@zju.edu.cn (D.L.).
*E-mail: cmrhkm@nccs.com.sg (K.M.H.).
*E-mail: thyeon@snu.ac.kr (T.H.).

Author Contributions
⊥H.X., F.L., and X.H. contributed equally to this work and all
three should be considered as first authors. D.L., K.H. and T.H.
designed and supervised the project. D.L., F.L., and H.X.
conceived the experiments. D.L., H.X., F.L., and X.H.
performed the experiments. W.P., S.W., Y.J., Y.D., S.B., S.C.,
T.K. and D.K. assisted with the experiments, D.L. and T.H.
wrote the manuscript and analyzed the data. All authors
discussed the results and commented on the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

D.L. acknowledges financial support by the the National Key
Resea rch and Deve lopment Program of Ch ina
(2016YFA0203600), the National Natural Science Foundation
of China (51503180, 5161101036), “Thousand Talents
P r o g r am ” f o r D i s t i n g u i s h e d Youn g S c h o l a r s
(588020*G81501/048), and Fundamental Research Funds
for the Central Universities (520002*172210161). K.M.H.
acknowledges financial support by the SingHealth Foundation
and the National Medical Research Council, Singapore. T.H.
acknowledges financial support by the Research Center
Program of the Institute for Basic Science (IBS) in Korea
(IBS-R006-D1).

■ REFERENCES
(1) Maluccio, M.; Covey, A. Recent progress in understanding,
diagnosing, and treating hepatocellular carcinoma. Ca-Cancer J. Clin.
2012, 62, 394−399.
(2) European Association For The Study of The Liver. EASL−
EORTC clinical practice guidelines: management of hepatocellular
carcinoma. J. Hepatol. 2012, 56, 908−943.
(3) Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.-Y.; Yang, J.;
Kudo, M.; Cai, J.; Poon, R. T.; Han, K.-H.; Tak, W. Y.; et al. Adjuvant
sorafenib for hepatocellular carcinoma after resection or ablation
(STORM): a phase 3, randomised, double-blind, placebo-controlled
trial. Lancet Oncol. 2015, 16, 1344−1354.
(4) Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.;
Hu, X.; Su, F.; Lieberman, J.; Song, E. let-7 regulates self renewal and
tumorigenicity of breast cancer cells. Cell 2007, 131, 1109−1123.
(5) Wei, X.; Dombkowski, D.; Meirelles, K.; Pieretti-Vanmarcke, R.;
Szotek, P. P.; Chang, H. L.; Preffer, F. I.; Mueller, P. R.; Teixeira, J.;
MacLaughlin, D. T.; Donahoe, P. K. Müllerian inhibiting substance
preferentially inhibits stem/progenitors in human ovarian cancer cell
lines compared with chemotherapeutics. Proc. Natl. Acad. Sci. U. S. A.
2010, 107, 18874−18879.
(6) Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.;
Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; et al. Highly
tumorigenic lung cancer CD133+ cells display stem-like features and
are spared by cisplatin treatment. Proc. Natl. Acad. Sci. U. S. A. 2009,
106, 16281−16286.
(7) Lee, T. K. W.; Castilho, A.; Cheung, V. C. H.; Tang, K. H.; Ma,
S.; Ng, I. O. L. CD24+ liver tumor-initiating cells drive self-renewal
and tumor initiation through STAT3-mediated NANOG regulation.
Cell Stem Cell 2011, 9, 50−63.
(8) Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanomedicine. N.
Engl. J. Med. 2010, 363, 2434−2443.
(9) Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface
functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev.
2012, 41, 2539−2544.
(10) Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug
delivery. ACS Nano 2009, 3, 16−20.
(11) Barry, N. P. E.; Sadler, P. J. Challenges for metals in medicine:
how nanotechnology may help to shape the future. ACS Nano 2013, 7,
5654−5659.
(12) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.;
Langer, R. Nanocarriers as an emerging platform for cancer therapy.
Nat. Nanotechnol. 2007, 2, 751−760.
(13) Krishnamurthy, S.; Ke, X.; Yang, Y. Y. Delivery of therapeutics
using nanocarriers for targeting cancer cells and cancer stem cells.
Nanomedicine 2015, 10, 143−160.
(14) Yoshii, T.; Geng, Y.; Le, N. D. B.; Goel, H. L.; Mercurio, A. M.;
Rotello, V. M. Highlights from the latest articles in nanomaterial-based
therapies for targeting cancer stem cells. Nanomedicine 2015, 10,
3427−3429.
(15) Asharani, P. V.; Xinyi, N.; Hande, M. P.; Valiyaveettil, S. DNA
damage and p53-mediated growth arrest in human cells treated with
platinum nanoparticles. Nanomedicine 2010, 5, 51−64.
(16) Barone, M.; Sciortino, M. T.; Zaccaria, D.; Mazzaglia, A.;
Sortino, S. Nitric oxide photocaging platinum nanoparticles with
anticancer potential. J. Mater. Chem. 2008, 18, 5531−5536.
(17) Chien, C.-T.; Yan, J. Y.; Chiu, W.-C.; Wu, T. H.; Liu, C. Y.; Lin,
S. Y. Caged Pt nanoclusters exhibiting corrodibility to exert tumor-
inside activation for anticancer chemotherapeutics. Adv. Mater. 2013,
25, 5067−5073.
(18) Gao, J.; Liang, G.; Zhang, B.; Kuang, Y.; Zhang, X.; Xu, B.
FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa
cells. J. Am. Chem. Soc. 2007, 129, 1428−1433.
(19) Mironava, T.; Simon, M.; Rafailovich, M. H.; Rigas, B. Platinum
folate nanoparticles toxicity: cancer vs. normal cells. Toxicol. In Vitro
2013, 27, 882−889.
(20) Pelka, J.; Gehrke, H. M.; Turk, M.; Crone, M.; Brase, S.; Muller,
T.; Blank, H.; Send, W.; Zibat, V.; Brenner, P.; Esselen, M.; Schneider,
R.; Gerthsen, D.; Marko, D. Cellular uptake of platinum nanoparticles

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00197
ACS Cent. Sci. 2016, 2, 802−811

809

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.6b00197
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00197/suppl_file/oc6b00197_si_001.pdf
mailto:lingds@zju.edu.cn
mailto:cmrhkm@nccs.com.sg
mailto:thyeon@snu.ac.kr
http://dx.doi.org/10.1021/acscentsci.6b00197


in human colon carcinoma cells and their impact on cellular redox
systems and DNA integrity. Chem. Res. Toxicol. 2009, 22, 649−659.
(21) Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.;
Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: a
promising material for future cancer therapy? Nanotechnology 2010, 21,
085103.
(22) Shiny, P. J.; Mukherjee, A.; Chandrasekaran, N. DNA damage
and mitochondria-mediated apoptosis of A549 lung carcinoma cells
induced by biosynthesised silver and platinum nanoparticles. RSC Adv.
2016, 6, 27775−27787.
(23) Teow, Y.; Valiyaveettil, S. Active targeting of cancer cells using
folic acid-conjugated platinum nanoparticles. Nanoscale 2010, 2,
2607−2613.
(24) Xue, X.; Hall, M. D.; Zhang, Q.; Wang, P. C.; Gottesman, M.
M.; Liang, X. J. Nanoscale drug delivery platforms overcome platinum-
based resistance in cancer cells due to abnormal membrane protein
trafficking. ACS Nano 2013, 7, 10452−10464.
(25) Kim, B. H.; Hackett, M. J.; Park, J.; Hyeon, T. Synthesis,
characterization, and application of ultrasmall nanoparticles. Chem.
Mater. 2014, 26, 59−71.
(26) Sakurai, T.; Shibata, M.; Horiuchi, R.; Yagi, I.; Kondo, T. Study
of platinum dissolution mechanism using a highly sensitive electro-
chemical quartz crystal microbalance. Chem. Lett. 2011, 40, 402−404.
(27) Hartmann, J. T.; Lipp, H. P. Toxicity of platinum compounds.
Expert Opin. Pharmacother. 2003, 4, 889−901.
(28) Florea, A. M.; Büsselberg, D. Cisplatin as an anti-tumor drug:
cellular mechanisms of activity, drug resistance and induced side
effects. Cancers 2011, 3, 1351−1371.
(29) Nie, Z.; Petukhova, A.; Kumacheva, E. Properties and emerging
applications of self-assembled structures made from inorganic
nanoparticles. Nat. Nanotechnol. 2010, 5, 15−25.
(30) He, L.; Wang, M.; Ge, J.; Yin, Y. Magnetic assembly route to
colloidal responsive photonic nanostructures. Acc. Chem. Res. 2012, 45,
1431−1440.
(31) Stolarczyk, J. K.; Deak, A.; Brougham, D. F. Nanoparticle
clusters: assembly and control over internal order, current capabilities,
and future potential. Adv. Mater. 2016, 28, 5400−5424.
(32) Lee, H.; Sun, E.; Ham, D.; Weissleder, R. Chip−NMR biosensor
for detection and molecular analysis of cells. Nat. Med. 2008, 14, 869−
874.
(33) Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics.
Chem. Rev. 2005, 105, 1547−1562.
(34) Jin, Y.; Gao, X. Plasmonic fluorescent quantum dots. Nat.
Nanotechnol. 2009, 4, 571−576.
(35) Pan, Y.; Du, X.; Zhao, F.; Xu, B. Magnetic nanoparticles for the
manipulation of proteins and cells. Chem. Soc. Rev. 2012, 41, 2912−
2942.
(36) Zagorovsky, K.; Chan, W. C. W. A plasmonic DNAzyme
strategy for point-of-care genetic detection of infectious pathogens.
Angew. Chem., Int. Ed. 2013, 52, 3168−3171.
(37) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA
array detection with nanoparticle probes. Science 2000, 289, 1757−
1760.
(38) Ohta, S.; Glancy, D.; Chan, W. C. W. DNA-controlled dynamic
colloidal nanoparticle systems for mediating cellular interaction. Science
2016, 351, 841−845.
(39) Li, H.-J.; Du, J.-Z.; Du, X.-J.; Xu, C.-F.; Sun, C.-Y.; Wang, H.-X.;
Cao, Z.-T.; Yang, X.-Z.; Zhu, Y.-H.; Nie, S.; Wang, J. Stimuli-
responsive clustered nanoparticles for improved tumor penetration
and therapeutic efficacy. Proc. Natl. Acad. Sci. U. S. A. 2016, 113,
4164−4169.
(40) Sun, Q.; Sun, X.; Ma, X.; Zhou, Z.; Jin, E.; Zhang, B.; Shen, Y.;
Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R.; et al. Integration of
nanoassembly functions for an effective delivery cascade for cancer
drugs. Adv. Mater. 2014, 26, 7615−7621.
(41) Ling, D.; Park, W.; Park, S.-j.; Lu, Y.; Kim, K. S.; Hackett, M. J.;
Kim, B. H.; Yim, H.; Jeon, Y. S.; Na, K.; Hyeon, T. Multifunctional
tumor pH-sensitive self-assembled nanoparticles for bimodal imaging

and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc.
2014, 136, 5647−5655.
(42) Lok, C. N.; Zou, T.; Zhang, J. J.; Lin, W. S.; Che, C. M.
Controlled-release systems for metal-based nanomedicine: encapsu-
lated/self-assembled nanoparticles of anticancer gold(III)/platinum-
(II) complexes and antimicrobial silver nanoparticles. Adv. Mater.
2014, 26, 5550−5557.
(43) Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee,
P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.;
et al. The targeted delivery of multicomponent cargos to cancer cells
by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10,
389−397.
(44) Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique
features of tumor blood vessels for drug delivery, factors involved, and
limitations and augmentation of the effect. Adv. Drug Delivery Rev.
2011, 63, 136−151.
(45) Owens, D. E., III; Peppas, N. A. Opsonization, biodistribution,
and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006,
307, 93−102.
(46) Wang, Y.; Zhou, K.; Huang, G.; Hensley, C.; Huang, X.; Ma, X.;
Zhao, T.; Sumer, B. D.; DeBerardinis, R. J.; Gao, J. A nanoparticle-
based strategy for the imaging of a broad range of tumours by
nonlinear amplification of microenvironment signals. Nat. Mater.
2014, 13, 204−212.
(47) Ling, D.; Hackett, M. J.; Hyeon, T. Cancer imaging: lighting up
tumours. Nat. Mater. 2014, 13, 122−124.
(48) Nichols, J. W.; Bae, Y. H. Odyssey of a cancer nanoparticle:
from injection site to site of action. Nano Today 2012, 7, 606−618.
(49) Sambhy, V.; Macbride, M. M.; Peterson, B. R.; Sen, A. Silver
bromide nanoparticle/polymer composites: dual action tunable
antimicrobial materials. J. Am. Chem. Soc. 2006, 128, 9798−9808.
(50) Loher, S.; Schneider, O. D.; Maienfisch, T.; Bokorny, S.; Stark,
W. J. Micro-organism-triggered release of silver nanoparticles from
biodegradable oxide carriers allows preparation of self-sterilizing
polymer surfaces. Small 2008, 4, 824−832.
(51) Dobrovolskaia, M. A.; Patri, A. K.; Zheng, J.; Clogston, J. D.;
Ayub, N.; Aggarwal, P.; Neun, B. W.; Hall, J. B.; McNeil, S. E.
Interaction of colloidal gold nanoparticles with human blood: effects
on particle size and analysis of plasma protein binding profiles.
Nanomedicine 2009, 5, 106−117.
(52) Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.;
McNeil, S. E. Nanoparticle interaction with plasma proteins as it
relates to particle biodistribution, biocompatibility and therapeutic
efficacy. Adv. Drug Delivery Rev. 2009, 61, 428−437.
(53) Yezhelyev, M. V.; Qi, L.; O’Regan, R. M.; Nie, S.; Gao, X.
Proton-sponge coated quantum dots for siRNA delivery and
intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006−9012.
(54) Davis, M. E.; Shin, D. M.; Chen, Z. Nanoparticle therapeutics:
an emerging treatment modality for cancer. Nat. Rev. Drug Discovery
2008, 7, 771−782.
(55) Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug
transporters: the multidrug resistance-associated proteins. J. Natl.
Cancer Inst. 2000, 92, 1295−1302.
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