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Abstract

Bromodomain PHD Finger Transcription Factor (BPTF), a ubiquitously expressed ATP-dependent 

chromatin-remodeling factor, is critical for epigenetically regulating DNA accessibility and gene 

expression. While BPTF is important for the development of thymocytes, its function in mature T 

cells remains largely unknown. By specifically deleting BPTF from late DN3/DN4 stage of 

developing T cells, we found that BPTF was critical for the homeostasis of T cells via a cell 

intrinsic manner. In addition, BPTF was essential for the maintenance and function of Treg cells. 

Treg cell-specific BPTF deletion led to reduced Foxp3 expression, increased lymphocyte 

infiltration in the non-lymphoid organs and a systemic autoimmune syndrome. These findings 

therefore reveal a vital role for BPTF in T and Treg cell function and immune homeostasis.
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INTRODUCTION

In eukaryotes, genomic DNA is wound around histone complexes to form nucleosomes (1–

3). Nucleosomes further organized into more compact structures of chromatins and 

chromosomes in the nucleus (4). The highly compact chromatin structure makes the genetic 

loci inaccessible to factors controlling gene expression and DNA replication. Therefore, 

remodeling chromatin structure into an open configuration is a pre-requisite for gene 

transcription and DNA replication to allow regulatory factors to access DNA (5, 6). 
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Chromatin-remodeling complexes are critical cellular factors reconfiguring chromatin 

structure to epigenetically regulate DNA accessibility and gene expression. The central 

subunit of chromatin-remodeling complex is an ATPase that hydrolyzes ATP to acquire the 

energy needed to loosen condensed chromatin structure (7). Four families of ATPase-

dependent chromatin-remodeling complexes have been characterized to date: SWI/SNF 

family (switching defective/sucrose non-fermenting), ISWI (imitation SWI) family, NURD 

(nucleosome remodeling and deacetylation)/Mi-2/CHD (chromodomain, helicase, DNA 

binding) family and INO80 (inositol requiring 80) family (7). These chromatin remodelers 

control a myriad of biological processes including cell growth, proliferation, survival, 

differentiation and function in a cell type-specific manner (2, 8, 9). The deregulation of 

chromatin remodeling complexes often leads to debilitating and fatal diseases including 

developmental deformity, inflammatory disease (10) and cancer (11). Therefore, in order to 

understand disease etiology and devise effective therapies, it is important to reveal how 

chromatin-remodeling complexes control the functions of a specific cell type. While great 

strides have been made to uncover their roles in tumor cells (12, 13), much less is known 

about how the chromatin-remodeling complexes in controlling T cell functions.

T cells play pivotal roles in immunity by eliciting antigen specific response, establishing 

immunological memory, and directing different types of immunity including cytotoxic, type 

1 and type 2 responses (14–17). In addition, Foxp3-expressing regulatory T (Treg) cells are 

essential for immune suppression and self-tolerance. Defective T cell function often leads to 

increased susceptibility of infection and cancer development (18). Yet, over-exuberant T cell 

function contributes to autoimmune and inflammatory disease. Chromatin remodeling 

complexes are required for thymic T cell development (19) by integrating signaling from 

TCR and co-stimulatory molecules (20, 21). In particular, Brg, the ATPase subunit of BAF 

complex, is critical for the development of double negative thymic T cells and Th1/Th2 cell 

differentiation (22–24). Nonetheless, Brg is largely dispensable for the homeostasis of 

mature T cell (19). These findings suggest that chromatin-remodeling complexes, such as 

Brg containing BAF complex, control T cell function in a cell-type specific manner. More 

importantly, it raises a question of whether the four known chromatin-remodeling complexes 

can compensate for each other and play redundant roles in mature T cells. To address this 

question, we investigated whether and how bromodomain PHD finger transcription factor 

(BPTF), an integral component of nucleosome remodeling factor (NURF) chromatin 

remodeling complex, is involved in mature T cell function.

BPTF is a 3,046 aa protein containing histone or DNA binding motifs (25, 26). It is 

ubiquitously expressed and the largest component of the nucleosome remodeling factor 

(NURF) (27). BPTF binds to nucleosomes with trimethylated lysine 4 on histone H3 and 

acetylated histone, where NURF complexes remodel chromatin to regulate gene expression 

in a locus specific manner (26). BPTF, a central component of NURF complexes, is required 

for the development of the early embryo (28) and thymocytes (27). Nevertheless, whether 

and how BPTF controls mature T cell homeostasis and function remain unexplored.

Here, by specifically deleting BPTF from late DN3/DN4 stage of developing T cells, we 

found that BPTF was vital for the homeostasis of T cells. In addition, the thymic 

development of Treg cells required BPTF. Further investigation revealed that BPTF was 
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essential for the function of mature Treg cells in the periphery. Deletion of BPTF 

specifically in Foxp3-expressing Treg cells led to defective suppressive function of Treg 

cells, unstable Foxp3 expression, and an inflammatory syndrome in mice. These findings 

therefore highlighted an essential role for BPTF in T and Treg cell function and immune 

homeostasis.

Materials and Methods

Mice

Cd4Cre, FGC, FGC-tdtomato, Bptffl/fl, Rag1−/− and CD45.1 congenic wild-type mice were 

on the C57BL/6 background. All mice were housed and bred in specific pathogen-free 

conditions in the animal facility at the University of North Carolina at Chapel Hill. All 

mouse experiments were approved by Institution Animal Care and Use Committee of the 

University of North Carolina.

Mixed-bone marrow chimeras

Bone marrow cells were isolated from the femur bones of sex- and age-matched 

Cd4Cre;Bptffl/fl (CD45.2+) mice and wild-type (CD45.1.2+) mice or FGC:Bptffl/wt 

(CD45.1.2) and FGC:Bptffl/fl (CD45.2.2). Bone marrow cells (5 × 106) from each donor 

were mixed and transferred into irradiated Rag1−/− or C57BL/6 recipient mice (CD45.1+). T 

cell populations of each donor were detected in the recipients 10–12 weeks after transfer.

Quantitative RT-PCR

Total RNA was extracted from T cells with TRIzol reagent according to the manufacturer’s 

instructions (Invitrogen) and was reverse-transcribed into c-DNA with Superscript III 

reverse transcriptase (Bio-Rad). Quantitative PCR was performed on QuantStudio® 6 Flex 

Real-Time PCR System. Primers for Bptf: forward: 5′-

GCAGCTTCAGGAGCCATAGTAC-3′; reverse: 5′-GGAGAACGAGGCCGATGTAC-3′; 

Hprt: forward: GGGGGCTATAAGTTCTTTGC; reverse: 5′-

TCCAACACTTCGAGAGGTCC-3′.

Cell Proliferation and Suppression Assay

CD4+GFP+ Treg cells from FGC:Bptffl/wt and FGC:Bptffl/fl mice and 

CD4+CD25−CD45RBhigh responder T cells from WT (CD45.1) mice were sorted on a 

FACSAria III (BD Biosciences) in the UNC Flow Cytometry Core Facility. To assess the 

efficacy of Treg cell-mediated immune suppression in vitro, 1 ×105 sorted responder T cells 

were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) and mixed with 

different amounts of Treg cells (as indicated). Cell mixtures were then stimulated with 

soluble CD3 antibody (1 μg/ml) in the presence of 5 × 105 irradiated (3000 cGy) T cell-

depleted splenocytes as APC. The proliferation of responder cells was assessed at 72 hr 

post-stimulation on FACSCanto (BD Biosciences) in the Lineberger Comprehensive Cancer 

Center Human Immunology Core.
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Flow Cytometry and Cell Sorting

Lymphocytes were isolated from the various organs of age- and sex-matched mice of 8–16 

weeks of age. Fluorescence-conjugated anti-CD4 (GK1.5), anti-CD8 (53–6.7), anti-CD25 

(PC61.5), anti-CD44 (IM7), anti-CD69 (H1.2F3), anti-CD62L (MEL-14), anti-PD-1 

(RMP1-30), anti-CD45.1 (A20), anti-CD45.2 (104), and anti-IFN-γ (XMG1.2), anti-IL-4 

(11B11) (eBioscience), and anti-IL17A (TC11-18H10.1) (Biolegend), and CTLA4 (BNI3, 

BD Bioscience) were purchased. Surface and intracellular staining were performed as 

manufacturer’s protocols. Stained cells were analyzed on a LSRII (BD Biosciences) in the 

UNC Flow Cytometry Core Facility or FACSCanto (BD Biosciences) in the Lineberger 

Comprehensive Cancer Center Human Immunology Core.

Histology

Different tissues from 4–5 mice of FGC:Bptffl/wt and FGC:Bptffl/fl mice at 5–7 months age 

were harvested and immersed in 10% Shandon Formal Fixx (Thermo Fisher) at room 

temperature for 2 days and then were paraffin-embedded. Histologic sections (5 μm) were 

stained with H&E and were evaluated visually under microscopy.

Statistical analysis

Data from at least three sets of samples were used for statistical analysis. Statistical 

significance was calculated by Student’s t-test. A p value < 0.05 was considered to be 

statistically significant.

RESULTS

T cell thymic development in Cd4Cre;Bptffl/fl mice

To study the function of BPTF during T cell development, we crossed Cd4Cre mice (29) 

with Bptffl/fl mice (28) to generate Cd4Cre;Bptffl/fl mice. Bptf gene was found deleted in the 

CD4+CD8+ double-positive (DP) thymocytes (supplemental Fig. S1A). The population of 

DN (double negative) thymocyte were largely normal in Cd4Cre;Bptffl/fl mice (supplemental 

Fig. S1B). The numbers of thymocytes were similar between wild-type (WT) and 

Cd4Cre;Bptffl/fl mice (Fig. 1A). The number and distribution of CD4SP (single positive) and 

CD8SP thymocytes were largely comparable between Cd4Cre;Bptffl/fl and Cd4Cre;Bptffl/wt 

mice (Fig. 1A and B). In addition, the expression of thymocyte maturation markers 

including CD44, CD69 and CD24 appeared normal in CD4SP and CD8SP thymocytes in the 

absence of BPTF (Fig. 1C and D). Nonetheless, we noticed that Foxp3 expressing CD4SP 

nTreg cells was significantly reduced in the thymus of Cd4Cre;Bptffl/fl mice (Fig. 1E) with 

normal expression of CD25 and CD44 (supplemental Fig. S1C). Therefore, in 

Cd4Cre;Bptffl/fl mice, the T cell thymic development appeared largely normal, while the 

Treg cell thymic generation was defective.

BPTF is critical for T cell homeostasis in the periphery

We further investigated whether BPTF deletion affected the homeostasis of mature T cells in 

the periphery. The percentages and numbers of CD4+ and CD8+ T cells in the peripheral 

lymph nodes (pLNs) and spleens of Cd4Cre;Bptffl/fl mice were found approximately 6-fold 
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and 5-fold lower than those of Cd4Cre;Bptffl/wt mice and B cell number was increased by 

about 20% (Fig. 2A, 2B and supplemental Fig. S2A). In addition, CD4+ T cells from 

Cd4Cre;Bptffl/fl mice displayed an activated phenotype, showing an increased proportion of 

CD44highCD62low effector T cells in the PLNs and spleens (Fig. 2C). In agreement with this 

observation, a larger portion of CD4+ T cells from Cd4Cre;Bptffl/fl mice produced 

interferon-γ (IFN-γ) but most pronounced was the profound elevation of IL-17 compared to 

their counterpart cells from Cd4Cre;Bptffl/wt mice (Fig. 2D). CD8+ T cells displayed 

activated phenotype (Fig. 2C) with highly elevated IFN-γ production in Cd4Cre;Bptffl/fl 

mice (Fig. 2D).

Treg cells are critical to suppress T cell activation in the peripheral. We found that the 

production of Treg cells was reduced in the thymus of Cd4Cre;Bptffl/fl mice (Fig. 1D). 

However, the distribution of Treg cells appeared normal in the pLNs and spleen of 

Cd4Cre;Bptffl/fl mice (Fig. 2E).

The T cell number in the periphery was greatly reduced, causing a lymphopenic 

environment in the Cd4Cre;Bptffl/fl mice. Such an environment may lead to aberrant T cell 

distributions (30). In order to investigate if the observed defect associated with BPTF 

deletion is due to cell-intrinsic effects, we generated mixed-bone marrow (BM) chimeras by 

reconstituting Rag1−/− mice with equal numbers of BM cells isolated from Cd4Cre;Bptffl/fl 

mice (CD45.2+) and Cd4Cre;Bptffl/wt mice (CD45.1+CD45.2+). Compared to co-existing 

Cd4Cre;Bptffl/wt T cells, the number of Cd4Cre;Bptffl/fl SP thymocytes was decreased (Fig. 

2F). Strikingly, BPTF deletion led to a complete absence of CD4+ and CD8+ T cells in the 

periphery (Fig. 2F). These findings suggest that, while BPTF contributes to the thymocyte 

development, it is absolutely required for the homeostasis of CD4+ and CD8+ T in the 

periphery. Indeed, further analysis revealed that Bptf alleles were incompletely deleted and 

substantial amounts of Bptf mRNA were detected in the periphery of CD4+ and CD8+ T 

cells isolated from Cd4Cre;Bptffl/fl mice (supplemental Fig. S2B and data was not shown), 

suggesting “escapee” T cells existed in the periphery of these mice.

Treg-specific deletion of BPTF leads to autoimmunity

We found the number of Foxp3-expressing thymic Treg cells was reduced in Cd4Cre;Bptffl/fl 

mice (Fig. 1) suggesting that BPTF is important for the thymic generation of Treg cells. This 

observation promoted us to ponder if BPTF plays a role in Treg cell function in the 

periphery. The failure of generating BPTF-deficient T cells in Cd4Cre;Bptffl/fl prevented us 

from analyzing Treg cells in these mice. To address this question, we generated Treg cell-

specific BPTF-deficient mice by crossing Bptffl/fl mice with Foxp3-EGFP-cre mice (31), 

hereafter referred to as FGC mice. FGC mice bear a BAC transgene expressing enhance 

green fluorescence protein (EGFP) and Cre recombinase under the control of Foxp3 

promoter. In FGC mice, EGFP expression reliably marks Foxp3-expressing Treg cells, and 

Cre-mediated gene deletion occurs specifically in Foxp3-expressing Treg cells 

(supplemental Fig. S3A). The distribution of T cells in the thymus, spleen and pLN appeared 

comparable between FGC:Bptffl/fl and FGC:Bptffl/wt mice (Fig. 3A and supplemental Fig. 

S3B). Nevertheless, peripheral non-Treg CD4+ and CD8+ T cells displayed activated 

phenotype (CD44highCD62low) (supplemental Fig. S3C and S3D) with elevated IFN-γ 
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production in the FGC:Bptffl/fl mice (Fig. 3B and 3C). Importantly, we found that 

FGC:Bptffl/fl mice developed an autoimmune syndrome by 5–7 months of age with 

lymphocytic infiltration into non-lymphoid organs, including the lung and kidney (Fig. 3D). 

The numbers of infiltrated T cells in the relative immune privilege organs including ovary 

was also significantly increased in FGC:Bptffl/fl mice (Fig. 3E) with elevated IFN-γ 
production (Fig. 3F). Therefore, Treg cell specific BPTF deletion led to aberrant T cell 

activation and autoimmune syndrome in mice.

BPTF is required for Treg cell homeostasis

The T cell activation and autoimmunity in FGC:Bptffl/fl mice suggested a defect in Treg cell 

population in these mice. Indeed, Foxp3-expressing (GFP+) Treg cell population was 

significant reduced in the spleen and PLNs of FGC:Bptffl/fl mice (Fig. 4A). Foxp3+ T cells 

could convert to Foxp3− (exFoxp3) T cells (32). To investigate if Treg cells down regulate 

Foxp3 expression in the absence of BPTF, we crossed FGC:Bptffl/fl mice with the ROSA26-

loxP-STOP-tdtomato reporter strain to obtain Foxp3 fate mapping mice (referred as 

FGC:Bptffl/fl:tdtomato mice). We found the percentages of ex-Foxp3 Treg cells increased in 

the pLN and spleen of FGC:Bptffl/fl:tdtomato mice when compared to those of 

FGC:Bptffl/wt:tdtomato mice (Fig. 4B and supplemental Fig. S3E). It suggests BPTF is 

required to maintain Foxp3 expression. While BPTF-deficient Foxp3+ Treg cells in 

FGC:Bptffl/fl mice expressed normal levels of PD-1, CTLA-4 and increase levels of CD25 

(Fig. 4C), they showed reduced suppressive activities (Fig. 4D). Taken together, Treg cell-

specific BPTF deletion led to unstable Foxp3 expression and impaired suppressive function 

of Treg cells.

The effect of BPTF deletion on Treg cells is cell intrinsic

To exclude the possibility that the effects of BPTF deletion in Treg cells were due to the cell-

extrinsic inflammatory environment observed in FGC:Bptffl/fl mice, we generated mixed-

bone marrow chimeras by adoptive transfer of equal number of wild-type 

(CD45.1+CD45.2+) and FGC:Bptffl/fl BM cells (CD45.2+) into lethally irradiated C57BL/6 

mice (CD45.1+). In the fully reconstituted mixed chimeras mice, the numbers of 

FGC:Bptffl/fl Treg cells was much less than those of FGC:Bptffl/wt Treg cells in the 

peripheral and the thymus of the chimeric mice (Fig. 5A and 5B). The non-Treg cells were 

not apparently activated in the reconstituted chimeric mice (supplemental Fig. S4). In 

agreement with this finding, IFN-γ production by CD4+ and CD8+ T cells was normal in 

reconstituted chimeric mice (Fig. 5C). These findings suggest that the activated phenotype 

of non-Treg cells in the FGC:Bptffl/fl mice was due to a defect in BPTF Treg cells, a 

phenotype that could be rescued by the presence of wild-type Treg cells. By analyzing the 

phenotypes of Treg cells in the reconstituted chimeric mice, we found that the CTLA-4 and 

PD-1 expression was slightly lower in BPTF deficient Treg cells than in wild-type Treg cells 

(Fig. 5D). These results therefore demonstrated that BPTF controls Treg cell function 

through a cell-intrinsic mechanism.
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DISCUSSION

Treg cells play a critical role in immune homeostasis and self-tolerance (33, 34). What 

factors control the development and maintenance of Treg cell has been under intensive 

investigation. The current study shows that BPTF, an ATP-dependent chromatin-remodeling 

factor, was required for the development and maintenance of Treg cells in the periphery. 

Lack of BPTF in Treg cells perturbed the homeostasis and functions of Treg cells and Foxp3 

expression, ultimately leading to aberrant immune activation and an autoimmune syndrome. 

Therefore, BPTF is central for self-tolerance and immune homeostasis by being required for 

stabilizing Treg function and Foxp3 expression.

Several studies suggested that BPTF is needed for the development of mesoderm, endoderm 

in early stage of mouse embryo. BPTF, like Brg-1, is required for the maturation of 

CD4/CD8 TCRβ+ thymocytes by using Lck-cre mediated deletion during DN stage of 

thymocyte development (27). These findings demonstrate that both BPTF and Brg-1 have 

critical and non-redundant function to control early thymocyte development. To study 

whether these factors are important for T cell function after DN stage, CD4-Cre mediated 

deletion can be used. Previous study has revealed that Brg-1 was largely dispensable for T 

cell function after DN stage (19), suggesting that chromatin remodel complex controls T cell 

function in a cell type specific manner. It is therefore an interesting question as whether 

BPTF is important for T cell function after DN stage. In the current study, by deleting BPTF 

starting from the late DN3/DN4 stage using CD4-Cre, we found that BPTF, unlike Brg-1, 

was important for late T cell development and essential for the peripheral maintenance of 

mature T cells. Therefore, BPTF and Brg-1 control T cell function in a non-overlapping, cell 

type specific fashion. This notion is further supported by the finding that, compared to Treg 

cell-specific Brg-1 deletion, BPTF deletion in the Treg cells led to much more severe Treg 

functional defect and autoimmune manifestation (19). In addition, we found that BPTF was 

critical for the Treg cell development in the thymus of Cd4Cre:Bptffl/fl mice. BPTF deletion 

post Foxp3 expression led to unstable Foxp3 expression in FGC:Bptffl/fl mice (Fig. 4B). 

These findings collectively argue that, chromatin remodeling complexes function in a cell 

type specific manner. The molecular and epigenetic mechanisms underlying such 

observations therefore warrant future investigation.

Previous studies have shown that Treg cells may lose Foxp3 expression and turn into 

‘exFoxp3’ cells (35–37). This can occur in inflammatory environment such as MOG-

induced EAE, SLE or diabetes (38–40). Here we found that BPTF is required for the 

stability of Foxp3 expression. BPTF deletion led to increased portion of exFoxp3 T cells. 

Foxp3 expression is epigenetically regulated by both histone and DNA epigenetic 

modifications (41). H3K4me3 has been associated with Foxp3 promoter and CNS(s) in Treg 

cells (42). BPTF contains a bromodomain-proximal PHD finger and is involved in the 

formation of protein complexes recognizing H3K4me3 (25, 43). In light of the current 

finding that BPTF is important for Foxp3 expression and Treg cell function, it is reasonable 

to believe that BPTF controls Treg cell function via an epigenetic mechanism, a notion to be 

validated in the future.
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Dysregulated function of chromatin remodeling complexes often leads to fatal diseases 

including autoimmune and cancers (44, 45). Interestingly, the defect of Treg cells in 

FGC:Bptffl/fl mice contributed to aberrant T cell activation and autoimmunity in adult mice. 

While T cells in the periphery of Cd4Cre:Bptffl/fl mice displayed an activated phenotype, it 

was likely due to a cell-extrinsic effect since substantial BPTF expression was detected in 

recovered peripheral T cells from Cd4Cre:Bptffl/fl mice were. Because we could not obtain 

BPTF deficient mature T cells from Cd4Cre:Bptffl/fl mice, we are not able to directly assess 

the function of BPTF deficient T cells. BPTF is required for MAPK and PI3K/AKT 

signaling and the survival of lung cancer cells (46). BPTF is also important for cell 

proliferation through interaction with c-Myc in fibroblasts and melanoma cells (47, 48). 

Since MAPK, PI3K/AKT and c-Myc dependent pathways can regulate T cell function (49–

51), it is plausible that one or more of these pathway(s) is perturbed in the absence of BPTF 

in T cells.

Our study demonstrates a critical role for BPTF in the homeostasis and function of T and 

Treg cells and for immune homeostasis and self-tolerance. It highlights a central function for 

chromatin-remodeling complexes in T cell function, underscoring a potential of treating 

immune diseases by targeting chromatin-remodeling complexes in T cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. T cell thymic development in Cd4Cre;Bptffl/fl mice
A. Cell numbers of total, CD4SP, and CD8SP cells in the thymus of Cd4Cre;Bptffl/wt and 

Cd4Cre;Bptffl/fl mice. Means ± SD of three mice are shown.

B. The distribution of various thymocyte populations in the thymus of Cd4Cre;Bptffl/wt and 

Cd4Cre;Bptffl/fl mice were analyzed by flow-cytometry. Results are representation of three 

experiments.

C. Flow-cytometry of CD44 and CD69 expression on CD4SP and CD8SP thymocytes. 

Results are representative of three experiments.

D. The expression of CD24 and TCRβ on CD4SP and CD8SP thymocytes detected by flow-

cytometry. Results are representative of three experiments.

E. Detection of Foxp3 expressing CD4SP thymocytes by flow-cytometry. Flow-cytometric 

results are representative of three experiments. Means ± SD of results from three mice are 

shown. NS, not significant; **P < 0.01.
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Fig. 2. BPTF is critical for T cell homeostasis in the periphery
A. CD4+ and CD8+ T cell population in pLN and spleen of Cd4Cre;Bptffl/wt and 

Cd4Cre;Bptffl/fl mice, assessed by flow-cytometry.

B. The comparison of the numbers of CD4+ T and CD8+ T cells recovered from 

Cd4Cre;Bptffl/wt and Cd4Cre;Bptffl/fl mice. Means ± SD of indicated T cell populations in 

three mice are shown.

C. The expression of CD44 and CD62L on CD4+ and CD8+ T cells was assessed by flow-

cytometry. Means ± SD of indicated T cell populations in three mice are shown.

D. IFN-γ and IL-17 cytokine production in CD4 and CD8 T cells was assessed by flow-

cytometry at 4hr after stimulation with PMA/ionomycin in the presence of BFA. Means ± 

SD of indicated T cell populations in three mice are shown.

E. Foxp3 expressing CD4+ Treg cells in the pLN and spleen were detected by flow-

cytometry. Means ± SD of indicated T cell populations in three mice are shown.

F. Mixed bone marrow chimera were created by transferring equal numbers of bone marrow 

cells from Cd4Cre;Bptffl/wt (CD45.1.2+) and Cd4Cre;Bptffl/fl (CD45.2.2+) mice into sub-

lethally irradiated Rag1−/− mice. 10 to 12 weeks after transfer, the distribution of cells with 

different genotypes in the recipient mice were determined by flow-cytometry. All the results 

of flow-cytometry are representative of at least three experiments.

NS, not significant; *P < 0.05; **P < 0.01.
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Fig. 3. Treg-specific deletion of BPTF leads to autoimmunity
A. CD4+ T and CD8+ T cells in pLN, spleen and thymus of FGC:Bptffl/wt mice were 

detected by flow-cytometry. Results are representative of at least three experiments. The cell 

numbers was also counted. Means ± SD of three mice are shown.

B and C. IFN-γ producing CD4 (B) and CD8 (C) T cells were detected by flow-cytometry 

after stimulated with PMA/ionomycin in the presence of BFA. Results are representative of 

three experiments. The percentages of IFN-γ producing CD4 T and CD8 T cells in 

FGC:Bptffl/wt and FGC:Bptffl/fl mice were compared. Means ± SD of three mice are shown.

D. Histological analysis of lymphocytic infiltration in the lung and kidney of indicated mice 

by H&E staining.

E. Lymphocytes in the ovary of FGC:Bptffl/wt and FGC:Bptffl/fl mice were isolated and 

CD4+ T and CD8+ T cells were detected by flow-cytometry. The numbers of infiltrated T 

cells were counted. Results are representative of at least three experiments. Means ± SD of 

three mice are shown.

F. IFN-γ producing CD4 and CD8 T cells in the ovary of FGC:Bptffl/fl mice were detected 

by flow-cytometry. Results are representative of three experiments. Means ± SD of three 

mice are shown.

NS, not significant; *P < 0.05; **P < 0.01.
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Fig. 4. BPTF is required for Treg cell homeostasis
A. The Foxp3-expressing (GFP+) CD4 T cells were detected in FGC:Bptffl/wt and 

FGC:Bptffl/fl mice were flow cytometry. The percentages and the numbers of GFP+ Treg 

cells was determined and compared. Means ± SD of three mice are shown.

B. The co-expression of GFP and dtomato in CD4 T cells isolated from FGC:Bptffl/wt:dto 

and FGC:Bptffl/fl:dto mice was assessed by flow-cytometry. The percentages of 

GFP−dtomato+ ex-Foxp3 Treg cells in CD4 T cells was determined and compared between 

FGC:Bptffl/wt:dto and FGC:Bptffl/fl:dto mice. Means ± SD of three mice are shown.

C. CD25, CTLA4 and PD-1 expression on the GFP+ Treg cells isolated from FGC:Bptffl/wt 

and FGC:Bptffl/fl mice were detected and compared by flow-cytometry.

D. GFP+ Treg cells sorted from FGC:Bptffl/wt (WT) and FGC:Bptffl/fl (BPTF-KO) mice 

were mixed with CFSE labeled, CD4+CD25−CD45RBhigh responder T cells (Tresp.) sorted 

from wild-type C57BL/6 mice at indicated ratios. The proliferation of Tresp. cells was 

determined by CFSE dilution assessed by flow-cytometry 72 hours after activation.

Results are representative of two experiments.

All the results of flow-cytometry are representative of at least three experiments unless 

stated otherwise.

*P < 0.05; **P < 0.01.
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Fig. 5. The effect of BPTF deletion on Treg cells is cell intrinsic
Mixed bone marrow chimera was created by transferring equal numbers of bone marrow 

cells from FGC:Bptffl/wt mice (CD45.1+CD45.2+) and FGC:Bptffl/fl mice (CD45.2+) mice 

into sub-lethally irradiated WT C57BL/6 mice (CD45.1+).

A and B. Foxp3+ (A) and GFP+ (B) Treg cells from different donors were detected by flow 

cytometry. The percentages of Foxp3+ Treg cells in CD4 T cells of different origins in the 

recipient mice were determined. Means ± SD of three mice are shown.

C. IFN-γ and IL-4 expressing CD4+ and CD8+ T cells were detected by flow-cytometry. 

The percentages of IFN-γ expressing CD4 and CD8 T cells were determined. Means ± SD 

of three mice are shown.

D. The expression of CD25, CTLA4 and PD-1 on Foxp3+ Treg cells of different origins was 

assessed by flow-cytometry and compared.

All the flow-cytometry results are representative of at three experiments.

NS, not significant; *P < 0.05; **P < 0.01.
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