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Abstract

The potential benefits of peptide-based immunotherapy for pediatric brain tumors is currently 

under investigation with pilot studies at our institution. We have noted the presence of treatment-

related heterogeneity, which has resulted in radiographic challenges including that of 

pseudoprogression. Conventional MRI has limitations in the assessment of these different forms of 

treatment-related heterogeneity, particularly in regards to distinguishing true tumor progression 

from efficacious treatment responses. Our initial results suggest that advanced neuroimaging 

techniques, including diffusion MR, perfusion MR and MR spectroscopy may add value in the 

assessment of treatment-related heterogeneity. Our initial observations suggests that recent 

delineation of specific response criteria for immunotherapy of adult brain tumors (iRANO) is 

likely to be relevant to the pediatric population and further validation in multi-center pediatric 

brain tumor peptide-based vaccine studies are warranted.
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Introduction

There has been significant progress in the field of immunotherapy, within oncology with 

recent FDA approval of immunotherapeutics for metastatic melanoma and non-small cell 

lung cancer, and the advent of multiple immunotherapy clinical trials for primary and 

metastatic adult brain tumors. [1-4] These adult immunotherapy studies have identified 

unique responses in regards to treatment response heterogeneity (as characterized by 

pseudoprogression, delayed responses, therapy-induced inflammation, etc.) and resulting 

radiographic challenges. As such, new guidelines have been recently published by the 

iRANO (immunotherapy Response Assessment for Neuro-Oncology) group to allow for 

refinement of response assessment criteria for neurooncology patients receiving 

immunotherapy. [4] These iRANO criteria suggest that among adult patients who 

demonstrate imaging findings meeting RANO criteria for progressive disease within 6 

months of initiating immunotherapy, including the development of new lesions, confirmation 

of radiographic progression on follow-up imaging is recommended provided that the adult 

patient is not significantly worse clinically.[4]

Our institution is currently engaged in multiple peptide based- vaccine trials for children 

with diffuse midline gliomas DIPG,). recurrent high-grade glioma, recurrent low grade-

glioma and recurrent ependymoma [5-7], We have recently described the occurrence of 

heterogeneous treatment response (including pseudoprogression) which has remarkable 

similarity with what has been seen in some of the adult immunotherapy studies. The purpose 

of this review article is to highlight our initial experience with regards to the emerging 

radiographic challenges related to heterogeneous treatment response including that of 

pseudoprogression with the use of peptide-based vaccine therapy in pediatric brain tumors. 

We also describe our initial experience with some of the advanced neuroimaging techniques 

including diffusion MR and MR spectroscopy to help address some of these radiographic 

challenges.

Conventional MRI

We have noted multiple forms of treatment-related heterogeneity in our different pilot 

studies of peptide-based vaccine therapy for pediatric brain tumors, particularly in DIPG, 

recurrent supra-tentorial high-grade tumors, and recurrent low grade-gliomas. Conventional 

MR imaging supplemented with MRS, diffusion and perfusion MR was typically performed 

serially at regular intervals depending on the specific protocol while on the peptide-based 

vaccine therapy (Figure 1) (i.e. every 6 weeks for newly diagnosed patients who are 

receiving radiation). The different forms of treatment-related heterogeneity that have 

resulted in radiographic challenges include (1) pseudoprogression, characterized by transient 

enlargement of the tumor with associated clinical symptoms, recently published for our 

DIPG cohort (Figure 2A) and recurrent low grade glioma cohort [5, 6]; (2) development of 

different types of non-cystic and cystic focal signal abnormalities within our DIPG and 
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recurrent supratentorial high-grade glioma cohort (see next paragraph and Figure 3); (3) 

development of both contiguous (Figure 2B) and remote smaller lesion that eventually 

regress and/or undergo necrosis; (4) one portion of the tumor responds to treatment while 

another portion of the tumor appears to be growing (Figure 7).

In a series of 21 children with diffuse intrinsic pontine glioma (DIPG) treated with peptide-

based vaccines at our institution, 4 children (19%) had documented pseudoprogression based 

on imaging and clinical criteria: one child had transient tumor enlargement in association 

with acute neurological deterioration 4 months after beginning vaccination that later 

regressed and culminated in a sustained partial response (Figure 2A); and 3 other children 

had symptomatic pseudoprogression, with transient neurological deterioration and tumor 

enlargement followed by stabilization on decreasing steroid doses. Notably, after the episode 

of pseudoprogression, the patient with the subsequent PR developed contiguous lesions in 

the bilateral middle cerebellar peduncle later in the course of peptide-based vaccine therapy. 

These lesions eventually underwent shrinkage and necrosis (Fig 2B). Cases of 

pseudoprogression were also noted in other types of pediatric brain tumors being treated 

with the peptide vaccine including a cervicomedullary biopsy proven anaplastic astrocytoma 

lesion (Figure 3), recurrent supratentorial high grade and recurrent low-grade gliomas [5, 6].

We also observed an unusually high incidence of focal cystic and non-cystic signal intensity 

changes (likely representing evolving necrosis) in our pediatric DIPG population treated 

with the peptide-based vaccine. When we classified these changes into four categories based 

on T2 signal characteristics and post-contrast enhancement characteristics (Figure 4), we 

found that 81% of these children developed focal areas of non-cystic changes during 

immunotherapy with an average time between starting vaccine to development of non cystic 

changes of 4.8 months (from 38 days to 10.8 months) and 57% developed focal cystic 

changes with an average time of 6.5 months (from 1.2 months to 10.6 months) after the 

initiation of therapy. Of all the patients who developed cystic necrosis, 82% had noticeable 

enhancement in the region prior to the development of the necrosis. A small subset of 

patients had areas of enhancement that were stable or decrease in size on subsequent exams. 

Studies are on-going at our institution to correlate these patterns of focal signal abnormality 

with survival and pseudoprogression. These findings do underscore the concept that 

conventional MRI imaging has limitations in the ability to assess different forms of 

treatment related imaging heterogeneity. In the next sections, we describe our initial 

experience with the use of advanced neuroimaging modalities (i.e. MR spectroscopy, 

diffusion and perfusion) to evaluate treatment response.

Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy provides a metabolic evaluation of the sampled tissue. In 

vivo Intracellular metabolites with concentrations of 0.1-0.5 μmol/gram or higher can be 

assessed. Abnormal choline (Cho) metabolism is a common endpoint for many forms of 

cancer. Choline containing metabolites are involved in the synthesis and breakdown of cell 

membranes. Since growing tumors require the net synthesis of cell membranes to support 

cell proliferation, the in vivo measurement of choline provides surrogate information on 

tumor growth rates. Brain tumors generally have elevated levels of Cho, with higher Cho 
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levels observed in more aggressive tumors [8-10]. Another metabolic feature of aggressive 

tumors is a prominent signal from mobile lipids [11, 12], although the time course is less 

predictable. Lipids (and lactate) can accumulate in cystic/necrotic areas but may also be 

recycled by tumor cells and/or surrounding cells for de novo cell membrane synthesis and 

for oxidation in the TCA-cycle. Lipids may increase as tumors progress, for example, from 

grade III astrocytoma to glioblastoma [12]. Notably, myo-inositol is well-regarded as a 

marker of gliosis [13] as well as an important osmolyte whose regulation across the plasma 

membrane is a key cellular mechanism for mediating osmotic stress in astrocytes [14, 15]. 

In-vivo human studies, myo-inositol is consistently elevated in the setting of chronic 

inflammation such as in multiple sclerosis and other neuroinflammatory CNS conditions 

[16-18] likely reflecting ongoing astrogliosis. Myo-inositol is generally elevated in 

ependymoma and gliomas, which are typically characterized by a high fraction of glial cells 

[19-21]. Histopathological studies have suggested there is increased reactive gliosis in 

individual tumors marked by an elevated myo-inositol concentration [22, 23], and in a recent 

study, elevated myo-inositol distinguished tissue inflammation from tumor proliferation in 

adult GBM patients treated with radiation therapy and adjuvant therapy [24]. We are 

currently exploring the hypothesis that alterations in myo-inositol may be a predictor of 

outcome in certain forms of pediatric tumors treated with the peptide base vaccines 

(particularly the DIPG cohort- Figure 5). A key observation was the stability of serial MRS 

spectra in the setting of clinical and radiographic pseudoprogression (Figure 5). Specifically, 

we noted that the MRS spectra was stable comparing three time points of imaging: baseline, 

at the time of pseudoprogression and after pseudoprogression. When we looked specifically 

at the cases of pseudoprogression (i.e. case shown in Figure 2), there was serial stability in 

the choline to creatine ratio, myo-inositol and lipids/lactate (bottom row, Figure 5). From 

these preliminary observations, we hypothesize that the stability of certain metabolite ratios 

(including choline/creatine ratio) may distinguish treatment response and pseudoprogression 

from true progression in the setting of peptide-based treatment of high-grade gliomas 

(including DIPG). Likewise, stability in lipids/lactate and myo-inositol may also have the 

potential to distinguish pseudoprogression from true progression. These findings underscore 

the importance in obtaining serial MRS data at baseline and different points of therapy, 

including at the time of pseudoprogression. These preliminary observations will need to be 

confirmed in large-scale multi-center studies.

Diffusion Weighted MR Imaging

Diffusion refers to random (“Brownian”) motion of molecules due to heat. In clinical 

imaging, we evaluate the mean diffusivity of water molecules assuming isotropy in each 

voxel. In vivo, the limitation of diffusion-weighted imaging (DWI) is that the diffusion of 

water molecules is not only due to heat, but also active transport, flow along pressure 

gradients, and changes in membrane permeability. The apparent diffusion coefficient (ADC) 

is a quantitative diffusion constant calculated from different b values (different gradient 

amplitudes) to reflect the diffusion of water molecules through different tissues, expressed in 

units of mm2/s [25]. Higher ADC values mean increased water motion and lower ADC 

values mean decreased (restricted) water motion. Although untreated brain tumors 

demonstrate increased ADC values compared to the normal brain as a result of disruption of 

normal cellular integrity, densely cellular tumors demonstrate relative lower ADC values. 
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Baseline low minimum ADC values have been associated with worse clinical outcome as 

determined by us and others [26, 27]. The effect of radiation therapy can be divided in acute, 

early-delayed, and late-delayed radiation changes. A transient increase in ADC has been 

reported between 3 and 5 months after radiation [28], likely the result from tissue damage, 

vasodilation and edema [29]. With time the ADC values decrease, which is particularly 

noticeable in children with DIPG (Figure 6, left). Using serial functional diffusion maps 

(sfDM), our group demonstrated that children with DIPG status post radiation, who had 

tumor pseudoprogression during immunotherapy had higher fitted average log-transformed 

parametric response mapping ratios and fractional decreased ADC, compared to those 

without pseudoprogression [30]. Moreover, focal increase in ADC signal preceded the 

appearance of cystic necrosis (Figure 6, right). Serial parametric response mapping of ADC 

appears to be a promising method to assess treatment response in children with DIPG treated 

with peptide-based vaccinations.

Perfusion MR Imaging

The three major types of perfusion MR that we performed in our studies of pediatric brain 

tumors treated with peptide-based vaccine therapy include: Dynamic Susceptibility Contrast, 

Dynamic Contrast Enhancement and Arterial Spin Labeling. Dynamic susceptibility contrast 

(DSC) MRI, also known as bolus-tracking MRI, is based on serial measurements of MRI 

signal change within a region of interest during the first pass of exogenous, paramagnetic, 

non diffusible contrast agent, typically a gadolinium-based contrast agent (GBCA). Under 

normal conditions, the local susceptibility effect induced by intravascular 

compartmentalization of GBCA translates into a signal drop on T2 spin-echo or gradient-

echo (T2* GRE) echo planar imaging (EPI). Higher-grade brain tumors tend to have 

increased microvascular circulation related to tumoral angiogenesis and, as a result, larger 

blood volume on DSC signal intensity time curves [31]. This technique is very valuable for 

guidance of stereotactic biopsy. One of the limitations of DSC is when there is severe 

disruption of the brain-blood barrier causing inaccurate estimation of intravascular blood 

volume due to extravasation of GBCA (T1 dominant contrast leakage) [32, 33]. In contrast 

to DSC imaging, dynamic contrast enhanced (DCE) imaging measures an increase in MRI 

signal proportional to the concentration of GBCA in the region of interest using T1-

weighted imaging, providing an evaluation of the wash-in and washout contrast kinetics 

within tumors as a result of tumor perfusion, vessel permeability, and volume of the 

extravascular-extracellular space [34]. One alternative without the administration of 

intravenous contrast is the arterial spin labeling (ASL), which consists of labeling protons in 

the blood in supplying vessels outside the imaging plane. Subtraction of the images obtained 

with and without labeling allows calculation of tissue perfusion, which is proportional to the 

cerebral blood flow (CBF) [35]. ASL may be a reliable alternative to DSC with several 

advantages in children because of it does not require intravenous administration of contrast, 

can be repeated multiple times, and has the potential to provide quantitative CBF [36]. In a 

recent article by the Pediatric Brain Tumor Consortium, there was no association between 

progression free survival and relative cerebral blood volume assess by DSC at baseline, or 

when perfusion values were used as time-dependent variables, in children with brain tumor 

treated with radiation and molecularly targeted agents (gefitinib and tipifarnib) [27].
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The potential role of DSC, DCE and ASL imaging in assessing pediatric brain tumor treated 

with immunotherapy is currently being investigated at our institution. As a pilot study, we 

have examined diffusion and perfusion correlates of heterogeneous treatment response in 

peptide-based therapy of pediatric DIPG. We tested the hypothesis that correlations between 

ADC (cellularity) and ASL (vascularity) would differ between brainstem glioma (DIPG) 

groups treated with and without vaccine therapy. ADC and ASL images of 19 pediatric 

DIPG patients (n=11 on vaccine therapy, n=8 not on vaccine therapy) were acquired at 1.5T. 

After registration, tumor regions were manually segmented. A correlation analysis between 

mean ADC and ASL in the tumor and unaffected grey matter was conducted using linear 

regression. Statistically significant correlation between mean ADC and ASL were seen in 

DIPG regions of patients on vaccine (R=-0.358, p=0.0256). However, no statistically 

significant association was seen in the mean ADC and ASL of the DIPG in patients treated 

with standard radiation and radiochemotherapy (non-vaccine) (R=0.006, p=0.9770). As 

such, a unique inverse correlation of perfusion and diffusion (with increased perfusion 

associated with decreased ADC or increased cellularity) was note in the vaccine therapy 

DIPG group compared to the non-vaccine therapy group. This may reflect identification of a 

unique treatment response within the vaccine group. Validation in a larger dataset and 

correlation with outcome is currently being pursued.

23Na-MR and [18F]-FLT Imaging
23Na-MR is a useful non-invasive technique to assess proliferation. In neoplastic tissue, 

sustained depolarization of the cell membrane precedes the high rate of mitotic activity that 

characterizes abnormal tumor growth, leading to concomitant increase in intracellular 23Na 

concentration (ISC) as demonstrated in a number of human neoplasms. Further 

characterization of this rise in ISC in several types of human carcinoma/glial cell lines has 

established a positive correlation between proliferative activity and increased intracellular 

Na+/K+ ratio. The increase in ISC leads to a concomitant increase in the total tissue 23Na 

concentration (TSC) over the tumor volume [37-43]. 23Na concentration was altered in a 

number of our pediatric patients with brain tumors treated with immunotherapy. The highest 

concentrations were observed in high-grade supratentorial astrocytomas (Figure 7). We have 

preliminary observed that a decrease in 23Na signal portends a good treatment response, 

possibly earlier than other imaging methods. We are currently evaluating the utility of 

sodium MR imaging to help characterize heterogeneous treatment response in different 

types of pediatric brain tumors undergoing peptide based vaccine therapy.

All of the MR biomarkers being studied (conventional MRI, MRS, ADC, ASL and sodium) 

have limitations in the assessment of new large necrotic lesions, which have been observed 

in a significant percentage of malignant gliomas treated with immunotherapy in our current 

clinical trials. 3′- [18F] fluoro-3′-deoxythymidine ([18F]-FLT) positron emission 

tomography may be particularly valuable for these patients. [18F]-FLT is a pyrimidine 

analogue and a biomarker for thymidine kinase-1 activity during S phase of DNA synthesis. 

Previous investigations have demonstrated a high correlation between [18F]-FLT uptake and 

proliferation rate [44-56]. The potential advantages of [18F]-FLT over [18F]-FDG in high-

grade gliomas include: improved signal to noise ratio and significantly greater specificity for 

proliferation over treatment-related necrosis [57, 58]. In addition, there is research to support 
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that [18F]-FLT may distinguish between tumor proliferation and inflammation, which may 

be useful in the assessment of pseudoprogression [59-62]. We use [18F]-FLT to label solid 

tumor around areas of necrosis thereby potentially providing an indicator of tumor 

proliferation. We are currently in the process of developing a MR-PET protocol to perform 

[18F]-FLT imaging in our pediatric brain tumor patients being treated with peptide-based 

vaccine therapy.

Conclusion

Potential benefits of peptide-based immunotherapy for pediatric brain tumors have been 

identified with pilot studies performed at our institution. We have described different forms 

of treatment-related heterogeneity, which has resulted in radiographic challenges including 

the determination of pseudoprogression vs. true tumor progression by conventional MRI. 

Our initial results suggest that advanced neuroimaging techniques, including diffusion MR, 

perfusion MR and MR spectroscopy may add value to the assessment of treatment-related 

heterogeneity. Future work may help identify which imaging approach is superior. Our 

initial observations suggest that recent delineation of specific response criteria for 

immunotherapy of adult brain tumors (iRANO) is likely to be relevant to the pediatric brain 

tumor population and further validation in multi-center pediatric brain tumor peptide-based 

vaccine studies are warranted.
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Key Points

1. Peptide-based immunotherapy for pediatric brain tumors is associated 

with the presence of treatment-related heterogeneity including that of 

pseudoprogression.

2. Conventional MRI has limitations in the assessment of treatment-

related heterogeneity, particularly in regards to distinguishing true 

tumor progression from efficacious treatment responses.

3. Advanced neuroimaging techniques, including diffusion MR, perfusion 

MR and MR spectroscopy may add value in the assessment of 

treatment-related heterogeneity

4. Recent delineation of specific response criteria for immunotherapy of 

adult brain tumors (iRANO) is likely to be relevant to the pediatric 

population.
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Figure 1. Example of Timing of MRI scans for New Diagnosis of High-Grade Pediatric Glioma 
treated with Radiation and Serial Peptide Based Vaccine Therapy
The time of conventional MRI during the course of peptide-vaccine therapy for this 

particular strata (A) of the vaccine study was approximately every 6 weeks after initiation of 

therapy. Strata A of included new diagnosis of high-grade gliomas based on imaging (DIPG) 

or biopsy and included initial radiotherapy followed by peptide-based vaccine. Note, 

additional time points of imaging were obtained during clinical pseudoprogression. The 

timing of serial MRI was different for different strata. Diffusion imaging was integrated with 

all conventional MRI scans. MRS spectroscopy and perfusion MR were performed in 

conjunction with only certain conventional MRI scan for logistical reasons.
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Figure 2. 
A (top) Tumor pseudoprogression. Left: MR baseline before and after radiation 

immediately before vaccine therapy. Tumor is unchanged from diagnosis. Middle: after 15 

weeks post first vaccine dose, the patient had tumor enlargement (non-enhancing FLAIR 

hyperintensity) and worsened neurological symptoms. Right: Steroids were started and the 

MR findings and symptoms improved. B. (bottom) Development of additional lesions: 
Same patient as Figure 2A, but after first pseudoprogression later in the course of the peptide 

vaccine therapy. Note the development of small lesions (left side of figure) (hyperintense 

FLAIR signal abnormality in the middle cerebellar peduncle (first in the right middle 

cerebellar peduncle, and then left middle cerebellar peduncle), that undergo subsequent 

cystic necrosis and shrinkage on follow up scans (right side of figure).
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Figure 3. Biopsy proven pseudoprogression of a cervical medullary anaplastic astrocytoma
4.5-year-old with a biopsy-proven cervicomedullary anaplastic glioma (top row baseline) 

who developed worsening neck pain after his 4th vaccine, which became increasingly severe 

immediately after his fifth vaccine, 6.5 months after diagnosis, 4 months after completion of 

irradiation and 3 months after beginning vaccination. He exhibited neurological worsening 

and MRI showed formation of a necrotic cyst superior to the tumor in the medullary region 

(second row). Vaccines were withheld, and the cyst continued to increase in size; his neck 

pain became debilitating and he underwent laminectomy and cyst decompression 2.5 months 

later (third row). He had rapid clinical improvement and resolution of the cyst on subsequent 

MRI scan. Biopsies showed no mitotically active tumor, and he resumed vaccine therapy. 

Six weeks later, he developed clinical and radiographic worsening with recurrence of neck 

pain. An MRI showed re-accumulation of the cyst and increased enhancement and size of 

the solid component, which prompted discontinuation of the vaccine regimen (fourth row). 

He was started on palliative oral chemotherapy and has shown a dramatic clinical 

improvement over the next 3 months, is back at school and almost completely off steroids. 

Five years later the patient is still alive with small stable residual lesion (fifth row)
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Figure 4. Focal changes in pediatric DIBG during immunotherapy
Areas of non cystic changes without enhancement (A), areas of non cystic changes with 

enhancement (B), areas of cystic changes without enhancement (C), and areas of cystic 

changes with peripheral enhancement (D).
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Figure 5. Comparison of Pseudoprogression case (from Figure 2) with Averaged Spectra of Long 
Term Survival Group and Short Term Survival Group
The top row (Short Term Survival) shows that there is increase in the choline to creatine 

ratio between the first two time points. The middle row shows that in the Long Term 
Survival Group there is relative stability in the choline to creatine ratio over time. The 

bottom row shows the MRS for the Pseudoprogression case from Fig. 2 in which there is 

preservation of choline to creatine ratio across time points. Metabolite levels, including 

myo-inositol and lipids/lactate remain stable across all three time points in the patient with 

pseudoprogression (last row).
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Figure 6. sfDM to evaluate the spatial- temporal changes in ADC measurements in pediatric 
DIPG treated with peptide-based vaccination
sfDM demonstrates decrease in ADC signal after radiation (blue voxels, left bottom row). 

During immunotherapy, focal increase in ADC signal (red voxels, right bottom row) 

preceded the appearance of necrosis. The stability of the ADC signal (green voxels, right 

bottom row) is consistent with treatment related necrosis rather than tumor progression.
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Figure 7. 23Na-MR of a necrotic lesion in pediatric subject
[A] shows a ring enhancing necrotic lesion (red arrowheads); This lesion was a new 

recurrent lesion, separate from a lesion in the frontal lobe (not shown) that has initially 

responded to peptide-based vaccine therapy [B] short echo and [C] longer echo 23Na-MR 

showing total/extracellular sodium and increased foci in the periphery of lesion (red arrow); 

[D] co-registered targeted subtracted overlap image show that the periphery of the necrosis 

(red arrowheads) had increased intracellular sodium (ICS) (red and yellow voxels) and 

decreased central ICS (bluish and voxels) representing tumor related cavitation/necrosis 

confirmed to be a recurrent tumor by follow up.
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