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Abstract

A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is 

proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture 

feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex 

appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known 

as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and 

corresponding novel algorithm to extract spatially varying multifractal features are proposed. A 

multifractal feature-based brain tumor segmentation method is developed next. To evaluate 

efficacy, tumor segmentation performance using proposed multifractal feature is compared with 

that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor 

segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The 

modification of AdaBoost algorithm involves assigning weights to component classifiers based on 

their ability to classify difficult samples and confidence in such classification. Experimental results 

for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic 

segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor 

segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our 

segmentation results are more consistent and on the average outperforms these methods for the 

patients where ground truth is made available.
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I. Introduction

Varying intensity of tumors in brain magnetic resonance images (MRIs) makes the 

automatic segmentation of such tumors extremely challenging. Brain tumor segmentation 

using MRI has been an intense research area. Both feature-based [1]–[8] and atlas-based 

[9]–[11] techniques as well as their combinations [12] have been proposed for brain tumor 

segmentation. In [10], Warfield et al. combined elastic atlas registration with statistical 

classification to mask brain tissue from surrounding structures. Kaus et al. [11] proposed 

brain tumor segmentation using digital anatomic atlas and MR image intensity. However, the 

method requires manual selection of three or four example voxels for each tissue class for a 

patient. In [9], Prastawa et al. developed tumor segmentation and statistical classification of 

brain MR images using an atlas prior. There are few challenges associated with atlas-based 

segmentation. Atlas-based segmentation requires manual labeling of template MRI. In 

addition, the elastic registration of template MRI with distorted patient images due to 

pathological processes is nontrivial. It may pose further challenge in detecting tumor from 

postoperative patient MRI where the deformation may be more extensive. Such issues with 

atlas-based tumor segmentation can be mitigated by devising complementary techniques to 

aid tumor segmentation [13], [14]. In [13], Davatzikos et al. used systematic deformations 

due to tumor growth to match pre-operative images of the patient with that of the 

postoperative. In [14], Menze et al. proposed a generative probabilistic model for 

segmentation by augmenting atlas of healthy tissue priors with a latent atlas of tumor.

Among feature-based techniques, Lee et al. [2] proposed brain tumor segmentation using 

discriminative random field (DRF) method. In [2], Lee et al. exploited a set of multiscale 

image-based and alignment-based features for segmentation. However, the proposed 

framework does not allow training and testing the proposed models across different patients. 

Corso et al. [3] discussed conditional random field (CRF) based hybrid discriminative-

generative model for segmentation and labeling of brain tumor tissues in MRI. The CRF 

model employs cascade of boosted discriminative classifier where each classifier uses a set 

of about one thousand features. Wels et al. [5] used intensity, intensity gradient, and Haar-

like features in a Markov random field (MRF) method that combines probabilistic boosting 

trees and graph cuts for tumor segmentation. Overall, these methods of incorporating spatial 

dependencies in classification using DRF/CRF/MRF demand very careful tumor 

characterization for convergence.

Gering et al. [12] proposed a promising framework for brain tumor segmentation by 

recognizing deviation from normal tissue. However, the proposed technique in [12] depends 

on manual corrective action between iterations. Cobzas et al. [4] studied textons [15] and 

level set features with atlas-based priors to build statistical models for tissues. Such level set 

techniques are very sensitive to initialization and known to suffer from boundary leaking 

artifacts. In [8], Wang et al. proposed a parametric active contour model that facilitates brain 

tumor detection in MRI. The proposed model makes rather simplistic assumption that there 

is a single continuous region associated with tumor. Bauer et al. [16] exploited patient-

specific initial probabilities with nonlocal features to capture context information. Bauer et 
al. used a standard classification forest (CF) as a discriminative multiclass classification 

model. The techniques in [16] combined random forest (RF) classification with hierarchical 
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CRF regularization as an energy minimization scheme for tumor segmentation. In [17], 

Geremia et al. introduced a symmetry feature and RF classification for automated tumor 

segmentation. Recently, Hamamci and Unal [18] proposed a multimodal modified tumor-cut 

method for tumor and edema segmentation. The proposed method needs user interaction to 

draw maximum diameter of the tumor. Raviv et al. [19] presented a statistically driven level-

set approach for segmentation of subject-specific MR scans. The technique is based on latent 

atlas approach, where common information from different MRI modalities is captured using 

spatial probability. However, this method also requires manual initialization of tumor seed 

and boundary for effective segmentation.

Among texture feature extraction techniques, fractal analysis has shown success in tumor 

segmentation [1], [6], [7]. In prior works [1], [20], we demonstrate effectiveness of fractal 

features in segmenting brain tumor tissue. Considering intricate pattern of tumor texture, 

regular fractal-based feature extraction techniques appear rather homogeneous. We argue 

that the complex texture pattern of brain tumor in MRI may be more amenable to 

multifractional Brownian motion (mBm) analysis [6], [7], [21]. In [21], we study efficacy of 

different feature selection and tumor segmentation techniques using multiple features 

including mBm for brain tumor segmentation. The mBm feature effectively models spatially 

varying heterogeneous tumor texture. In addition, mBm derivation also mathematically 

combines the multiresolution analysis enabling one to capture spatially varying random 

inhomogeneous tumor texture at different scales.

Consequently, in this paper, we propose formal stochastic models to estimate multifractal 

dimension (multi-FD) for brain tumor texture extraction in pediatric brain MRI that is 

initially proposed in [7]. Our experimental results show that fusion of the multi-FD with 

fractal and intensity features significantly improves brain tumor segmentation and 

classification. We further propose novel extensions of adaptive boosting (AdaBoost) [22] 

algorithm for classifier fusion. Our modifications help the component classifiers to 

concentrate more on difficult-to-classify patterns during detection and training steps. The 

resulting ensemble of classifiers offer improved patient independent brain tumor 

segmentation from nontumor tissues.

The rest of the article is organized as follows. Brief discussions on several topics relevant to 

this paper are provided in Section II. In Section III, we define a systematic theoretical 

framework to estimate the multi-FD features. We also propose an algorithm to compute 

multi-FD in this section. Our proposed modification of AdaBoost algorithm is also discussed 

in this section. In Section IV, we describe our dataset. Detail processing steps are discussed 

in Section V. Experimental results and performance comparison using another standard 

texture feature, known as texton [15], are presented in Section VI. Section VI also discusses 

detail performance comparison of our methods with other state-of-the-art works in literature 

using a publicly available brain tumor data. Finally, Section VII provides concluding 

remarks.

II. Background Review

This section provides brief discussions on several topics that are relevant to this paper.
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A. Fractal and Fractional Brownian Motion (fBm) for Tumor Segmentation

A fractal is an irregular geometric object with an infinite nesting of structure at all scales. 

Fractal texture can be quantified with the noninteger FD [23], [24]. In [1], FD estimation is 

proposed in brain MRI using piece-wise-triangular-prism-surface-area (PTPSA) method. 

Reference [24] shows statistical efficacy of FD for tumor regions segmentation in brain 

MRI.

Reference [20] proposes fractional Brownian motion (fBm) model for tumor texture 

estimation. An fBm process, on [0, T], T ∈ ℛ, is a continuous Gaussian zero-mean 

nonstationary stochastic process starting at t = 0. It has the following covariance structure 

[25],

(1)

Where H is a scalar parameter 0 < H < 1 known as Hurst index (Holder exponent). The value 

of H determines the fBm process such that the curve BH (t) is very rough if H = 0.01, while 

for H = 0.99, the curve is very smooth. Fig. 1 shows an example of simulated BH (t) versus 

time plots for different H values. The figure confirms variation of surface roughness with 

variation of H values.

The FD is related to the Hurst coefficient, H, as follows:

(2)

The parameter E is Euclidean dimension (2 for 2-D, 3 for 3-D and so on) of the space.

B. Multifractal Process

Although fBm modeling has been shown useful for brain tumor texture analysis [20], 

considering the rough heterogeneous appearance of tumor texture in brain MRI, fBm 

appears homogeneous, or monofractal. In fBm process, the local degree of H is considered 

the same at all spatial/time variations. However, like many other real-world signals, tumor 

texture in MRI may exhibit multifractal structure, with H varying in space and/or time. 

Popescu et al. indicate that multifractal may be well suited to model processes wherein 

regularity varies in space as in brain MRIs [26]. Takahashi et al. [27] exploit multifractal to 

characterize microstructural changes of white matter in T2-weighted MRIs. Consequently, 

this paper proposes a model to estimate multi-FD of tumor and nontumor regions in MRI 

based on mBm analyses [28], [29]. In general, mBm is generalization of fBm with a zero-

mean Gaussian process. The major difference between the mBm and fBm is that, contrary to 

fBm, the H of mBm is allowed to vary along spatial/time trajectory.
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C. Classifier Boosting

Due to ineffectiveness of classifying complex tumor texture across various patients, this 

paper considers an ensemble boosting method. Such boosting method yields a highly 

accurate classifier by combining many moderately accurate component classifiers. In this 

method, each component classifier is successively added and trained on a subset of the 

training data that is “most difficult” given the current set of component classifiers already 

added to the ensemble. Among different variations of boosting methods, adaptive boosting 

such as AdaBoost [22] is the most common.

The selection of appropriate weak classifier for a specific application is an open research 

question. Many studies report AdaBoost with decision trees [30], neural networks [31], or 

support vector machine (SVM) [32] as component classifiers. Following the theoretical 

reasoning and experimental results reported by Li et al. [32], we consider Diverse 

AdaBoostSVM algorithm in our paper. The authors show that Diverse AdaBoost-SVM 

offers superior performance over its counterparts for unbalanced dataset. Since our brain 

tumor data is also unbalanced (few tumor samples compared to many nontumor samples), 

we believe Diverse AdaBoostSVM method is suitable for this application. The detail of 

Diverse AdaBoostSVM algorithm can be found in [32].

III. Mathematical Models and Algorithm

A. Multiresolution Wavelet-Based FD Estimation for Multifractal Process

In this subsection, we show formal analytical modeling of one-dimensional (1-D) 

multiresolution mBm to estimate the time and/or space varying scaling (or Holder) exponent 

H (s). We then propose an algorithm for two-dimensional (2-D) multiresolution mBm model 

to estimate texture feature of brain tumor tissues in MRIs.

1) One-Dimensional mBm Model and Local Scaling Exponent Estimation—The 

covariance function of the mBm process is defined as [33]

(3)

where  is the variance of the mBm process and s, τ ∈ ℛ are two instances of time/scale. 

The variance of mBm increment process is given as

(4)

In order to estimate Holder exponent H from multiple scales (resolutions), multiresolution 

wavelet is used. The wavelet transform of x (s) is denoted as
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(5)

where  is the analyzing wavelet and a is the scale. The 

expected value of the squared-magnitude of the wavelet transform in (5) is given as

(6)

Substituting the autocovariance function of the mBm from (3) and ψs,a (τ) in (5) and 

choosing m = s + τ, such that dm = ds and τ − s = −m yields,

(7)

where ∫ ψ(u) ψ (v) dv represents the autocorrelation of the analyzing wavelet. Taking log 

on both sides of (7) yields

(8)

Given a single observation of the random process x, obtaining a robust estimation of the 

expectation of the squared magnitude of the wavelet coefficients in (8) is nontrivial. Among 

a few suggested techniques [34]–[36], Gonçalvès [35] obtained the empirical estimate of the 

qth order moment of |Wx (s, a)| as follows:

(9)

where a single realization of the analyzed process is sampled on a uniform lattice, si = i/N; i 
= 0, …, N − 1. This estimation is based on the postulate that the wavelet series Wx (s, a) 

comply with the normality and stationary within scale. Substituting (9) into (8) and taking q 
= 2 yields,

(10)
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For the multifractal structure, the estimated Holder regularity H (s) in (10) is neither smooth, 

nor continuous. To make the point-wise estimation of H(s) possible, one may relax the 

condition of nonsmoothness for a sufficiently small interval of time/space Δs where Δs → 0 

and estimate H(s) from the observations at −(Δs/2) ≤ s ≤ s + (Δs/2). Thus, the singularity of 

the mBm process may be quantified around each point of time/space. The FD can be 

obtained using estimated H (s) in (2).

2) mBm Model and Local Scaling Exponent Estimation—In this section, a 

generalized 2-D method to estimate the local scaling exponent for mBm computation is 

proposed. Let Z (u⃗) represent a 2-D mBm process, where u⃗ denotes a position vector (ux, uy) 

of a point in the process. The properties of Z (u⃗) are similar to that of 1-D x (s) in the 

previous section. The 2-D correlation function of the mBm process Z (u⃗) can be defined as 

[37]

(11)

where H (ū) varies along both direction of the position vector (ux, uy). Let us define the 

continuous 2-D wavelet transform as

(12)

where ψ(ū) is the 2-D spatial wavelet basis, a is the scaling factor, and b̄ is the 2-D 

translation vector.

Following (6), we obtain expected value of the magnitude square of the wavelet transform as 

follows:

(13)

Substituting (11) into (12), and changing the variables of integration to p ̄ = (ū − v̄)/a and q̄ = 

(v̄ − b̄/a yields

(14)
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Taking the logarithm on both sides of (14) yields

(15)

Following the steps similar to previous section one can estimate the E{|Wz (b⃗, a)|2} as 

follows:

(16)

where a single realization of the analyzed 2-D process is sampled on a uniform 2-D lattice 

bx,y = [(x/N, y/M); x = 0, …, N − 1, y = 0, …, M − 1]. Thus, one may approximate H (u⃗) for 

a 2-D mBm process as follows:

(17)

Following the same arguments for 1-D mBm in the previous section, one may estimate H(u⃗) 
from the observations of sufficiently small area Δu⃗ (Δux, Δuy) around u⃗ where Δux → 0 and 

Δuy → 0. The above derivation can be generalized to estimate mBm in 3-D or higher 

dimension.

B. Algorithms for Texture Modeling Using mBm

Fig. 2 shows a formal algorithm to estimate the multi-FD. We first divide the image into 

nonoverlapping blocks or subimages. The second moment of selected type of wavelet for 

every subimage is computed in multiple different scales as shown in (16). Then, the holder 

exponent is computed from the linear regression of moments versus the scale in a log-log 

plot as shown in (17). Finally, FD is computed using (2).

C. Algorithm for AdaBoost Enhancement

This section discusses novel extensions of the DiverseAdaBoostSVM to improve tumor 

classification rate. The resulting enhanced AdaBoost algorithm is shown in Fig. 3. Fig. 3 

briefly summarizes our changes to original Diverse AdaboostSVM method [32]. The first 

modification is in step 3(g) where the weights of the component classifiers are obtained. 

These weights are inversely proportional to three factors such as: 1) how many samples are 

misclassified; 2) how confidently the samples are misclassified; and 3) how difficult the 

misclassified samples are. Both “confidence” and “difficultness” are closely related. Here is 

the shuttle difference: “difficultness” of samples is represented by the weights Wk (i) that 

carry over the classification results from previous iterations. So, if one sample is 

misclassified many times in different iterations, the weight of that sample is likely to be high 

compared with the one that has been misclassified in only few times in previous iterations. 
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On the other hand, “confidence” is measured based on current iteration only. We represent 

confidence using the probability p(yi |xi). If one sample is misclassified with high 

probability, we penalize the corresponding classifier k more compared with the classifier that 

misclassifies the same sample with low probability.

The standard AdaBoost algorithm, in contrast with ours, does not consider the confidence in 

computing the classifier weights. The next improvement is shown in step 3(h). The weights 

(probability of being selected in the next cycle) are updated for each training sample 

considering how confidently that specific sample is classified (or misclassified) in the 

current cycle. Standard AdaBoost algorithm changes weights of each sample equally based 

on the classification error of the last component classifier. Note that in standard AdaBoost, 

the classification error is computed based on the crisp classification decision that does not 

account for the confidence/probability of such decision.

The detection decision on a new sample x can be based on the weighted vote of the 

component classifiers

(18)

where d (x) is class decision from each component classifiers and D (x) is the final decision.

Note if SVM is added to the AdaBoost in an unconstrained manner, the performance may 

degrade since each additional SVM may be actually a “weak learner” [38]. However, in our 

framework, we never add any new SVM unless the total diversity, as defined in (20), goes 

up. That is how the overall classification performance is expected to increase. Fig. 11 shows 

that the classification error decreases as we add more and more component (weak) learner.

Our choice of SVM classifier as “weak learner” (e.g., “component classifier”) is inspired by 

the interesting work of Li et al. [32]. Li et al. showed how the choice of SVM outperforms 

the other choices. In addition, they claim that their framework is not affected by unbalanced 

dataset like ours (number of tumor samples is way less than the number of nontumor 

samples). Finally, our proposed AdaBoost framework is not dependent on any specific 

choice of “weak learner”.

IV. Data

The brain tumor MRI data in this study consists of 3 different modalities, such as T1-

weighted (nonenhanced), T2-weighted, and FLAIR from 14 different pediatric patients with 

total of 309 tumor bearing image slices. Patients consist of two different tumor groups such 

as 6 patients (99 MRI slices) are from astrocytoma and 8 patients (210 MRI slices) are from 

medulloblastoma tumor types, respectively. All the slices are obtained from Axial 

perspective.

All of these MRIs are sampled by 1.5 T Siemens Magnetom scanners from Siemens Medical 

Systems. The slice thickness is 8–10 mm, with the slice gap of 1–12 mm, the field-of-view 
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(FOV) is 280–300 × 280–300 mm2, the image matrix is of (256 × 256) or (512 × 512) pixels 

and 16 bits/pixel.

V. Fractal-Based Tumor Detection and Classification

In this study, we fuse the existing PTPSA fractal and newly proposed multi-FD features in 

automatic tumor segmentation in brain MRI. In addition, we extract texton feature [15] for 

comparison in segmenting brain tumors. The overall flow diagram is shown in Fig. 4. 

Following standard preprocessing steps for brain MRI, we extract corresponding fractal, 

texton, and intensity features for all 14 patients in this study. In the next step, different 

combinations of feature sets are exploited for tumor segmentation and classification. Feature 

values are then directly fed to the AdaBoost classifier for classification of tumor and 

nontumor regions. Manual labeling to tumor regions is performed for supervised classifier 

training. The trained classifiers are then used to detect the tumor or nontumor segments in 

unknown brain MRI. In the following subsections, we describe these steps in more details.

A. MRI Preprocessing

The proposed methods in this paper involve feature fusion from different MRI modalities. 

Therefore, different MRI volumes need to be aligned. The following preprocessing steps are 

performed on the MRI volumes:

1. Realign and unwarp slices within a volume, separately for every modality 

and every patient using SPM8 toolbox.

2. Co-register slices from different modalities with the corresponding slices 

of T1-weighted (nonenhanced) slices using SPM8 toolbox for each 

patient.

The PTPSA, texton, and multi-FD texture features are extracted after the above mentioned 

preprocessing steps. In addition, for intensity features, the following two preprocessing steps 

are also performed on all MRI modalities (T1, T2, FLAIR) available in our dataset:

1. Correct MRI bias field using SPM8 toolbox.

2. Correct bias and intensity inhomogeneity across all the slices of all the 

patients for each MRI modality using two-step normalization method [39]. 

Note that we extract the fractal features before bias field and intensity 

inhomogeneity correction. As described in [40], the multiscale wavelets do 

not require these corrections.

Finally, BET toolbox is used to extract brain tissue from skull. Fig. 5 illustrates an example 

of different preprocessing steps in multimodality brain tumor MRI patients in our dataset.

B. Feature Set

As discussed in Section II-A, the feature set includes intensity, texton [16], PTPSA [1], and 

multi-FD (shown in Fig. 2). We represent 3-D segmentation process into a sequence of 2-D 

segmentations (at pixel level) since the prevailing practice of the radiologists in the 

radiology reading room is to analyze sequence of 2-D MRI slices side-by-side for tumor 
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detection and segmentation. However, there is no theoretical limitation to extend this 

computation to 3-D. Each pixel of a slice is represented by a set of feature values. Each of 

intensity, PTPSA and multi-FD is represented by single feature values, while texton is 

represented by a vector of 48 feature values (corresponding to 48 filters [15]). For both 

multi-FD and PTPSA, we first divide the image into nonoverlapping subimages. In our 

experiment, we obtain the best result for subimage size of 8 × 8. Furthermore, as suggested 

by the mathematical derivation in previous section, multiresolution computation employing 

first two scales with a wavelet such as Daubechies is used for this paper.

C. Brain Tumor Segmentation and Classification from Nontumor Tissue

For tumor/nontumor tissue segmentation and classification, MRI pixels are considered as 

samples. These samples are represented by a set of feature values extracted from different 

MRI modalities. Features from all modalities are fused for tumor segmentation and 

classification. We follow data driven machine learning approach to fuse different features 

extracted from different MRI modalities. We let our supervised classifier autonomously 

exploit multiple features extracted from different modalities in the training dataset. Different 

feature combinations (as described in Section VI), are used for comparison. A modified 

supervised AdaBoost ensemble of classifier is trained to differentiate tumor from the 

nontumor tissues. Since the features are extracted in 2-D, each sample represents a pixel 

instead of a voxel. However, the proposed classification framework can readily be extended 

to 3-D segmentation without any modification. For supervised training purpose, manually 

labeled ground truths of tumor core and nontumor regions are used. For our dataset, ground 

truth labels are obtained from combination of T1, T2, and FLAIR modalities by the 

radiologists.

D. Performance Evaluation

Receiver operating characteristic (ROC) curves are obtained to ascertain the sensitivity and 

specificity of the classifiers. In this study, we define TPF as the proportion of the tumor 

pixels that are correctly classified as tumor by the classifier while we define FPF as the 

proportion of the nontumor pixels that are incorrectly classified as tumor by the classifier. In 

addition, few similarity coefficients are used to evaluate the performance of tumor 

segmentation. The similarity coefficients used in this study include: Jaccard [a/(a + b)], Dice 
[2a/(2a + b)], Sokal and Sneath [a/(a + 2b)], and Roger and Tanimoto [(a + c)/(a + 2b + c)] 

coefficients, where a is the number of samples where both the classifier decision and the 

manual label confirms the presence of tumor; b is the number of samples where the 

decisions mismatch; and c is the number of samples where both the classifier decision and 

the manual label confirms the absence of tumor.

VI. Experimental Results and Discussions

This section reports results and analyses. Fig. 6 shows an example MRI slice and 

corresponding scatter plots comparing feature values between tumor and nontumor regions. 

The points in scatter plots represent average feature values within an 8 × 8 subimage in an 

MRI for a patient. The black points represent average feature values in tumor regions, while 

the white points represent the same in nontumor regions. Fig. 6(b)–(d) shows the plots of 

Islam et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PTPSA (fractal) versus intensity, multi-FD versus intensity and multi-FD versus PTPSA 

versus intensity features, respectively. These plots suggest that features representing tumor 

regions are well separated from that of the non-tumor regions.

Figs. 7 and 8 show examples of tumor segmentation results for four astrocytoma and 

medulloblastoma patients, respectively. The slices are randomly chosen from corresponding 

patient MRI volumes. The figures compare tumor segmentation results between (intensity, 

PTPSA, and multi-FD) and (intensity and texton) feature combinations. Notice (intensity, 

PTPSA, and multi-FD) feature combination captures more tumor regions for three 

astrocytoma (P030, P040, and P090) and three medulloblastoma (M020, M040, and M100) 

patients, respectively. Furthermore, the same feature combination also shows superiority in 

correctly classifying nontumor regions for two astrocytoma (P040 and P060) and three 

medulloblastoma (P090, M040, and M060) patients, respectively. Therefore, it is clear from 

visual observation that (intensity, PTPSA and multi-FD) feature combination offers better 

tumor segmentation. Quantitative analyses with the whole dataset is shown later in this 

section.

Since our dataset does not have enough sagittal or coronal slices from all different 

modalities, most of the results presented here are based on axial slices only. However, for 

completeness, we report two segmentation results using intensity, PTPSA and multi-FD in 

Figs. 9 and 10. Fig. 9 uses sagittal slice from T1 and T1 contrast enhanced, while Fig. 10 

uses coronal slices from T2 and T1 contrast modalities (no other modalities are available), 

respectively.

The performance of the proposed modified AdaBoost algorithm is characterized next. Fig. 

11 shows how the overall classification error on trained data changes as more classifiers are 

added. As expected, the overall error initially decreases as more component classifier is 

added. Similarly, Fig. 12 shows how the total diversity of the ensemble of classifier changes 

as classifiers are added. We observe that at some points total diversity does not improve 

further with inclusion of more classifiers. In boosting, having diversity among classifiers is 

considered an important factor. Therefore, Fig. 12 suggests that for our dataset, using 10–20 

classifiers may be sufficient.

Fig. 13 shows ROC curve using average performance measure values for six astrocytoma 

patients (99 MRI slices; 256 × 256 or 512 × 512 pixels in each slice). We use different 

feature combinations such as (a) intensity and PTPSA, (b) intensity and multi-FD, (c) 

intensity, PTPSA, and multi-FD, (d) intensity and texton, and (e) intensity, PTPSA, multi-

FD, and texton. TPF and FPF values are obtained at different decision thresholds between 

[−1,1]. Comparison among the ROCs obtained from intensity, PTPSA and multi-FD 

combination and those obtained from texton combination show that one can achieve better 

TPF (Y -axis) sacrificing much less FPF (X-axis) in tumor segmentation. We observe similar 

performance with eight medulloblastoma patients as well (not shown due to space 

limitation). Fig. 14 shows how the classifier prediction values vary when they are trained 

with different feature combinations specified above. Each column is a box and whisker plot 

of prediction values that corresponds to either tumor or nontumor samples. In x-axis, the 

letters before hyphen correspond to one of the feature combinations (such as IP), while the 
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digit after hyphen specifies if the box plot corresponds to tumor (1) or nontumor (0) 

samples. In each box plot, box is drawn between lower and upper quartile of prediction 

values and includes a splitting line at the median. The whiskers are extended from the box 

end to 1.5 times the box length. Outliers (values beyond the whiskers) are displayed with a 

“+” sign. Comparison of box plot median values is similar to visual hypothesis test, or 

analogous to the t-test used for comparison of mean values. The box length and whisker 

positions can be representative of the dispersion of prediction values. Note for intensity and 

multi-FD (IM) feature combination, the dispersion of prediction values is very low for both 

tumor and nontumor samples. This is not true for any other feature combinations.

We demonstrate more quantitative performance comparison between our proposed modified 

AdaBoost with the AdaBoost algorithm [32] without modification. Table I shows classifier 

performance and overlap metrics for eight medulloblastoma patients. For this experiment, 

feature vector is composed of intensity, PTPSA, and multi-FD from T1, T2, and FLAIR 

modalities. In rows 1 and 2 of Table I, measures obtained at a fixed decision threshold 0 are 

shown. The modified AdaBoost achieves better TPF compared to that of the original 

AdaBoost in [32]. Similar performance improvement is also observed using our modified 

AdaBoost algorithm for the astrocytoma patients (not shown due to space limitation).

Finally, for quantitative segmentation performance comparison using different feature 

combinations, we fix decision threshold at “0” and obtain classifier performance and overlap 

metrics values. The values are summarized in Table II for six astrocytoma patients (99 MRI 

slices; 256 × 256 or 512 × 512 pixels in each slice). The highest performing metrics are 

denoted in bold face in each column. Note that the Intensity and multi-FD feature 

combination offers the best TPF and similarity overlap values when compared to all other 

combinations in Table II. Similar performance improvements using multi-FD feature for 

medulloblastoma patients are also observed (not shown due to space limitation). In 

summary, it is worth noting that intensity and fractal feature combinations outperform 

Gabor-like features for brain tumor segmentation performance. Also note that combining 

intensity and fractal with Gabor-like texton features may not improve the brain tumor 

segmentation performance for these patients in this study.

In order to compare performance with other state-of-the-art work, we applied our proposed 

tumor segmentation technique on publicly available MICCAI BRATS2012 dataset [42]. We 

select ten low-grade glioma patients with 1492 tumor slices in four different modalities. We 

select low-grade glioma patients since such cases may pose increased difficulty in 

segmentation compared to high grade. Note we use T1 contrast enhanced, T1, T2, and 

FLAIR MRI for the pre-processing steps as discussed in Section V-A for this BRATS2012 

dataset.

We predict the binary classification of tumor core versus rest (tumor plus nontumor region) 

labels. Note we do not predict edema label since the goal of this paper is only tumor 

segmentation. All the subsequent results are obtained by using the BRATS online evaluation 

tool [42]. Table III shows the summary of results for this dataset. In BRATS2012 ground 

truth notation, active core tumor is labeled as 2 and the nontumor (the rest) as 0. We follow 

these notations for our evaluations in this paper. The second column in Table III shows 
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segmentation results for our technique. These results are obtained using intensity and multi-

FD features from T1, T1 contrast enhanced, T2, and FLAIR modalities. Notice the intensity 

and multi-FD feature combination is used following improved performance results as shown 

in Fig. 13 and Table II, respectively. For within patient segmentation using 10 low-grade 

cases, we use fivefold cross validation. Table III shows that our segmentation results (dice 

overlap) is more consistent and on the average outperforms the other methods for this 

dataset. Table IV shows the segmentation result on BRATS challenge/testing dataset of four 

low-grade patients (across patient results). Here, the training is done with the BRATS 

training dataset. The average mean dice score (0.33) is among the few top performing works 

that have been published reporting BRTAS2012 competition results. To understand the 

generalization trends between our dataset (as described in Section IV) and the BRATS 

dataset, we train the model with our astrocytoma (low-grade) dataset, and test on both 

BRATS low-grade training and test data. The results are shown in Tables V and VI for 

BRATS training and test dataset, respectively. The mean results from both cases show 

moderate to low performance due to the heterogeneity of tumor type, appearance, imaging 

modalities, center and imaging device specific variability. All results in this paper are 

obtained using MATLAB 2011 a on windows 64 bit 2.26 GHz Intel(R) Xeon(R) processor, 

with 4 GHz RAM. The training time varies from 2 to 4 days per patient. Prediction time 

varies from 1.5 to 2 min per slice.

VII. Conclusion and Future Works

In this paper, novel multifractal (multi-FD) feature extraction and supervised classification 

techniques for improved brain tumor detection and segmentation are proposed. The multi-

FD feature characterizes intricate tumor tissue texture in brain MRI as a spatially varying 

multifractal process in brain MRI. On the other hand, the proposed modified AdaBoost 

algorithm considers wide variability in texture features across hundreds of multiple-patient 

MRI slices for improved tumor and nontumor tissue classification. Experimental results with 

14 patients involving 309 MRI slices confirm the efficacy of novel multi-FD feature and 

modified AdaBoost classifier for automatic patient independent tumor segmentation. In 

addition, comparison with other state-of-the-art brain tumor segmentation techniques with 

publicly available low-grade glioma in BRATS2012 dataset shows that our methods 

outperform other methods for most of these patients. Note our proposed feature-based brain 

tumor segmentation does not require deformable image registration with any predefined 

atlas. The computation complexity of multi-FD feature is liner and increases with slice 

resolution (number of pixel), block size, and the number of wavelet levels. Likewise the 

computation complexity for our modified AdaBoost algorithm is linear and increases with 

number of samples times number of component classifiers. As a future direction, 

incorporating information from registered atlas may prove useful for segmentation of more 

subtle and complex tumors. In addition, it may be interesting to investigate the proposed 

modified AdaBoost classification method when one incorporates atlas based prior 

information in the segmentation framework.
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Fig. 1. 
Simulation of fBm process with different H values; (a) H = 0.01; (b) H = 0.5; (c) H = 0.99.
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Fig. 2. 
Algorithm to compute multi-FD in brain MRI.
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Fig. 3. 
Proposed modified AdaBoost algorithm.
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Fig. 4. 
Simplified overall flow diagram.
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Fig. 5. 
Multimodality MRI slices showing different preprocessing steps: (a) original T1, (b) original 

T2, (c) original FLAIR, (e) T1 after realign, unwarp, and bias field correction, (f) T2 after 

realign, unwarp, co-registration with T1 and biasfield correction, (g) FLAIR after realign, 

unwarp, co-registration with T1 and bias field correction, (h) intensity normalized T1, (i) 

intensity normalized T2, and (j) intensity normalized FLAIR.
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Fig. 6. 
(a) Original T2 MRI. Arrow shows the tumor location. Features plots for (b) FD (PTPSA) 

versus intensity; (c) multi-FD versus intensity; (d) multi-FD versus intensity versus FD 

(PTPSA). Black points represent feature values in tumor regions, while white points 

represent feature values in nontumor regions.
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Fig. 7. 
Comparison of segmentation results using (intensity, PTPSA and multi-FD) versus (intensity 

and texton) feature combination for astrocytoma (PXXX) patients.
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Fig. 8. 
Comparison of segmentation results using (intensity, PTPSA and multi-FD) versus (intensity 

and texton) feature combination for medulloblastoma (MXXX) patients.
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Fig. 9. 
Sagittal slice: (a) T1 contrast enhanced; (b) ground Truth; (c) Segmented tumor cluster.
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Fig. 10. 
Coronal slice: (a) T1 contrast enhanced; (b) ground truth; (c) segmented tumor cluster.
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Fig. 11. 
Change in classification error as classifiers are added in the ensemble.
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Fig. 12. 
Change in total diversity as classifiers are added in the ensemble.
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Fig. 13. 
ROC curve obtained from astrocytoma patients with: (a) intensity and PTPSA, (b) intensity 

and multi-FD, (c) intensity, PTPSA, and multi-FD, (d) intensity and texton, and (e) intensity, 

PTPSA, multi-FD, and texton.
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Fig. 14. 
Box plot of modified AdaBoost prediction values for tumor (1) and nontumor (0) samples. 

Classifiers are trained with different feature combinations (IP: intensity+PTPSA, IM: 

intensity+multi-FD, IPM: intensity+PTPSA+multi-FD, IT: intensity+texton, IPMT: intensity

+ PTPSA+multi-FD+texton).
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TABLE IV

Performance Comparison on Brats-2012 Challenge Data With Other Works (Dice Overlap)

Patient ID Our Method [43]* [16]* [18]*

L103 0.463 -- -- --

L105 0.052 -- -- --

L109 0.803 -- -- --

L116 0.003 -- -- --

Mean 0.330 0.339 0.332 0.324

*
The missing data are not reported in [43], [16], [18].

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Islam et al. Page 37

TA
B

L
E

 V

D
at

as
et

 C
ro

ss
-V

al
id

at
io

n 
Pe

rf
or

m
an

ce
 o

n 
B

ra
ts

-2
01

2 
T

ra
in

in
g 

D
at

a 
(D

ic
e 

O
ve

rl
ap

);
 M

od
el

 T
ra

in
ed

 o
n 

O
ur

 A
st

ro
cy

to
m

a*  
D

at
a

P
at

ie
nt

 I
D

L
00

1
L

00
2

L
00

4
L

00
6

L
00

8
O

ve
ra

ll 
M

ea
n

D
ic

e
0.

55
6

0.
47

0
0.

34
0

0.
27

4
0.

54
6

0.
48

4
Pa

tie
nt

 I
D

L
01

1
L

01
2

L
13

L
01

4
L

01
5

D
ic

e
0.

81
8

0.
66

6
0.

18
4

0.
42

9
0.

55
2

* O
ur

 A
st

ro
cy

to
m

a 
da

ta
 c

on
ta

in
s 

th
e 

lo
w

-g
ra

de
 tu

m
or

.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Islam et al. Page 38

TA
B

L
E

 V
I

D
at

as
et

 C
ro

ss
-V

al
id

at
io

n 
Pe

rf
or

m
an

ce
 o

n 
B

ra
ts

-2
01

2 
Te

st
 D

at
a 

(D
ic

e 
O

ve
rl

ap
);

 M
od

el
 T

ra
in

ed
 o

n 
O

ur
 A

st
ro

cy
to

m
a 

D
at

a

P
at

ie
nt

 I
D

L
10

3
L

10
5

L
10

9
L

11
6

O
ve

ra
ll 

M
ea

n

D
ic

e
0.

21
3

0.
02

3
0.

69
5

0
0.

23
3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 29.


	Abstract
	I. Introduction
	II. Background Review
	A. Fractal and Fractional Brownian Motion (fBm) for Tumor Segmentation
	B. Multifractal Process
	C. Classifier Boosting

	III. Mathematical Models and Algorithm
	A. Multiresolution Wavelet-Based FD Estimation for Multifractal Process
	1) One-Dimensional mBm Model and Local Scaling Exponent Estimation
	2) mBm Model and Local Scaling Exponent Estimation

	B. Algorithms for Texture Modeling Using mBm
	C. Algorithm for AdaBoost Enhancement

	IV. Data
	V. Fractal-Based Tumor Detection and Classification
	A. MRI Preprocessing
	B. Feature Set
	C. Brain Tumor Segmentation and Classification from Nontumor Tissue
	D. Performance Evaluation

	VI. Experimental Results and Discussions
	VII. Conclusion and Future Works
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI

