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Whether an individual becomes infected in an infectious disease
outbreak depends on many interconnected risk factors, which may
relate to characteristics of the individual (e.g., age, sex), his or her
close relatives (e.g., household members), or the wider commu-
nity. Studies monitoring individuals in households or schools
have helped elucidate the determinants of transmission in small
social structures due to advances in statistical modeling; but such
an approach has so far largely failed to consider individuals
in the wider context they live in. Here, we used an outbreak of
chikungunya in a rural community in Bangladesh as a case study to
obtain a more comprehensive characterization of risk factors in
disease spread. We developed Bayesian data augmentation ap-
proaches to account for uncertainty in the source of infection,
recall uncertainty, and unobserved infection dates. We found
that the probability of chikungunya transmission was 12% [95%
credible interval (CI): 8–17%] between household members but
dropped to 0.3% for those living 50 m away (95% CI: 0.2–0.5%).
Overall, the mean transmission distance was 95 m (95% CI: 77–113
m). Females were 1.5 times more likely to become infected than
males (95% CI: 1.2–1.8), which was virtually identical to the rela-
tive risk of being at home estimated from an independent human
movement study in the country. Reported daily use of antimos-
quito coils had no detectable impact on transmission. This study
shows how the complex interplay between the characteristics of
an individual and his or her close and wider environment contrib-
utes to the shaping of infectious disease epidemics.
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Factors that affect the risk of pathogen infection are multiple
and complex. They often intertwine features of individuals

(e.g., age, behavior, or mobility) with those of their social network,
the wider population, and, in some cases, the environment they live
in. Assessing the relative contribution of these factors to trans-
mission often proves difficult because, apart from few exceptions
(1–3), it is rarely possible to directly measure individual exposures
to potential sources of infection. However, recent advances in
statistics and modeling now make it to possible to reconstruct such
information from data gathered during outbreaks, allowing a more
refined evaluation. These approaches have been extensively used
to ascertain how the structure of the social network, behaviors, and
socio-demographic and biological factors affect the spread of
pathogens in relatively small social communities such as house-
holds, hospitals, or schools (2, 4–8).
Although these studies provide great detail on transmission at

the very local scale of a household, they have so far largely failed
to consider individuals in the wider context they live in. For
example, we still poorly understand how the risk of infection of
an individual may be affected by the presence of cases in
neighboring households or in households that are farther away.

It also remains unclear whether the heterogeneous mobility
profiles observed in a population (e.g., children vs. adults,
women vs. men) have any impact on individual risks of infection.
As a consequence, it remains difficult to robustly calibrate spatial
spread in simulation models that are used to inform policy
making (9–11), resulting in predictions that may sometimes seem
at odds with the data (12).
Here, we take chikungunya, a mosquito-borne virus that causes

fever and joint pain (13, 14), as a case study. We analyze detailed
data describing a chikungunya outbreak in a rural community in
Bangladesh to obtain a more comprehensive view of infection risk
factors, considering the different environments individuals interact
with: from their household, to their neighborhood, and to the
wider community. We evaluate the influence of spatial proximity
on the risk of transmission and, comparing our findings with na-
tionally representative human mobility data, evaluate whether
different mobility profiles may correlate with different individuals’
risk of infection. The analysis requires the development of sound
Bayesian data augmentation statistical techniques (6, 15) to ac-
count for uncertainty in the source of infections, recall uncertainty,
and unobserved infection dates. Such uncertainties are typical in
outbreak scenarios.

Significance

Although the determinants of infectious disease transmission
have been extensively investigated in small social structures such
as households or schools, the impact of the wider environment
(e.g., neighborhood) on transmission has received less attention.
Here we use an outbreak of chikungunya as a case study where
detailed epidemiological data were collected and combine it with
statistical approaches to characterize the multiple factors that
influence the risk of infectious disease transmission and may
depend on characteristics of the individual (e.g., age, sex), of his
or her close relatives (e.g., household members), or of the wider
neighborhood. Our findings highlight the role that integrating
statistical approaches with in-depth information on the at-risk
population can have on understanding pathogen spread.
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Results
In 2012 an outbreak of chikungunya was reported in the village of
Palpara in Tangail district, 100 km northwest of the capital, Dhaka.
An outbreak investigation team was deployed at the end of
November by the governmental outbreak response team at the
Institute for Epidemiology, Disease Control, and Research in
collaboration with the International Centre for Diarrhoeal
Disease Research, Bangladesh (icddr,b). The outbreak investigation
team visited every household in the outbreak village and inter-
viewed 1,933 individuals from 460 households. A total of 364
(18%) individuals reported having suffered from symptoms con-
sistent with chikungunya infection (the case definition was fever
with either joint pain or a rash) between May 29 and December 1,
2012. Chikungunya infection was confirmed using serology in a
subset of 175 cases. The mean age of cases was 30 y (range: 0–80)
and 958 (57%) of cases were female (Fig. 1). Sixty-four percent of
individuals (n = 1,238) lived in households that reported using
antimosquito coils on a daily basis.
We built a transmission model to ascertain transmission risk

factors. All individuals that met the case definition were included
as cases in the analysis. Data augmentation techniques were used
to incorporate both onset date uncertainty and the unobserved
infection dates. We used an exponentially distributed kernel to
characterize transmission distances for between-household
transmissions (i.e., for pairs of individuals that live in different
households) and used a separate parameter for within-house-
hold transmission (i.e., for pairs of individuals that live in the
same household). We found that the probability of transmission
was 12% [95% credible interval (CI): 8–17%] between household
members (Fig. 2A) but dropped to 0.3% for those living 50 m away
(95% CI: 0.2–0.5%) and 0.2% for those 100 m away (95% CI: 0.1–
0.2%) (Fig. 2B), indicating that transmission was highly focal. A
sensitivity analysis using a power-law distribution resulted in al-
most an identical transmission kernel (Fig. 2B). Females were 1.5
(95% CI: 1.2–1.8) times more likely to get infected than males
(Fig. 2C). Children (defined as those under 16 y) were at similar
risk to adults (relative risk of 0.9, 95% CI: 0.8–1.2) (Fig. 2C).
Reported daily use of antimosquito coils had no impact on
transmission risk (1.0, 95% CI: 0.8–1.2) (Fig. 2E).
To ascertain the contribution of these different factors to the

overall epidemic, we probabilistically reconstructed 200 fully re-
solved transmission trees consistent with the data (Fig. 3A). Analysis
of these trees indicates that household transmissions represented
27% of all transmission events (95% CI: 23–31%) (Fig. 3B). Fifty-
eight percent of transmissions (95% CI: 51–65%) occurred at the
neighborhood level (defined here as within 200 m of a home, an
area that consisted of 27% of the population on average) whereas
only 15% of transmission (95% CI: 9–21%) occurred in the wider
community (>200 m) despite 73% of the population living this far
away from cases. Overall the mean transmission distance was 95 m
(95% CI: 77–113 m). Neighborhood transmission was the larg-
est contributor to the effective reproductive number (Fig. 3C). We

calculated the basic reproductive number for each individual based
on where he or she lived and the individual characteristics of the
community. We then mapped how the basic reproductive number
differed over the study area. We found significant spatial heteroge-
neity that was consistent with where the majority of infections oc-
curred (Fig. S1). As the transmissibility of a pathogenmay change over
time, especially with vector-mediated pathogens that may have strong
seasonal drivers, we allowed a step change in transmissibility and es-
timated both the timing and the magnitude of the change. We esti-
mated that on October 10, 2012 (95% CI: October 5 to October 13),
the probability of transmission fell by 74% (95% CI: 63–84%).
To assess model performance, we simulated epidemics starting

from August 1, using our estimated parameters for the outbreak. At
this time, eight cases had occurred. We found that both the tem-
poral trajectory (Fig. 4A) and the spatial spread of infections (Fig. 4
B and C) were consistent with those observed. The simulations
resulted in a mean of 475 cases (95% CI: 258–670) compared with
364 observed cases.
To explore whether the increased risk of infection for fe-

males was due to spending more time at home, we compared
our results to those from a separate, nationally representative,
human movement study that we conducted of 52 rural pop-
ulations in Bangladesh, using global positioning system (GPS)
monitors (Materials and Methods). Overall, 380 individuals’
monitors returned usable data. Individuals spent an average of
56% of their time between the hours of 8:00 AM and 8:00 PM
within or around their homes (defined as within 50 m of the
central coordinates of their home). However, this differed
greatly by sex. We found that females were 1.5 (95% CI: 1.4–
1.6) times more likely to be in and around their home com-
pared with males (66% of time at home for females vs. 45% for
males) (Fig. 2D). Children (those under 16 y) were 0.9 (95%
CI: 0.8–1.0) times as likely to be in and around their home as
adults (Fig. 2D). These findings are completely consistent with
the findings of relative risk of infection in our model (Fig. 2C),

Fig. 1. (A) Location of outbreak within Bangladesh. (B) Location of all house-
holds in the village. Orange triangles indicate at least one individual in the
household with symptoms. (C) Epidemic curve separated by sex.
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Fig. 2. Parameter estimates from transmission model and results of human
mobility study. (A) Probability of transmission for an individual living in the
same household as a case. (B) Transmission kernel. (C) Relative susceptibility
for children (those under 16 y) vs. adults and females vs. males. (D) Relative
risk of being in or around the home (defined as within 50 m of home loca-
tion) from a nationwide mobility study. (E) Relative susceptibility for indi-
viduals from households that used antimosquito coils vs. individuals from
households that did not.
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suggesting the increased time females spent in and around
the home may have been responsible for their increased risk
of infection.
Not all infection events are likely to have been detected. In-

fections may not have resulted in symptoms that met the case
definition or may have caused no symptoms at all (16, 17). Fur-
ther, individuals may have forgotten more mild febrile episodes.
To assess the impact of these undetected infections on our

estimates, we simulated outbreaks based on the spatial structure
of our study population and randomly assigned 0% (to reflect
outbreaks with no undetected infections), 20%, 40%, 60%, or
80% of cases as unobserved infections. We then estimated the
parameters using only observed cases. We found that in these
scenarios, all model parameters could be accurately estimated
except the mean transmission distance, which was slightly over-
estimated (mean estimate of 170 m when 40% of cases were
undetected compared with a true value of 140 m), and the
household force of infection (resulting in a mean estimate of 9%
of infections as household infections when 40% of cases were
detected for a true value of 13%) (Table S1). To explore the
impact of overestimating the transmission kernel, we compared
the spatial spread of cases in simulations that used kernels with
mean transmission distances ranging from 125 m to 200 m. We
found that for the range of kernels explored the spatial and
temporal distributions remained similar (Fig. S2).
Where the proportion of undetected infections is known, re-

versible-jump Markov chain Monte Carlo (RJ-MCMC) methods
can be used to account for undetected infections when estimat-
ing parameters (18). Using this approach, we found that in sce-
narios where up to 40% of cases were undetected we could
accurately estimate parameters, including both the transmission
kernel parameter and the household force of infection (Table
S1). The performance of the model diminished when a greater
proportion of cases were undetected. The RJ-MCMC model was
able to accurately estimate the transmission kernel parameter
across a range of simulated values (Table S2). Applying RJ-
MCMC to the outbreak data where 20% were assumed to be
undetected resulted in a shorter mean transmission distance of
80 m (70–100 m) with 32% of infections occurring within the
home. Increasing the number of undetected infections to 40%
gave a mean transmission distance of 70 m (60–90 m) with 36%
of infections occurring in the home. All other parameter esti-
mates were essentially unchanged (Table S3).

Discussion
Epidemic spread is driven by a complex interplay of individual
actions and local environment. Statistical methods developed to
reconstruct transmission trees from incomplete outbreak data
provide an invaluable tool to help disentangle these factors.
Previous attempts to reconstruct infectious disease transmission
trees have been largely restricted to highly structured commu-
nities such as schools, hospitals, or households (2, 6, 19). Here,
we incorporated the wider context of their local environment.
Using chikungunya as a case study, we have shown that we can
combine detailed epidemiological data and mathematical models
to gain insight into detailed dynamics of disease spread in a wider
community. We have demonstrated that individual characteris-
tics (e.g., sex) and local environment, in particular where indi-
viduals live relative to cases, have a critical impact on risk of
infection. Further, we have shown through an independent hu-
man mobility dataset that these risk differences are entirely
consistent with individual-level differences in movement behav-
ior. This finding highlights the importance of incorporating local
context into assessments of outbreak spread.
This study illustrates the many challenges epidemiologists

studying infectious disease transmission are confronted with
when working on real-world outbreak data. During outbreak
investigations, it is common that transmission pathways or dates

Fig. 3. (A) Single model realization. (B) Proportion of transmission events
within households and at different distances from a case household.
(C ) R(t) over time where each point represents the estimated effective
reproductive number for the 30-d window centered at that time point.
HH, household.
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of infection cannot be documented or that cases misremember when
they were sick. The data augmentation strategies we relied on make
it possible to properly account for these uncertainties in the in-
ferential framework and therefore greatly enhance our ability to
analyze outbreak data in a robust fashion.
The collection of fine-scale location data can greatly aid out-

break investigations. A major strength of our approach is that we
do not have to rely on the assumption that individuals are uni-
formly distributed on the landscape but instead take into account
the exact locations where individuals reside to estimate the
spatial kernel. It is important to note that we cannot infer the
exact location of any transmission event, for example whether it
occurred indoors or outdoors.
We found that in this outbreak, viral spread was largely driven

by transmissions at distances not much farther away than neigh-
boring households. Human mobility in rural Bangladesh is very
limited with individuals spending >50% of the time in and
around the home. Females in particular spend the vast majority
of their day around their homes. These human mobility patterns
were consistent with our estimates of the spread of chikungunya
and could explain the higher risk of infection observed in fe-
males. Release–recapture experiments have demonstrated that
the Aedes mosquito, responsible for chikungunya and dengue
transmission, does not travel very far and often stays within the
same residence for days (20). For viral infections to spread over
small distances as observed here may require human movement.
We did not find evidence of protection from the use of anti-

mosquito coils. The coils used by this community may not suffi-
ciently reduce mosquito levels to prevent transmission. This result
is consistent with a recent meta-analysis that found that anti-
mosquito coils did not reduce the risk of dengue infection, another
virus spread by the same vector (21). However, both the meta-
analysis and a similar review of vector-based strategies concluded
that the evidence base for the impact of coils and other forms of
vector control remained weak (22). More field-based studies are
required to properly understand the potential of coil-based and
other forms of vector control in different settings. Where more
effective insecticides or other spatially targeted interventions
are available, our findings suggest that deploying them in
neighboring households of cases may be sufficient to reduce
viral spread. This requires early detection of the outbreak.
We estimated that transmission decreased substantially in the

beginning of October. This coincided with a steep change in
mean temperatures, which dropped from 29 °C at the end of
September to 22 °C by early November and 17 °C by the start
of December (Fig. S3). Rainfall also decreased substantially in
October (Fig. S3). This is consistent with previous findings of a
key role of temperature and rainfall on chikungunya risk (23).

In addition to the role of climate, the buildup in immunity in
asymptomatic individuals may have contributed to this fall in
transmissibility.
The outbreak investigation was conducted 2 mo after the peak

of the epidemic. Individuals are unlikely to precisely remember
when they started to have symptoms. However, by using data
augmentation techniques we were able to incorporate recall
uncertainty into our estimates. The case definition we used was
specific for chikungunya. Although we cannot rule out false
positive cases, these are likely to be minimal and not impact our
parameter estimates. The case definition may have resulted in
missed cases. However, we have demonstrated the robustness of
our model to substantial misspecification. Households may have
increased their use of antimosquito coils since the outbreak. Any
such change would potentially falsely hide any impact of the
coils. We also do not know how households used the coils or the
precise type. Human mobility data were not collected in the out-
break community. Future outbreak investigations could incorporate
movement diaries or GPS monitors into their investigations to
better understand the role of human movement in pathogen
spread. It is noteworthy that the patterns observed at the na-
tional level were consistent with our model estimates.
To characterize the complex interplay of the multifaceted risk

factors that shape the spread of infectious diseases, modern
epidemiology needs to move away from simple case counting.
Instead, it must take an integrative approach where thorough
field investigations benefit from technological advances such as
global positioning systems and where data interpretation is
considerably strengthened by the use of innovative statistical and
modeling techniques. These technological and methodological
advances open an exciting era for infectious disease epidemiol-
ogists that can and should use the framework proposed here to
study the spread of other pathogens.

Materials and Methods
Data Collection. An outbreak investigation team was deployed at the end of
November by the governmental outbreak response group in collaboration
with the icddr,b. The team visited each household in all of the villages and
interviewed all household members that agreed to participate. The study
team recorded whether individuals reported symptoms consistent with
chikungunya (fever with either joint pain or a rash) and the date of fever
onset. In addition, they recorded the age and gender of all householdmembers
and whether the household reported the use of antimosquito coils on a daily
basis. The GPS location of all homes was also recorded. To confirm that the
outbreakwas due to chikungunya, infectionwas confirmed using IgM ELISA
in a subset of 175 cases (SD BIOLINE).

Statistical Model. Assuming that individuals who reported symptoms had
been infectedwith chikungunya virus, we built a statistical model to ascertain

Fig. 4. Model fit. To assess model fit we simulated epidemics starting from day 80 (eight infections had occurred by that time point). (A) The epidemic
curves of the simulated epidemics compared with the observed epidemic. (B) The spatial distribution of cases from the outbreak where a point is orange if
at least 50% of model simulations have at least one case in that household. Compare with Fig. 1B. (C ) We divided the outbreak area into 50 × 50-m grid
cells and compared the mean proportion of individuals that lived in that cell that were positive across the simulations with the observed proportion that
were positive.
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risk factors for transmission (6, 24). In particular, the model was used to
estimate the role that the location and structure of households, sex, age,
and antimosquito coils had on transmission dynamics.

The force of infection exerted on individual i at time t is

λiðtÞ=
XN

j : tj<t

λj→i
�
t
��xj , xi

�
,

where λj→iðt
��xj , xiÞ is the hazard that individual j transmits to individual i at

time t; and

λj→i
�
t
��xj , xi

�
= β

�
xi , xj

�
· f
�
t − tj

�
· δðtÞ, [1]

where βðxi , xjÞ represents the transmission rate between individuals j and i.
Where i and j reside in the same household,

β
�
xi , xj

�
= βH · βsexðxiÞ · βageðxiÞ · βcontrolðxiÞ,

where βsex characterizes the role of sex on risk of infection (male is the
reference group), βage characterizes the role of age on risk of infection (in-
dividuals over the age of 16 y are the reference group), and βcontrol charac-
terizes whether the household reported daily use of antimosquito coils (no
coil use is the reference group). Where i and j reside in different households,

β
�
xi , xj

�
= βc ·g

�
xi , xj

�
· βsexðxiÞ · βageðxiÞ · βcontrolðxiÞ,

where gðxi , xjÞ characterizes the transmission kernel for individuals living in
different households and is a function of the distance between the house-
holds. We used an exponential distribution to characterize the transmission
kernel. In addition, we performed a sensitivity analysis, using a power-law
kernel that allowed a fatter-tailed distribution,

g
�
xi , xj

�
=

1�
1+dij

�
1,000

�α,

where dij is the distance (in meters) of individuals i and j and α was esti-
mated; fðt − tjÞ represents the infectivity of individual j over time and can be
approximated by the generation time distribution (the time between two
successive infections). In chikungunya it is made up of the incubation time in
the individual, the duration during which the individual can transmit to a
mosquito, and the duration of infectiousness in the mosquito. We derived a
generation time distribution with mean of 14 d and variance of 41 d (Fig.
S4). Details of the derivation can be found in SI Materials and Methods,
Calculation of Generation Time Distribution. Misspecification of the gener-
ation time distribution had limited impact on parameter estimates
(Table S4). Finally, we consider the possibility that transmissibility may have
changed over time as may occur where local climate (or other) conditions
alter the transmissibility of the pathogen. We estimate both the timing
(through a change-point parameter τ) of a change and the magnitude
(through parameter βlate). Coefficient δðtÞ is equal to one before change-
point τ and to βlate after change-point τ.

The effective reproductive number R for individual j early in the epidemic
(i.e., before change-point τ) is the sum of the β terms:

Rj =
X

i≠j

β
�
xi , xj

�
.

Estimation. Parameters were estimated within a Bayesian MCMC frame-
work. We observed only dates of symptom onset, not when infections
occurred. In addition, there may have been uncertainty in the recollection
of precise dates of symptom onset. To account for these limitations,
Bayesian data augmentation techniques were used (6, 15) whereby true
dates of symptom onset and dates of infection were considered as augmented
data (i.e., nuisance parameters) of the inferential framework. The joint pos-
terior distribution of augmented data and model parameters is proportional to

Pðz, θjyÞ∝ PðyjzÞ ·PðzjθÞ · PðθÞ,

where y are the observed data, z are the augmented data, and θ is the
parameter vector. PðyjzÞ is the observation model and assumes that (i) the
error with which individuals estimated their date of symptom onset was
normally distributed with mean zero and SD of 3 d and (ii) the incubation
period of chikungunya was exponentially distributed with a mean of 3 d
(25). PðzjθÞ represents the transmission model characterized by Eq. 1. Finally,
the prior distribution of the parameters is provided by PðθÞ. The joint pos-
terior distribution is explored using MCMC sampling. Additional details
about the model and estimation are given in SI Materials and Methods.

Prior Distributions. For all parameters except for the transmission kernel
parameter, we used a lognormal prior distribution with a log(mean) equal to
zero and a log(variance) equal to one. For the transmission kernel parameter
we used an exponential prior distribution with parameter of 0.0001.

MCMC Sampling Scheme. The MCMC sampling scheme we implemented
consisted of (i ) a Metropolis–Hastings update for the parameters in the
model, (ii) an independence sampler for the infection day for 50 randomly
chosen cases, and (iii) an independence sampler for the true onset date
(to account for recall uncertainty) for 50 randomly chosen individuals.
Metropolis–Hastings updates were performed on a log scale with the step
size adjusted to achieve an acceptance probability between 20% and 30%.

Climate Data.Weobtained temperature data at 3-h intervals for Tangail district
from the national meteorological department of Bangladesh. From these data
we calculated daily mean temperature. We also collected daily rainfall data.
From thesewe calculated themean amount of rainfall in each 2-wk period over
the study period.

Collection of Human Movement Data. To quantify the time individuals spend in
and around their homes, we conducted a separate field study in 52 randomly
selected rural communities from throughout Bangladesh (Fig. S5). In each
community, up to 10 individuals of all ages were randomly selected and asked to
carry a small GPS device (GT-600) that collected their location every 2 min for a
period of up to 4 d. We also collected the home location of each participant. For
each reading from the GPS device, we calculated the distance a participant was
from his or her home. Further details on the collection of human movement
data can be found in SI Materials and Methods, Human Movement Study.

Ethical Approval. The outbreak investigation was exempt from Institutional Re-
view Board (IRB) review. The Government of Bangladesh reviewed and approved
of the investigation protocol and participants provided informed consent for
participation. For the human mobility study, informed consent was obtained
from all individuals and their parents or guardians for those under the age of 18 y.
The study was approved by the IRB of the icddr,b. The analyzed data contains
personally identifiable information and so cannot be made freely available.
Individuals interested in accessing the case data will need to obtain clearance
from the icddr,b ethical review committee and should contact egurley@icddrb.org.
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