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Making a decision involves computations across distributed cortical
and subcortical networks. How such distributed processing is
performed remains unclear. We test how the encoding of choice
in a key decision-making node, the posterior parietal cortex (PPC),
depends on the temporal structure of the surrounding population
activity. We recorded spiking and local field potential (LFP) activity
in the PPC while two rhesus macaques performed a decision-making
task. We quantified the mutual information that neurons carried
about an upcoming choice and its dependence on LFP activity. The
spiking of PPC neurons was correlated with LFP phases at three
distinct time scales in the theta, beta, and gamma frequency bands.
Importantly, activity at these time scales encoded upcoming
decisions differently. Choice information contained in neural firing
varied with the phase of beta and gamma activity. For gamma
activity, maximum choice information occurred at the same phase as
the maximum spike count. However, for beta activity, choice
information and spike count were greatest at different phases. In
contrast, theta activity did not modulate the encoding properties of
PPC units directly but was correlated with beta and gamma activity
through cross-frequency coupling. We propose that the relative
timing of local spiking and choice information reveals temporal
reference frames for computations in either local or large-scale
decision networks. Differences between the timing of task infor-
mation and activity patterns may be a general signature of distrib-
uted processing across large-scale networks.
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The posterior parietal cortex (PPC) integrates sensory signals
for impending actions. Firing rates of neurons in the PPC

encode movement intention and the temporal evolution of move-
ment choices (1–13) as well as decision variables such as expected
rewards, the subjective desirability during reward-guided decisions
(14–18), and the certainty in perceptual decisions (19). Decisions
are made within a network that extends across many regions of the
brain (20–25), so efficient and flexible mechanisms are required to
enable distributed computations. Dynamic and frequency-specific
correlations in activity between brain areas are ubiquitous and offer
potential physiological mechanisms supporting distributed compu-
tations in decision networks (13, 21, 26–34). We hypothesize that
the encoding of decisions in the PPC should depend on the tem-
poral structure present in neuronal activity. Previous studies have
shown that coherently active ensembles of cells in the PPC predict
reaction times (9) and movement choices (13, 21) better than
neurons without coherent dynamics. However, whether and how
the coding of decisions depends on the temporally structured firing
of PPC neurons remains unknown. We examined temporal struc-
ture in the encoding of look-reach decisions by PPC neurons.

Results
We analyzed the activity of 149 units [97 units (31 single units
and 66 multiunits) for monkey C and 52 units (14 single units and
38 multiunits) for monkey R] and 186 simultaneously recorded
local field potentials (LFP) (116 LFPs in monkey C and 70 LFPs
in monkey R, one or two LFP electrodes per unit) from nearby
(within ∼2 mm) electrodes. We first established the presence of

firing-rate encoding of choice and the temporal structure of the
neuronal activity in the PPC (11, 32, 35) before testing whether
and how decision coding varies with the temporal structure of
neuronal activity.

PPC Neurons Encode Upcoming Movement Choices. We recorded neu-
ronal activity while monkeys performed reward-guided look-and-
reach decisions. At the start of each trial, in the baseline epoch, the
monkeys maintained touch and fixation on a central target. Then, in
the choice epoch, they were presented with two alternatives, a circle
and a triangle, and had to choose one with a combined look-and-
reach movement (Fig. 1A). We presented targets in two locations,
randomly interleaved trial by trial. Both shapes were associated with
changing reward magnitudes that presented a dynamic and chal-
lenging reward environment for the animals (Fig. S1). Each monkey
reliably allocated its choices according to the shapes’ relative reward
magnitudes (Fig. 1B). As expected, the firing rate of PPC neurons
robustly encoded the upcoming movement choice. After choice
target onset, units exhibited a strong transient increase in the firing
rate regardless of the upcoming movement choice (Fig. 1C). Firing
rates separated depending on the movement choice. We quantified
the information about upcoming movements in the firing rate by
estimating the mutual information (MI) between the movement
choice and the firing rate (Fig. 1D). A total of 101 units (68%; 68
units for monkey C and 33 units for monkey R) exhibited significant
choice-MI in the choice epoch (200–1,000 ms after choice target
onset) (permutation tests, P < 0.05).

Decision-Related Activity Across Time Scales. We next assessed the
temporal structure of PPC activity by estimating the spike-field
coherence (SFC) and LFP power spectra. Overall 127 units (85%;
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84 units for monkey C and 43 units for monkey R) showed signif-
icant SFC with the nearby LFP during the baseline epoch (the
500 ms preceding the target onset), and 119 units (79%; 78 units for
monkey C and 41 units for monkey R) showed significant SFC
during the choice epoch (200–700 ms after target onset). We found
prominent SFC with a peak in the beta-frequency range (12–30 Hz)
[permutation tests, familywise error probability (PFWER) < 0.05]
(Fig. 2 A and B). Beta activity varied with task epoch. SFC and
power (Fig. 2A, Inset) decreased significantly during the choice
epoch compared with the baseline epoch [permutation tests, false-
discovery rate probability (PFDR) < 0.05] (Fig. 2A). In total 118 units
[33 single units (73%) and 85 multiunits (82%)] were beta coherent
during the baseline epoch, and 95 units [23 single units (51%) and
72 multiunits (85%)] were beta coherent during the choice epoch.
SFC also exhibited a peak in the theta-frequency range (2–8 Hz)

(permutation tests, PFWER < 0.05) (Fig. 2 A and B). Theta SFC and
LFP power did not differ between baseline and choice epochs
(permutation tests, PFDR > 0.05) (Fig. 2A). We found that 102 units
[22 single units (49%) and 80 multiunits (77%)] were theta coherent
during the baseline epoch, and 98 units [20 single units (44%) and
78 multiunits (75%)] were theta coherent during the choice epoch.
Last, the activity in the gamma range (40–60 Hz) varied after the
onset of the choice targets. Gamma-band SFC, but, interestingly, not
LFP power, increased significantly during the choice epoch (per-
mutation tests, PFDR < 0.05) (Fig. 2A). Extending the analysis to
higher frequencies revealed no additional effects (Fig. S2A). Over-
all 45 units [11 single units (24%) and 34 multiunits (33%)] were

gamma coherent during the touch-and-fixation epoch, and 48 units
[11 single units (24%) and 37 multiunits (36%)] were gamma co-
herent during the choice epoch.
Given the presence of activity at three distinct time scales, we

wondered whether the activities co-occurred more often than
would be expected by chance during the choice period. We found
that 79 units [17 single units (38%) and 62 multiunits (60%)] were
coherent both in the theta and beta ranges (Fisher’s exact test,
PFWER = 2.27 × 10−8), 40 units [eight single units (18%), 32 mul-
tiunits (31%)] were coherent in the theta and gamma ranges
(Fisher’s exact test, PFWER = 0.0052), and 42 units [10 single units
(22%) and 32 multiunits (31%)] were coherent in the beta and
gamma ranges (Fisher’s exact test, PFWER = 6.53 × 10−5). Thus, the
units in the PPC often displayed temporal structure across multiple
time scales.
We also examined whether the observed temporal structure

differed between the lateral and medial banks of the intraparietal
sulcus (IPS). We found no significant difference (PFDR > 0.05)
(Fig. S2 C and D). However, the distance between the electrode
tips of the recording pairs influenced the SFC. Electrodes usually
were separated from each other by about 2 mm during the re-
cordings. However, when comparing the SFC for the half of the
recordings with electrode tips near each other (median separation
of 1.07 mm) and the half of the recordings with far electrode tips
farther apart (median separation of 2.86 mm), we found that
higher-frequency SFC (>20 Hz), particularly including the gamma
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Fig. 1. Neurons in the PPC encode upcoming movement choices. (A) Events
during the behavioral task. At the beginning of each trial the animals maintained
central touch-and-fixation for 500–800 ms. Two choice targets (a diametrically
opposed circle and triangle) appeared. Either shape could appear on either side
andwere informative about average rewardmagnitudes that remained stable for
50–60 trials before changing to new average magnitudes. After maintaining
central touch-and-fixation for another 1,000–1,500 ms, the central stimuli turned
off, instructing the animals to perform a combined reach-and-saccade movement
to one shape. The animals were free to choose the target shape on each trial.
(B) Fitted psychometric curves for monkey C and monkey R are shown in black
and gray, respectively. (C) Firing rate dynamics for trials into (black) and out of
(gray) the response field of units with significant choice-MI. Lines and shadings
show the means and their 95% confidence interval, respectively. (D) MI time
courses across all recorded units. The gray line and shading show the average raw
MI and its 95% confidence interval. The black line shows the percent of units
exhibiting significant MI in a sliding 100-ms window. S
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Fig. 2. Temporal structure of activity in the PPC. (A) Spike-field coherence
during the baseline (500 ms before target onset, gray) and choice (200–700 ms
after target onset, black) trial epochs. For comparison we chose equal time
windows for the two epochs and avoided the visual onset transients of PPC
activity in the first 200 ms after target onset. (Inset) The signal power at the LFP-
recording electrodes during the same trial epochs. Shadings show 95% confi-
dence intervals. Black bars near the x axis mark significant differences between
the two trial epochs (FDR corrected, q < 0.05). (B) Percent of coherent units across
frequencies for the two trial epochs. Background shadings schematically depict
theta- (2–8 Hz), beta- (12–30 Hz), and gamma- (40–60 Hz) frequency ranges of
interest used to average frequency bins. For the preferred SFC phases, see
C. (C) Beta- and gamma- frequency phases during the baseline epoch for all
coherent units. Data depict the circular average across all significant frequency
bins and units in the theta- (2–8 Hz), beta- (12–30 Hz), and gamma- (40–60 Hz)
frequency ranges. Lines indicate the 95% confidence interval.
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activity, was stronger for electrode tips that were closer to each
other (PFDR < 0.05) (Fig. S2 E and F). Thus, gamma activity
appeared to be more local than either theta or beta activity.
Examining the preferred phases of the SFC, we observed clus-

tering around the downswing and trough of the LFP activity (Fig.
2C). We found significant phase concentrations (Rayleigh tests, all
PFWER < 0.05), during the baseline epoch that remained stable
during the choice epoch. Phase concentrations did not differ sig-
nificantly between epochs for all frequency ranges (Watson–
Williams tests between epochs for all units with significant SFC
during both epochs, all P > 0.05). Thus, PPC spiking contains tem-
poral structure at three time scales—theta, beta, and gamma—that
respond differently to choice. During choice, theta activity remained
constant, beta activity decreased, and gamma activity increased.

Choice Information Covaries with Beta and Gamma Activity. The
temporal structure in PPC spiking suggests that neural encoding
also may depend on the phase of the activity. We therefore
tested whether choice-MI is modulated by LFP phase at each
time scale. We defined eight different LFP phase bins and cal-
culated how much choice-MI varies across the different bins
(Fig. 3A). We analyzed the choice epoch 200–1,000 ms after
choice target onset and included all units that exhibited signifi-
cant SFC and significant choice-MI during the choice epoch [79
units (53%); 54 units for monkey C and 25 units for monkey R).
The period of 200–1,000 ms covered the choice epoch, avoiding
visual onset transients present in the first 200 ms of PPC activity.
Choice-MI varied significantly with LFP phases in the beta- and
gamma-frequency ranges (permutation tests, PFWER < 0.05) (Fig.
3A) but not with theta phases. Repeating the analysis based on
modulation entropy, which makes fewer distributional assumptions,
yielded similar results (SI Materials and Methods and Fig. S3B). The
information that PPC units carried in their firing rates varied along

phases in beta and gamma frequencies. To understand better how
the beta and gamma phases affected spiking and choice-MI, we next
examined the degree to which each measure depended on LFP
phase.

Beta Activity Modulates Information and Spiking Separately. We
compared the distributions of spike counts and choice-MI
according to beta and gamma activity in greater detail. To do so,
we averaged the phase histograms of spike counts and choice-MI
across the frequency bins with significantly modulated choice-MI
within each frequency range (Fig. 3 B–G). In the beta-frequency
band, the peak-to-trough modulation of spike counts was 13.6%,
corresponding to a modulation in firing rate by about 6.6 spikes/s
(Fig. 3B). Spiking was distributed symmetrically about the spike-
preferred beta-phase with no significant differences in the
amount of spiking between the bins before and after the spike-
preferred beta-phase (permutation test, P = 0.99). Measuring the
spike counts for evenly spaced beta-activity phase bins allowed us
to study the temporal concentration (trigonometric moment) of
spiking in great detail (see radial black lines in Fig. 3 B–F). The
moment of the beta spike-count histogram was indistinguishable
from the average spike-preferred beta phase during the analysis
epoch, further indicating the symmetry of the distribution of spikes
with beta-frequency phase.
Choice-MI showed a peak-to-trough modulation by the beta

activity of 15.3%. Unlike the spike counts, the choice-MI was
asymmetric around the spike-preferred beta phase. The moment
of the choice-MI histogram differed significantly from the moment
of the beta spike-count histogram (permutation test, P < 10−4)
with MI peaking during the downswing of the spiking cycle (Fig.
3C). In other words, spike count and choice-MI peaked at dif-
ferent times during the beta activity. In line with this asymmetry,
choice-MI was significantly elevated above the average choice-MI
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for phase bins during the downswing of the beta activity and was
significantly decreased for phase bins in the upswing of the beta
activity (Fig. 3C, permutation tests, P < 0.05). To assess directly
whether the beta activity varied with the spike counts and encoding
properties of PPC neurons independently, we repeated the analysis
after estimating an orthogonal-MI. To estimate the orthogonal-MI,
we removed the spike-count histogram’s prediction about the shape
of the choice-MI histogram for each unit through regression (Fig.
3D and Fig. S4). The orthogonal-MI histogram was significantly
modulated (permutation test, P < 10−4). Thus, beta activity inde-
pendently correlated with the spike counts and choice encoding of
PPC units.

Information and Spike Counts Linked with Gamma Activity.We repeated
the above analyses for gamma activity (Fig. 3 E–G). The peak-to-
trough modulation of spiking along the gamma phases was 6.2%,
corresponding to a firing rate modulation of approximately three
spikes/s. Similar to beta activity, the spike count was distributed
symmetrically about the spike-preferred gamma phase (Fig. 3E). The
moment of the spike-count histogram aligned with the average spike-
preferred gamma phase. Peak-to-trough modulation of choice-MI by
gamma activity was 12.3%. Choice-MI shared the same temporal
concentration along gamma phases (Fig. 3F). We found no difference
between the moments of choice-MI and spike count in the gamma
activity (permutation test, P = 0.59). In line with this finding, the
phase bin at the spike-preferred gamma phase exhibited significantly
higher MI than the average histogram (permutation tests, P < 0.05).
Choice-MI also was greater in the phase bin following the spike-
preferred phase. The moment of choice-MI for gamma activity was
significantly different from the moment of choice-MI for beta activity
(permutation test, P = 10−4).
We then estimated the orthogonal-MI for gamma frequency ac-

tivity (Fig. 3G). The orthogonal-MI for gamma activity was distrib-
uted uniformly across phase bins (permutation test, P = 0.30). No
phase bin exhibited differences from the average orthogonal-MI
across gamma-phase bins (permutation tests, all P > 0.05). Thus,
correlations between gamma activity, choice-MI, and spike counts
were not independent. MI estimation may have been biased by the
differing spike counts at different phases of activity. MI is positively
biased for smaller samples and is spuriously high for phase bins with
few spikes. We reestimated MI while stratifying spike counts to be
equal across phase bins (SI Materials and Methods). The pattern of
modulated choice-MI by beta and gamma activity persisted (Fig. S5).
All results were consistent when the analyses were performed

separately for each animal (Figs. S6 and S7). The pattern remained
when selecting units based solely on beta or gamma coherence, low
or high firing rates, the lateral and medial banks of the IPS, or near
and far electrode pairs (Fig. S8). We found no significant rela-
tionship between theta LFP phases and choice-MI when repeating
the analysis in Fig. 3A for units with significant theta-frequency SFC
(Fig. S9A, permutation tests, PFWER > 0.05). Beta and gamma ef-
fects remained significant (permutation tests, PFWER < 0.05). The
pulsed choice-MI was specific to the choice period as well as to units
that encoded upcoming choices. It was absent during the baseline
epoch and for coherent units without choice-MI (permutation tests,
PFWER > 0.05) (Fig. S9 B and C). Overall, beta- and gamma-
frequency activity modulated information about reward-guided
decisions present in the firing rate. Although fluctuations in spike
counts and information temporally coincided for the gamma ac-
tivity, information peaked later than spiking for beta activity.

Beta Activity Couples Theta and Gamma Activity. The coupling of
PPC spiking to multiple time scales of activity suggested that the
different frequency ranges might show consistent relationships
among each other. To shed light on possible interactions be-
tween the different time scales, we quantified the cross-frequency
phase–amplitude coupling (PAC) (36) and N:M phase–phase

locking (NML) (37). We found that beta activity was strongly
coupled to theta and gamma activity.
We analyzed the coupling strength and phase relationships for

PAC and NML for all electrode pairs with significant SFC in the
choice epoch (200–1,000 ms after target onset). We found sig-
nificant PAC between theta phases and beta amplitudes (permu-
tation test, P < 10−4) (Fig. 4A). PAC for theta phases and gamma
amplitudes (permutation test, P = 0.031) and beta phases and
gamma amplitudes (permutation test, P < 10−4) also was signifi-
cant, albeit weaker (permutation tests, theta–beta vs. theta–gamma,
P = 0.007; theta–beta vs. beta–gamma, P = 0.01; theta–gamma
vs. beta–gamma, P = 0.48). In addition we found significant
phase concentrations for the preferred PAC phases for the
theta–beta and theta–gamma frequency combinations across the
electrode pairs (Rayleigh tests: theta–beta, P < 10−5; theta–
gamma, P = 0.007) (Fig. 4A). We found no significant concen-
tration of the preferred PAC phase for the beta–gamma coupling
(Rayleigh test, P = 0.22). Thus, the different time scales of PPC
activity were nested with each other, with slower phases predicting
faster amplitudes. The theta–beta PAC displayed the most pro-
nounced interaction.
We further investigated whether the frequency ranges

exhibited a consistent phase relationships among each other. Phases
at different frequencies can be coupled when the frequencies are
integer multiples of each other with several cycles of a faster time
scale consistently occurring at the same times within one cycle of a
slower time scale (37–39). Again we found pronounced cross-fre-
quency interaction involving the beta activity (Fig. 4C). The strongest
phase–phase coupling was between the beta and gamma phases

A

CI 95

Mean
p < 0.05

θ 5 Hz 

θ/γγ 45 Hz
β 20 Hz

BPhase-Amplitude Coupling

Phase-Phase Coupling

β/γ

CI 95

Mean
p < 0.05

-.2

.2

.6

1.8

1.4

1

**

* **

θ/β θ/γ  β/γ  

θ/β 

C D

C
ou

pl
in

g 
S

tre
ng

th
 (Z

)

** p < .001* p < .05

**

**

-.5

.5

1.5

2.5

2

1

0

0

θ 5 Hz 

γ 40 - 50 Hz
β 20 - 25 Hz

θ/β θ/γ  β/γ  

C
ou

pl
in

g 
S

tre
ng

th
 (Z

)

Pref. Phase

ns

*
**

**

*
ns*

** p < .001* p < .05

Fig. 4. Cross-frequency relationships between theta, beta, and gamma ac-
tivity. (A) Coupling strengths of PAC between frequencies. Asterisks above
bars mark the levels of significance for the difference from zero. Compari-
sons between bars are indicated above brackets. (B) Preferred phases for the
PAC. Circles represent significant mean concentrations (Rayleigh test, P <
0.05) across all electrode pairs, and lines depict their 95% confidence in-
terval. (C) As in A for N:M phase–phase coupling. (D) As in B for the gen-
eralized phase difference of the N:M phase–phase coupling.

Hawellek et al. PNAS | November 22, 2016 | vol. 113 | no. 47 | 13495

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF9
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=SF9


(permutation test, P < 10−4) followed by significant but weaker
coupling between theta and beta phases (permutation test, P < 10−4;
beta–gamma vs. theta–beta, P < 10−4; beta–gamma vs. theta–gamma,
P < 10−4; theta–beta vs. theta–gamma, P = 0.038). Theta phases
were not significantly coupled with gamma phases (permutation test,
P = 0.27). The beta–gamma phase coupling had a consistent phase
difference across electrode pairs with beta phases slightly leading
gamma phases (Rayleigh test, P = 0.008) (Fig. 4D). The beta–
gamma phase difference seemed to match roughly the dissociation
of the moment of the choice-MI from spiking for beta activity. Beta–
gamma phase–phase coupling could contribute to the temporal lo-
calization of the choice-MI with respect to the beta activity. How-
ever, we observed no correlation between the beta–gamma phase
difference and the moment of the beta choice-MI phase histogram
on a single-spike LFP level (circular correlation, same electrode
pairs from Fig. 3; n = 79, r = −0.063, P = 0.55). We found no
consistent phase difference for the theta–beta phase–phase coupling
across electrode pairs (Rayleigh test, P = 0.93). The different time
scales also displayed significant phase relationships, with the most
pronounced coupling between gamma and beta activity.
Overall, we identified three interrelated temporal modes of

neuronal activity in the PPC. Beta activity took a central role and
was most prominently coupled to slower theta activity through
PAC and to faster gamma activity through phase–phase coupling.

Discussion
Our findings demonstrate a potential role for temporal coding in
the PPC during the formation of decisions and add to a growing
body of evidence linking firing rate information to ongoing
population dynamics in cortex (35, 40–48). Theta-, beta-, and
gamma-band LFP phases patterned spiking activity but had dif-
ferent relations to decision information. Gamma activity enco-
ded task information at phases with the greatest spike rate. In
contrast, beta activity encoded task information at phases when
local populations were not the most active. Theta-band activity
appeared as a relatively nonspecific influence on PPC spiking.
We propose that differences in the timing of task information
and activity patterns may be a general signature of distributed
computations across decision networks.
Beta and gamma activity showed a direct relation to the de-

cision process and were modulated by the onset of decisions. The
phases across both frequency regimes were coherent with each
other and provided a meaningful temporal reference for decoding
decision information contained in PPC neurons’ firing rates.
These observations generally agree with recent findings positing
that beta and gamma activity reflect different network-level pro-
cesses. Specifically, gamma activity may reflect bottom-up–driven
local processing, and beta activity may reflect top-down–driven
processes that link local information to processing on a larger
cortical scale (31, 49–52). The coherent relationship we observe
between the gamma and beta activity suggests that decision signals
in the PPC arise in the interaction between these two types of
influences. An intriguing possibility is that PPC spiking may
multiplex decision signals into beta and gamma channels (53).
Consistent with the view that beta and gamma activity reflect

two different network-level processes, we found that both choice
information and spike counts were temporally aligned with
gamma activity but choice information peaked later than the
spike counts for the beta activity. These observations may reflect
the more local nature of the gamma activity operating on faster,
more immediate scales. In contrast, beta activity may be tuned to
larger network scales, leading to a separation between choice
information and excitability.
Theta activity was present throughout the trial and at comparable

levels before and after choice target onset. Theta phases did exhibit
a weak relationship to the encoding properties of PPC firing rates.
However, theta phases predicted beta and gamma frequency am-
plitudes during the choice epoch. These observations are in line

with the view that theta-band activity may regulate activity on faster
time scales (54, 55), potentially to subserve functions (e.g., mne-
monic functions) in the interaction with subcortical or allocortical
brain structures with prominent theta activity (56–58).
Our observations agree well with previous reports on the impact

of temporal structure on firing rate encoding in the primate cortex.
During visual stimulation in primate primary visual cortex (48), the
gamma activity enhances selectivity, primarily at around peak ex-
citability. However, during working memory demands in primate
prefrontal cortex (47), information about sequentially presented
objects occurs at different times with respect to the beta activity.
The dissociation that we observe between spike counts and

choice information for beta activity raises questions about how
the activity can be generated and how other neuronal pop-
ulations can decode such activity efficiently. Specific spike times
within temporally structured activity patterns can result from the
interplay between excitatory drive and inhibition (40–42, 59, 60).
Our results thus suggest that beta spiking in the PPC results from
an asymmetric interaction between excitation and inhibition,
producing a relatively less informative upswing and a more in-
formative downswing of activity with similar activity magnitudes.
The transmission of activity between neuronal ensembles may

benefit from the alignment of excitability phases in downstream
neurons with barrages of synchronized upstream activity (30, 31,
61–65). Our findings are consistent with this view and suggest
that beta and gamma activity may differ in the window of in-
tegration by downstream ensembles. Although the gamma ac-
tivity may be most informative when spiking is greatest, the
integration period for the beta activity may extend past the time
of greatest synchronous activity to include a later period of peak
information. In this way, the computations in the PPC may be
functionally linked to the distributed ensembles underlying the
formation of decisions (9, 13). In summary, we propose that the
relative timing of local spiking and choice information reveals a
temporal reference for computations across local and large-scale
decision networks.

Materials and Methods
Please see SI Materials and Methods for a detailed description of the ex-
perimental setup and analytic methods. The experimental setup has been
reported previously (13). Two adult male rhesus macaques (Macaca mulatta),
monkey C (7.5 kg) and monkey R (6 kg), participated in this study. All surgical
and animal care procedures were approved by the New York University
Animal Care and Use Committee and were performed in accordance with
the National Institutes of Health guidelines for the care and use of labora-
tory animals. Neuronal activity was recorded from the medial and lateral
banks of the IPS up to ∼1 cm anterior to the lunate and parietal occipital
sulci and ∼5–10 mm below the cortical surface (13). We targeted a square 16 ×
16 mm recording chamber over the right IPS in monkey C [MRI-guided ste-
reotaxic (Brainsight; Rogue Research)] and over the left IPS in monkey R
(stereotactic coordinates: 7 P, 13 L). Electrodes were spaced at least 1 mm
(median, 2.09 mm) apart. Recordings were referenced to the metal guide
tube on the dura touching the cortical surface above the recording sites.
Spectral estimates were derived using multitaper methods (time/bandwidth
parameters, 500 ms and 5 Hz) (66, 67). Amplitudes for the PAC were esti-
mated at 20 Hz and 45 Hz with time/bandwidth parameters of 250 ms and
10 Hz. We removed the influence of trial-locked evoked potentials through
regression from each trial before further analysis. For phase-dependent es-
timates we used eight phase bins centered at 0 and every π/4 steps with a
width of π/3. We controlled the PFWER or the PFDR when multiple testing. For
permutation tests the PFWER was controlled using rank-based maximum
resample statistics (68, 69).

ACKNOWLEDGMENTS. We thank Jorge Jaramillo and Timo van Kerkoele for
helpful comments on the manuscript. This work was supported by the Leo-
poldina Fellowship Programme Grant (LPDS/LPDR 2012-09), NIH Grant R01
EY024067, National Science Foundation CAREER Award BCS-0955701, an
award from the Simons Collaboration for the Global Brain, and the Defense
Advanced Research Projects Agency Systems-Based Neurotechnology for Emerg-
ing Therapies Program.

13496 | www.pnas.org/cgi/doi/10.1073/pnas.1606479113 Hawellek et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606479113/-/DCSupplemental/pnas.201606479SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1606479113


1. Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior pa-
rietal cortex. Nature 386(6621):167–170.

2. Batista a. P, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered
coordinates. Science 285(5425):257–260.

3. Shadlen MN, NewsomeWT (2001) Neural basis of a perceptual decision in the parietal
cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–1936.

4. Huk AC, Shadlen MN (2005) Neural activity in macaque parietal cortex reflects tem-
poral integration of visual motion signals during perceptual decision making.
J Neurosci 25(45):10420–10436.

5. Cui H, Andersen RA (2007) Posterior parietal cortex encodes autonomously selected
motor plans. Neuron 56(3):552–559.

6. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci
30:535–574.

7. Scherberger H, Andersen RA (2007) Target selection signals for arm reaching in the
posterior parietal cortex. J Neurosci 27(8):2001–2012.

8. Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe.
Annu Rev Neurosci 33:1–21.

9. Dean HL, Hagan MA, Pesaran B (2012) Only coherent spiking in posterior parietal
cortex coordinates looking and reaching. Neuron 73(4):829–841.

10. Hagan MA, Dean HL, Pesaran B (2012) Spike-field activity in parietal area LIP during
coordinated reach and saccade movements. J Neurophysiol 107(5):1275–1290.

11. de Lafuente V, Jazayeri M, Shadlen MN (2015) Representation of accumulating evi-
dence for a decision in two parietal areas. J Neurosci 35(10):4306–4318.

12. Latimer KW, Yates JL, Meister MLR, Huk AC, Pillow JW (2015) Single-trial spike trains
in parietal cortex reveal discrete steps during decision-making. Science 349(6244):
184–187.

13. Wong YT, Fabiszak MM, Novikov Y, Daw ND, Pesaran B (2016) Coherent neuronal
ensembles are rapidly recruited when making a look-reach decision. Nat Neurosci
19(2):327–334.

14. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex.
Nature 400(6741):233–238.

15. Dorris MC, Glimcher PW (2004) Activity in posterior parietal cortex is correlated with
the relative subjective desirability of action. Neuron 44(2):365–378.

16. Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the represen-
tation of value in the parietal cortex. Science 304(5678):1782–1787.

17. Seo H, Barraclough DJ, Lee D (2009) Lateral intraparietal cortex and reinforcement
learning during a mixed-strategy game. J Neurosci 29(22):7278–7289.

18. Louie K, Glimcher PW (2010) Separating value from choice: Delay discounting activity
in the lateral intraparietal area. J Neurosci 30(16):5498–5507.

19. Kiani R, Shadlen MN (2009) Representation of confidence associated with a decision
by neurons in the parietal cortex. Science 324(5928):759–764.

20. Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific re-
ward values in the striatum. Science 310(5752):1337–1340.

21. Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit
between frontal and parietal cortex. Nature 453(7193):406–409.

22. Kable JW, Glimcher PW (2009) The neurobiology of decision: Consensus and con-
troversy. Neuron 63(6):733–745.

23. Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of
action choices. Annu Rev Neurosci 33:269–298.

24. Siegel M, Buschman TJ, Miller EK (2015) Cortical information flow during flexible
sensorimotor decisions. Science 348(6241):1352–1355.

25. Katz LN, Yates JL, Pillow JW, Huk AC (2016) Dissociated functional significance of
decision-related activity in the primate dorsal stream. Nature 535(7611):285–288.

26. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: Emerging
methods and principles. Trends Cogn Sci 14(6):277–290.

27. Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal en-
sembles: A role for interneuronal networks. Curr Opin Neurobiol 5(4):504–510.

28. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science
304(5679):1926–1929.

29. Engel AK, Fries P, Singer W (2001) Dynamic predictions: Oscillations and synchrony in
top-down processing. Nat Rev Neurosci 2(10):704–716.

30. Fries P (2005) A mechanism for cognitive dynamics: Neuronal communication through
neuronal coherence. Trends Cogn Sci 9(10):474–480.

31. Fries P (2015) Rhythms for Cognition: Communication through coherence. Neuron
88(1):220–235.

32. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural
information. Nat Rev Neurosci 2(8):539–550.

33. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: Phase syn-
chronization and large-scale integration. Nat Rev Neurosci 2(4):229–239.

34. Womelsdorf T, Fries P (2006) Neuronal coherence during selective attentional pro-
cessing and sensory-motor integration. J Physiol Paris 100(4):182–193.

35. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and
the EEG theta rhythm. Hippocampus 3(3):317–330.

36. Canolty RT, et al. (2006) High gamma power is phase-locked to theta oscillations in
human neocortex. Science 313(5793):1626–1628.

37. Tass P, et al. (1998) Detection of n:m phase locking from noisy data: Application to
magnetoencephalography. Phys Rev Lett 81(15):3291–3294.

38. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the
human cortex. J Neurosci 25(15):3962–3972.

39. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency
phase-phase coupling between θ and γ oscillations in the hippocampus. J Neurosci
32(2):423–435.

40. König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchro-
nization? Neural Comput 7(3):469–485.

41. Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in trans-
forming a rate code into a temporal code. Nature 417(6890):741–746.

42. Brody CD, Hopfield JJ (2003) Simple networks for spike-timing-based computation,
with application to olfactory processing. Neuron 37(5):843–852.

43. Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron
activity to theta oscillations during working memory in monkey extrastriate visual
cortex. Neuron 45(1):147–156.

44. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-
of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18(5):
375–380.

45. Kayser C, Montemurro MA, Logothetis NK, Panzeri S (2009) Spike-phase coding
boosts and stabilizes information carried by spatial and temporal spike patterns.
Neuron 61(4):597–608.

46. Kayser C, Ince RAA, Panzeri S (2012) Analysis of slow (theta) oscillations as a potential
temporal reference frame for information coding in sensory cortices. PLOS Comput
Biol 8(10):e1002717.

47. Siegel M, Warden MR, Miller EKE (2009) Phase-dependent neuronal coding of objects
in short-term memory. Proc Natl Acad Sci USA 106(50):21341–21346.

48. Womelsdorf T, et al. (2012) Orientation selectivity and noise correlation in awake
monkey area V1 are modulated by the gamma cycle. Proc Natl Acad Sci USA 109(11):
4302–4307.

49. Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends
Cogn Sci 15(5):191–199.

50. Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical
networks predicts perception. Neuron 69(2):387–396.

51. van Kerkoerle T, et al. (2014) Alpha and gamma oscillations characterize feedback
and feedforward processing in monkey visual cortex. Proc Natl Acad Sci USA 111(40):
14332–14341.

52. Bastos AM, et al. (2015) Visual areas exert feedforward and feedback influences
through distinct frequency channels. Neuron 85(2):390–401.

53. Akam T, Kullmann DM (2014) Oscillatory multiplexing of population codes for se-
lective communication in the mammalian brain. Nat Rev Neurosci 15(2):111–122.

54. Lakatos P, et al. (2005) An oscillatory hierarchy controlling neuronal excitability and
stimulus processing in the auditory cortex. J Neurophysiol 94(3):1904–1911.

55. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends
Cogn Sci 14(11):506–515.

56. Bragin A, et al. (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the
behaving rat. J Neurosci 15(1 Pt 1):47–60.

57. Sirota A, et al. (2008) Entrainment of neocortical neurons and gamma oscillations by
the hippocampal theta rhythm. Neuron 60(4):683–697.

58. Lisman JE, Jensen O (2013) The θ-γ neural code. Neuron 77(6):1002–1016.
59. Fries P, Nikoli�c D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7):309–316.
60. Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms

in cognition. Physiol Rev 90(3):1195–1268.
61. König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of

the cortical neuron revisited. Trends Neurosci 19(4):130–137.
62. Azouz R, Gray CM (2003) Adaptive coincidence detection and dynamic gain control in

visual cortical neurons in vivo. Neuron 37(3):513–523.
63. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active

thalamocortical synapses. Science 312(5780):1622–1627.
64. Nadasdy Z (2009) Information encoding and reconstruction from the phase of action

potentials. Front Syst Neurosci 3:6.
65. Zandvakili A, Kohn A (2015) Coordinated neuronal activity enhances corticocortical

communication. Neuron 87(4):827–839.
66. Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76(2):

691–708.
67. Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of

sequences of action potentials. Neural Comput 13(4):717–749.
68. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neu-

roimaging: A primer with examples. Hum Brain Mapp 15(1):1–25.
69. Hawellek DJ, et al. (2013) Altered intrinsic neuronal interactions in the visual cortex of

the blind. J Neurosci 33(43):17072–17080.
70. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and

powerful approach to multiple testing. J R Stat Soc B 57(1):289–300.
71. Hurtado JM, Rubchinsky LL, Sigvardt KA (2004) Statistical method for detection of

phase-locking episodes in neural oscillations. J Neurophysiol 91(4):1883–1898.

Hawellek et al. PNAS | November 22, 2016 | vol. 113 | no. 47 | 13497

N
EU

RO
SC

IE
N
CE


