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Abstract

Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local 

oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of 

resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging 

(EPRI) is capable of imaging tissue pO2 in vivo, with high pO2 resolution and 1 mm spatial 

resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which 

makes it difficult to investigate the oxygen changes, e.g. transient hypoxia. Here we describe a new 

imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 

frames per minute, fast enough to image transient hypoxia at the “speed limit” of observed pO2 

change. The method centers on a low-rank tensor model that decouples the tradeoff between 

imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We 

present a specialized sparse sampling strategy and image reconstruction algorithm for use with this 

model. The quality and utility of the method is demonstrated in simulations and in vivo 
experiments in tumor bearing mice.
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INTRODUCTION

The importance of the oxygenation status of tumors has been known for decades [1]. Tumors 

with chronic hypoxia, or chronically low oxygen concentration (pO2), show greater radiation 

resistance [2, 3]. This has been correlated with radiotherapy treatment failure in humans [4], 

leading to immense interest in methods for measuring and a fortiori imaging pO2 deep in 

tissues [5].

Chronic hypoxia was the first form of hypoxia demonstrated in tumors [6]. For many years, 

this was thought to be the only type of hypoxia present in tumors. Brown et al. found that 

perfusion limited or transient hypoxia may be present as well [7–10]. However, no definitive 

conclusions have been made concerning the relative biologic importance of transient 

hypoxia relative to those of chronic hypoxia. Furthermore, lack of data correlating a 

quantitative measure of transient hypoxia in vivo with treatment outcome currently 

precludes such a comparison [11]. If there is significant change in the oxygenation of tumor 

subregions, this would argue strongly against radiation therapy that is focused on targeting 

radiation-resistant hypoxic areas and avoiding radiation sensitive normoxic areas based on 

static pO2 images, as oxygen becomes a moving target.

Electron paramagnetic resonance imaging (EPRI) is a robust method for imaging tissue pO2 

in vivo. EPRI produces noninvasive 3D images of absolute pO2 in vivo, highly-resolved, 

both spatially (~1 mm3 voxels) and in pO2 (1–3 torr) [12–16]. The EPR relaxation constants 

T1 and T2 are both inversely proportional to local pO2; by collecting multiple images with 

different T1- or T2-weightings, the relaxation constant (and therefore pO2) can be quantified 

[17, 18]. T1 is an especially attractive contrast mechanism, as it reduces spin probe 

concentration–dependent self-broadening, which confounds T2 based aqueous pO2 

measurements and images. T1-based pO2 EPRI in small animals can be obtained in 10 

minutes, useful for studying chronic hypoxia. To study transient hypoxia, dynamic EPRI 

must be accelerated beyond its current 10 minute time-scale, without sacrificing accuracy.

Different approaches have been undertaken to accelerate EPRI. A straightforward approach 

of trading spatial resolution for imaging speed was used by Yasui et al [19]. Subramanian et 

al. accelerated data acquisition using rotating gradients [20]. Redler et al. traded signal-to-

noise ratio (SNR) for imaging speed (1.5 min temporal resolution for T1-based pO2 
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imaging), and used principal component analysis as an intelligent denoising technique to 

observe pO2 fluctuations in a mouse tumor [21].

Similar imaging speed challenges have been overcome in the field of MRI through the use of 

sparse sampling. These methods leverage natural properties of images (such as sparsity [22, 

23], low-rankness/partial separability [24–26], or both [27, 28]) to reduce sampling 

requirements, resulting in high acceleration factors. EPR images exhibit many of the same 

natural properties—for example, partial separability has been exploited for signal denoising 

[21], and sparsity has been exploited to accelerate static EPRI [29]—but the benefits of 

sparse sampling for dynamic EPR oxygen imaging have yet to be explored.

In this paper, we propose a sparse sampling method exploiting low-rank tensor properties 

[26, 30– 32] of EPR oxygen images. This approach specifically exploits both the partial 

separability of space and time in EPR oxygen images (i.e., the correlation between images at 

different times) [21] and the partial separability of space and sequence parameters (i.e., the 

correlation between images with different contrast weightings) [33, 34]. In leveraging these 

properties, 3D in vivo EPR pO2 imaging becomes possible at a 30-second time-scale, 

opening the door for non-invasive studies investigating transient hypoxia to eventually help 

determine its biological implications.

MATERIALS AND METHODS

Image Model

In order to perform dynamic pO2 mapping, we first obtain dynamic images with multiple 

quantitative contrast weightings [21]. Multiple pO2 measurement techniques are available. 

One example is T1-contrast imaging, which uses a delay after an inversion preparation pulse 

[18]. In this case, to perform multi-contrast dynamic imaging is to measure ρ(r, t, TI), a 

multidimensional function of spatial location r, time t, and time after an inversion pulse TI. 

This multidimensional image has prohibitively high data acquisition requirements, leading 

to an unsatisfactory balance of the direct tradeoffs between signal-to-noise ratio (SNR), 

spatial coverage/resolution, imaging speed, and the number of inversion time measurements.

In order to reduce data acquisition requirements, we propose to leverage the correlation of 

EPR signals across: a) space, b) time, and c) contrast weightings. First, inter- and intra-tissue 

signal correlation ensures that the family of (t, TI)-signals at Nr different voxels, 

, is linearly dependent, and can therefore be expressed as linear 

combinations of L < Nr template signals  with combination weights 

. L is small in many practical imaging scenarios, such as when there are only a 

few tissue types being imaged or when multiple tissues experience oxygen changes with 

similar timings. Second, the similarity of images across time ensures that the family of 

multi-contrast images at Nt different times, , is also linearly dependent, 

expressible as linear combinations of M < Nt template multi-contrast images 

 with combination weights . M can be particularly small when 

the morphology is static over time, e.g., when image dynamics arise from oxygen changes 
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rather than from motion, although this is not a requirement. Finally, the similarity of images 

with different contrast weightings ensures that the family of dynamic images with NI 

different contrast weightings, , is linearly dependent and expressible as 

linear combinations of N < NI template dynamic images  with combination 

weights . EPR physics dictates that inversion recovery takes an exponential 

form; this common recovery shape inherently keeps N small by ensuring that recovery 

curves are correlated across many tissue types and oxygen states. Note that the “combination 

weights” , and  can also be seen as template functions 

of space, time, and inversion time, respectively.

We exploit the correlation across each dimension by modeling ρ(r, t, TI) as a low-rank 

tensor:

(1)

or equivalently,

(2)

where

(3)

The low-rank tensor model is named as such because the discrete elements of ρ(r, t, TI) can 

be shaped as a 3-dimensional array (i.e., as a 3-way tensor) with r, t, and TI indexed along 

the first through third dimensions, respectively. The rank of this tensor is described by the 

model orders L, M, and N, so the tensor is low-rank when L, M, and N are smaller than the 

number of voxels, time points, and contrast weightings, respectively (which follows from the 

previously described properties of linear dependence).

With the proposed image model, it becomes unnecessary to collect a full set of image 

projections for each contrast weighting at each point in time. Data acquisition can instead be 

accelerated, performing image reconstruction from sparsely sampled projections. This is 

possible because the low-rank tensor model reduces the degrees of freedom in ρ(r, t, TI), 

thereby reducing the number of measured data points required to determine the image. 

Furthermore, by decomposing the image into template functions , 

and  and the small core tensor , this image model decouples 
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the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion 

time measurements. Consider the example of adding a time point t0 to the image function: 

without the model, this requires determination of the NrNI new unknowns in ρ(r, t0, TI); 

with the proposed model, it only requires determination of the M new unknowns in 

 (assuming the images at t0 are not so uncorrelated to images at the other time 

points as to require a model order increase). This ability to construct ρ(r, t, TI) by separately 

determining each individual template function and the core tensor motivates a specific data 

acquisition strategy designed to exploit the decoupling of conventional tradeoffs.

Data Acquisition

Sampling Strategy—Specifically focusing on the model as formed in Eq. (2), we can see 

that ρ(r, t, TI) is constructed from two sets of functions  and . 

Therefore, we perform interleaved acquisition of two data sets: one appropriate for 

determining  and the other appropriate for determining . The first 

set of data—the navigator data—are auxiliary data comprising only a few projection angles 

cycled through at a high temporal sampling rate; these data are used to determine 

. The second data set—the imaging data—comprises the full set of projections, 

satisfying spatial resolution and field-of-view (FOV) requirements; these data, in 

conjunction with , will be used to recover . This sampling strategy 

and the model in Eq. (2) take advantage of the decoupled resolution requirements provided 

by low-rank tensor imaging: the reconstructed dynamic EPR image has the frame rate and 

TI-coverage of the navigator data but the spatial resolution/FOV of the imaging data.

Imager and acquisition parameters—A pulse 250 MHz imager [13] was enhanced 

with a passive transmit-receive switch [35] and pulse modulator enabling π/2- and π- pulses 

of equal duration/bandwidth [36]. The imager was controlled with SpecMan4EPR v. 2.1 

(FeMi Instruments, Chicago, IL) [37]. An inversion recovery electron spin echo (IRESE) 

pulse sequence with π/2- and π-pulses of 55 ns and 16 step phase CYCLOPS was used [38], 

as illustrated in Fig. 1. The system frequency band-pass function for each acquisition 

technique was measured using zero gradient sample signal amplitude at 50 spanning B0 

fields [13]. Projections were normalized using this function.

Seven images with TI values from 430 ns to 5.5 µs were acquired. For accurate R1 

determination, an eighth image recorded at infinite recovery time TI = ∞ was equated to an 

image recorded without an inversion pulse. For voxel intensity fitting to an exponential 

recovery function, a TI = 36 µs was assigned to this image.

The gradient sequence used to generate the results in this paper was chosen according to an 

equal solid angle scheme with 18 azimuthal and polar angles and 7.5 mT/m gradient. 

Imaging projections were ordered using maximally spaced projection sequencing (MSPS) 

[39]; the navigator projections were chosen as the first 5 projections in the MSPS sequence. 

Acquisition of imaging and navigator projections was interleaved as shown in Fig. 2. In 

addition, baseline readouts were acquired every 4 projections to suppress trace artifacts, 

resulting in an overall sampling pattern of 520 projections acquired over the course of 23 
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minutes. When capturing oxygen oscillation over longer periods of time, this 23-minute 

imaging protocol was repeated multiple times without interscan delay.

Animal and spin probe—FSa fibrosarcomas were grown on the legs of 6–8-week-old 

C3H mice (HSD, Indianapolis, IN). The anesthetized animal was immobilized with a partial 

circumference vinyl polysiloxane cast (GC Dental Products, Kasugai, Japan) [40]. OX063 

was injected IV 0.56 mmol/kg followed by infusion at 0.63 mmol/kg/hr. Tumor was defined 

by T2 enhancement in RARE MRI registered with EPR images [15]. The spin probe used 

was the partially deuterated trityl OX063 radical methyl-tris[8-carboxy-2,2,6,6-tetrakis[2-

hydroxyethyl]benzo[1,2-d:4,5-d’]bis[1,3]dithiol-4-yl]-trisodium salt.

Animal experiments followed USPHS policy, and were approved by the Institutional Animal 

Care and Use Committee.

Image Reconstruction

Image reconstruction follows a two-step process wherein  is extracted from the 

navigator data and then fit to the imaging data to recover .

To define , we extract  and  from the navigator data as 

follows. The (k, t, TI)-space navigator data are reshaped into two Casorati matrices: C1, the 

columns of which index t, and the rows of which index the available (k, TI)-pairings; and 

C2, the columns of which index TI, and the rows of which index the available (k, t)-pairings. 

Singular value decomposition (SVD) or principal component analysis (PCA) of these 

Casorati matrices reveals the underlying template functions: the M most significant right 

singular vectors of C1 are the template functions , and the N most significant 

right singular vectors of C2 are the template functions . M and N can be chosen 

from the singular value curves of C1 and C2, respectively.

Equation (3) defines  in terms of  and  (both of which 

are known from the navigator data) as well as the model order L and the core tensor 

. Without knowledge of L or the core tensor, we can still define L̂ = MN 
functions ψ̂ℓ(t, TI) = ψ̂

m,n(t, TI) = νm(t)wn(TI), where ℓ = (m − 1) N + n indexes the 

Cartesian set of (m, n)-pairings. The resulting functions  span a tensor-product 

subspace containing the subspace spanned by  —in other words, any linear 

combination of the unknown  is also a linear combination of the known 

 —and are therefore fully capable of representing the desired image according 

to

(4)
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In order to recover  from the imaging data, we fit the known  to the 

measured imaging projections:

(5)

where d is the vector of measured data (already inverse-Fourier-transformed from k-space to 

the projection space), ℛ is the Radon transform, and Ω is the sparse sampling operator 

(which retains only those projections that were actually measured at each time point). The 

final term Φ is an optional regularization penalty. No regularization was used to generate the 

results in this paper, but a carefully chosen Φ could be used to enforce additional 

complementary image models. Numerous optimization algorithms are available to solve Eq. 

(5); for the purposes of this paper, we solved the unregularized quadratic optimization 

problem using the conjugate gradient method.

After determining  and , we obtain ρ(r, t, TI) according to Eq. (4). 

Amplitude and T1 values were fit from the recovered image; voxels with amplitude less than 

15% maximum were eliminated (thresholded) from display. Image reconstruction and 

analysis were both performed on a workstation with dual hex-core 3.47 GHz Intel Xeon 

X5690 CPUs and 96 GB of RAM using in-house software written using MATLAB 

(Mathworks, Inc., Natick, MA).

RESULTS

Simulations

To numerically validate the proposed method, we employed an analytical phantom featuring 

dynamic pO2 changes. The 3D phantom depicts seven spheres contained within a larger 

sphere; the smaller spheres have the same initial pO2, with one sphere experiencing an 

instantaneous change in pO2 halfway through the simulation. We compared two imaging 

methods: 1) the conventional sliding window method (zero-order temporal interpolation), 

wherein each image is reconstructed from the 80 projections nearest in time; and 2) the 

proposed method, wherein images are reconstructed from the full set of 208 imaging 

projections using the L̂ = 4, M = 2, N = 2 temporal/inversion-recovery tensor-product 

subspace estimated from navigator data.

Figure 3 shows slices from pO2 maps at four time points, as well as the pO2 over time at a 

voxel in the region of interest. Images and pO2 curves are shown from: a) the original 

analytical phantom; b) the sliding window reconstruction; and c) our accelerated imaging 

scheme using low-rank tensors. The first and last 40 frames of the sliding window 

reconstruction are invalid due to insufficient data to fit the window length, and are not 

depicted in the pO2 time curve. The proposed method depicts the full experiment length.
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In vivo experiments

In vivo pO2 fluctuations were induced in the mouse by alternating between inhalation of two 

gases with different fraction of inspired oxygen (FiO2). The normal-oxygen supply had FiO2 

= 21%; the high-oxygen supply had FiO2 = 95% and FiCO2 = 5%. Gas intake was toggled 

between the normal- and high-oxygen supplies at irregular intervals unknown to the imaging 

method. Inhaling of the O2 – CO2 mixture enhances the blood flow and increases O2 supply 

to tissues [41]. Reconstruction and analysis were performed as previously described, using 

model order parameters L̂ = 6, M = 3, and N = 2 (chosen from the singular value curves of 

C1 and C2).

Figure 4 shows results from a 23-minute experiment, depicting: a) slices from 3D pO2 maps 

during low-oxygen intake (t = 2.7 min) and high-oxygen intake (t = 8.2 min), with dashed 

lines over the axial slices denoting approximate isoparametric curves at pO2 = 20; and b) the 

pO2 variation over time at a voxel in the tumor periphery. Image reconstruction according to 

Eq. (5) took 38 minutes to complete 20 conjugate gradient iterations. Figure 5 shows results 

from a 115-minute experiment (i.e., by running the imaging protocol five times), depicting: 

a) slices from 3D pO2 maps in a high-oxygen state (t = 79.4 min) and a low-oxygen state (t 
= 105.1 min), and b) the pO2 variation over time at voxels in three tissues: muscle, the tumor 

periphery, and the tumor core. Image reconstruction according to Eq. (5) took 189 minutes 

to complete 20 conjugate gradient iterations. The frame rate of both reconstructions is 2 

frames/min (i.e., a 30-second time-scale), matching the temporal sampling rate of the 

navigator projections.

DISCUSSION

Figure 3 demonstrates the image quality achievable by the different imaging methods. The 

sliding window results exhibit both strong streaking artifacts due to incomplete sampling 

and temporal blurring. Any attempt to fix one flaw by adjusting the window length would 

worsen the other: decreasing the window length would result in additional streaking 

artifacts, whereas increasing the window length would result in additional temporal blurring. 

In contrast, the proposed method is able to represent both the spatial distribution and 

temporal variation of pO2 with greatly improved fidelity, having leveraged the low-rank 

tensor model to decouple the tradeoff between temporal blurring and streaking artifacts. 

Both methods underestimate the highest pO2 value to a similar degree, but only the proposed 

method clearly identifies the spatiotemporal locations of the change in pO2.

Figure 4 demonstrates the ability of the proposed imaging method to capture the pO2 

changes induced by the FiO2 toggling experiment. The region of low pO2 clearly visualizes 

the tumor, and the 30-second time-scale enables observation of the relationship between 

FiO2 and pO2, with pO2 changes occuring within minutes of changes in FiO2. The change in 

the size and location of the isoparametric curve at pO2 = 20 torr (i.e., the estimated curve 

separating voxels with pO2 below 20 torr from voxels with pO2 above 20 torr) in Fig. 4(a) 

and the pO2 curve in Fig. 4(c) further demonstrate the change in pO2.

Figure 5 demonstrates the ability of our method to characterize pO2 dynamics. For example, 

the experiment reveals that pO2 level alone is not always enough to differentiate the 
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chronically hypoxic and possibly necrotic core of the tumor from the tumor periphery: in the 

low-oxygen state, the pO2 difference between the tumor periphery and core are sometimes 

too small to detect. However, the pO2 in the tumor periphery responds to FiO2 fluctuations, 

whereas the tumor core does not. The muscle has much higher pO2 than either tumor region, 

which is especially apparent in the high-oxygen state.

The proposed method shows clear promise for imaging rapid oxygen changes in vivo, and 

warrants further exploration. A thorough experimental validation has not yet been 

performed, and would be a valuable future endeavor. It would also be useful to investigate 

other sources of pO2 fluctuations, e.g., by performing resting-state imaging to measure 

spontaneous fluctuations in pO2 rather than driven fluctuations. This would also provide an 

opportunity to evaluate the relationship between fluctuation source and model orders, i.e., to 

determine whether or not spontaneous fluctuations are as correlated as driven fluctuations.

Additional opportunities for technical development also remain, for example an improved 

scheme for selecting  (which would allow construction of a stronger 

image model with even fewer degrees of freedom). Another area of technical development 

involves selection of the regularization term in Eq. (5), which was not explored in this work. 

This regularization term could be used to enforce additional complementary image 

properties, for example in the form of a weighted ℓ2 penalty term or sparsity-promoting ℓ1 

penalty term. This would provide an avenue for exploiting additional signal properties [28] 

or for controlling model order [32, 42], at the expense of additional computational time.

CONCLUSIONS

We have described a new imaging scheme for fast oxygen imaging with EPRI. The proposed 

method is based on a low-rank tensor model that dictates a strategy for sparsely sampling (k, 

t, TI)-space, as well as a particular image reconstruction algorithm. We have demonstrated 

the effectiveness of the method in simulations and in vivo experiments in tumor bearing 

mice with forced fluctuations in pO2. Braun et al. [43] have demonstrated in a window 

chamber tumor model that oxygenation the frequency spectrum of tumor oxygenation 

changes diminishes at frequency below 1 Hz. The present imaging paradigm creates 

opportunities for noninvasively studying transient hypoxia and, in full three dimensional 

tumor models, assessing the extent to which tumor oxygenation changes. As highly 

localized animal radiation becomes available [44, 45], this will provide the first possibility 

for determining the clinical relevance of transient oxygen changes in mammalian tumors.
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Highlights

1. Accelerated EPR imaging method using a low-rank tensor model that 

dictates a specialized approach to both data acquisition and imaging 

reconstruction.

2. The method enables 3D oxygen imaging at a frame rate of 2 frames per 

minute.

3. In vivo mouse images depict relationship between FiO2 and pO2 in 

both muscle and tumor periphery, but constant pO2 in tumor core.
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Figure 1. 
Illustration of the IRESE pulse sequence used for data acquisition.
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Figure 2. 
Simplified 2D illustration of the sampling strategy used for data acquisition. The same 

navigator projections are acquired in each of the T frames, whereas the imaging projections 

change from frame-to-frame.
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Figure 3. 
Comparison of pO2 maps and variation over time for (a) the analytical phantom, and for 

reconstructions using (b) conventional sliding window imaging and (c) the proposed low-

rank tensor imaging method. pO2 variation over time is shown for voxels in the dynamic 

sphere (red curve) and in the background sphere (black curve). The proposed method has 

greatly improved spatiotemporal fidelity, exhibiting reduced streaking artifacts and reduced 

temporal blurring.
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Figure 4. 
(a) pO2 maps at two time points, (b) FiO2 inhaled by the mouse, and (c) variation over time 

at a voxel in the tumor periphery. The proposed method is capable of imaging at 2 frames/

min, enabling detection of a clear, quick response of pO2 to changes in FiO2.
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Figure 5. 
(a) pO2 maps at two time points and (b) variation over time at voxels of different tissue types 

(indicated by the colored arrows). Difference in pO2 variations are clear in different parts of 

the tumor, allowing differentiation of the chronically hypoxic core of the tumor from the 

tumor periphery with higher vascular access.
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