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Abstract

Background—MicroRNAs, small non-coding RNAs involved in gene regulation, are implicated 

in lymphomagenesis. We evaluated whether genetic variations in microRNA coding regions, 

binding sites, or biogenesis genes (collectively referred to as miRNA-SNPs) were associated with 

risk of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL), and serum levels of four 

lymphoma-related microRNAs.

Methods—Twenty-five miRNA-SNPs were genotyped in 180 AIDS-NHL cases and 529 HIV-

infected matched controls from the Multicenter AIDS Cohort Study (MACS), and real-time 

polymerase chain reaction was used to quantify serum microRNA levels. Adjusted odds ratios 

(ORs) measured using conditional logistic regression evaluated associations between miRNA-

SNPs and AIDS-NHL risk. A semi-Bayes shrinkage approach was employed to reduce likelihood 

of false-positive associations. Mean ratios (MR) calculated using linear regression assessed 

associations between miRNA-SNPs and serum microRNA levels.

Results—DDX20 rs197412, a non-synonymous miRNA biogenesis gene SNP, was associated 

with AIDS-NHL risk (OR=1.34 per minor allele; 95% CI: 1.02–1.75), and higher miRNA-222 

serum levels nearing statistical significance (MR=1.21 per minor allele; 95% CI: 0.98–1.49). 

MiRNA-196a2 rs11614913 was associated with decreased central nervous system (CNS) AIDS-

NHL (CT vs. CC OR=0.52; 95% CI: 0.27–0.99). The minor allele of HIF1A rs2057482, which 

creates a miRNA-196a2 binding site, was associated with systemic AIDS-NHL risk (OR=1.73 per 

minor allele; 95% CI: 1.12–2.67), and decreased CNS AIDS-NHL risk (OR=0.49 per minor allele; 

95% CI: 0.25–0.94).

Conclusions—This study suggests that a few miRNA-SNPs are associated with AIDS-NHL risk 

and may modulate miRNA expression. These results support a role for miRNA in AIDS-NHL and 

may highlight pathways to be targeted for risk stratification or therapeutics.
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1.1. Introduction

Non-Hodgkin Lymphoma (NHL) is the most common hematological cancer in adults 

worldwide, and most frequently diagnosed AIDS-defining cancer among HIV-infected 

individuals [1–4]. AIDS-related NHL (AIDS-NHL) represents a significant source of 

morbidity in those infected with HIV-1 and accounts for approximately one-quarter of all 

AIDS-associated deaths [5–7]. AIDS-NHLs are thought to arise in part due to the loss of 

immunoregulatory control over Epstein-Barr virus (EBV) -infected B cells resulting from 

depletion of CD4+ T cells [8–11], and in part due to the chronic B cell activation that 

accompanies chronic HIV-1 infection [12–14]. The molecular mechanisms for NHL 

development in the setting of HIV-1 infection are not fully understood, although prior 

studies suggest that microRNAs (miRNAs) may be important [15–19].

miRNAs are small non-coding RNA sequences that regulate gene expression on the post 

transcriptional level through interaction with the 3′ untranslated region (UTR) of the target 

gene messenger RNA [20–23]. miRNAs undergo modifications during their biogenesis 

through interactions with other molecules, with each interaction highly sequence dependent 

[24–28]. The importance of miRNAs in lymphomagenesis has been further defined in recent 

years [29, 30], and it is evident that miRNAs have critical roles in both lymphopoiesis and 

lymphoma pathogenesis and progression [31, 32]. Aberrant miRNA expression or function 

has been defined for nearly all lymphomas [33], and distinct miRNA signatures highlight the 

potential for miRNAs to serve as diagnostic biomarkers [34, 35]. Burkitt lymphoma is 

characterized by a loss of the oncogene miR-155 [31, 36], while diffuse large B-cell 

lymphoma overexpresses this miRNA which also plays a critical role in B cell development 

[37]. Moreover, tumor associated miRNAs have been reported in serum of patients with 

DLBCL [38], and in blood B cells of patients who develop AIDS-NHL [39]. Genetic 

variations in microRNA coding regions, binding sites, or biogenesis genes (collectively 

referred to as miRNA-SNPs) are also able to induce aberrant miRNA expression and 

function to influence lymphomagenesis and outcomes related to progression [40], treatment 

response and survival [41, 42]. However, studies evaluating the role of miRNA-related 

polymorphisms (SNPs) and AIDS-NHL susceptibility are lacking.

In recent work, we found that miRNA expression is associated with subsequent AIDS-NHL 

development [43–45]. We propose that miRNA-related SNPs disrupt miRNA biogenesis or 

miRNA binding to target messenger RNA, and may be susceptibility loci for AIDS-NHL 

[46–50]. To test our hypothesis that miRNA-related SNPs are associated with AIDS-NHL 

risk, we designed a candidate gene case-control study nested within the Multicenter AIDS 

Cohort Study (MACS). Further, we sought to assess the potential association between SNPs 

in miRNA biogenesis genes and serum levels of four miRNAs (miR-21, miR-122, miR-222, 

and miR-223) with known associations with AIDS-NHL [44].

2.1. Materials and Methods

2.1.1. Study design and population

We conducted a nested case-control study within the MACS [51, 52]. In brief, the MACS is 

an ongoing multicenter longitudinal study of the natural and treated history of HIV/AIDS. 
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The MACS includes 7,087 men who have sex with men who have been recruited beginning 

in 1985 from four U.S. cities (Baltimore, Chicago, Los Angeles, and Pittsburgh). 

Participants have been re-contacted semi-annually for in-person interview, physical exam, 

and specimen collection for up to thirty-one years.

The study was approved by the Institutional Review Boards associated with four MACS 

sites, including the University of California at Los Angeles, USA.

2.1.2. Case and control definitions

Cases were defined as HIV-1 infected MACS participants diagnosed with NHL as of July 

2010 with archived cell pellets available for DNA extraction. Cases were based on 

confirmation by medical records and pathology reports, or in some cases identified by 

pathology reports at autopsy. One-hundred and eighty-three NHL cases were identified for 

this study.

Controls were selected from all HIV-1 infected MACS participants who were NHL-free and 

who had archived cell pellets. Up to 3 controls were matched to each NHL case on 

recruitment year (1984–1985 or 1987–1991), cancer-free HIV-1 infection-duration time 

since first HIV-1-positive MACS study visit (i.e., controls had to be followed at least as long 

as the cases), race (white versus non-white), and CD4+ T-cell count at NHL diagnosis date 

or, in controls, matched time-point reflecting infection-duration since first HIV-1-positive 

MACS study visit (0–49 mm3, 50–99 mm3, 100–199 mm3, 200–349 mm3, 350–499 mm3, 

and ≥500 mm3). Additionally, cases that seroconverted during follow-up were matched to 

controls that also seroconverted and on time since seroconverting. A total of 533 HIV-1 

infected controls were selected.

2.1.3. miRNA-related SNP Selection

Genes and SNPs of high interest given putative biologic plausibility were selected using a 

combination literature-based and bioinformatic approach. First, we identified miRNAs 

repeatedly associated with cancer in the literature, including: miR-196a2, miR-26a1, 

miR-27a, miR-300, and pre-miR-146a [18, 50, 53, 54]. Some of these (e.g., miR-146a and 

miR-26a1) had previous implications in AIDS-NHL or lymphoma [45, 55, 56]. We used in 
silico approaches to identify SNPs in these miRNA coding regions, and SNPs in target genes 

of these miRNA that also had some link to AIDS-NHL, including WWOX, IL6R, CXCL12 
[57, 58], or overall cancer [18, 59]. Next, we identified other key genes associated with NHL 

or tumorigenic mechanisms, and looked in silico for miRNAs that bound to those target 

genes, and for SNPs within those miRNA coding regions [60–64]. We also selected SNPs 

from within key-regulatory genes involved in miRNA biogenesis (DROSHA, XPO5, RAN, 
DICER1, AGO, DDX20, GEMIN4), some of which have been implicated in 

lymphomagenesis [17, 48, 65–68].

For the in silico analyses, we used TargetScan 5.2 as the miRNA target prediction algorithm 

[69–73], UCSC Genome Browser “Blat” to map genomic sequences, and NCBI dbSNP to 

identify SNPs in target genes and sequences [74]. Only common SNPs were included (minor 

allele frequency [MAF] ≥5%). In total, 25 SNPs were genotyped within miRNA coding 
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regions (n=5), miRNA biogenesis genes (n=8), and within or near predicted miRNA target 

sites (n=12; Table 1).

2.1.4. SNP genotyping

Genomic DNA was extracted from archived peripheral blood mononuclear cell pellets using 

the QIAamp DNA blood mini kit (Qiagen, Valencia, CA), purified, and then whole genome 

amplified using the REPLI-g Mini Kit (Qiagen, Valencia, CA).

Genotyping was performed with a customized Fluidigm Dynamic 96.96 Array™ assay [75]. 

This assay used allele-specific polymerase chain reaction (PCR) SNP detection chemistry 

with integrated fluidic circuits to perform high throughput SNP genotyping. Tagged, allele 

specific PCR primers were employed alongside a common reverse primer. A universal probe 

set was used in every reaction, producing uniform fluorescence. Additionally, Fluidigm 

provided locus-specific primer sequences that allowed one to confirm target locations.

For quality control, positive controls (samples with known genotypes) and negative controls 

(samples with no DNA) were included in each reaction plate to evaluate appropriate 

genotype calling. Further, 5% of study samples were randomly selected and plated in 

replicate to evaluate genotype concordance. All identifying information for the tested 

samples, including the identity of the quality control replicates, was unknown to the lab 

technicians.

2.1.5. Quantification of serum miRNA

miRNAs found to be associated with AIDS-NHL in a previous study were measured for a 

subset of 77 cases and controls in our study [44]. In brief, serum RNA was extracted using 

TRIzol LS reagent from Life Technologies (Carlsbad, CA). RNA was resuspended and 

quantified using Quant-iT RiboGreen RNA Reagent and kit (Molecular Probes, Eugene, 

OR). Exiqon’s Serum/Plasma Focus miRNA PCR panel (Exiqon, Vedbaek, Denmark) was 

used to measure serum miRNA expression in participants as an initial screening method. 

Differentially expressed miRNAs were identified from this initial screen using the 

MultiExperiment Viewer software v4.8. Individual miRNAs found to be differentially 

expressed were validated using TaqMan miRNA Reverse Transcription kit and TaqMan 

miRNA Assay kit (Applied Biosystems). Each sample was assayed in triplicate, and the 

levels of all serum miRNAs were normalized to miR-16 (consistent with screening 

protocol), and cellular miRNAs were normalized to RNU 48 (small nucleolar RNA), using 

the following equation: dCt = CtmiRNA-CtmiR-16 (or RNU 48). The relative expression of 

miRNAs was calculated using: 2−dCt [44]. Relative miRNA expression data from the 

validated TaqMan assays were utilized in this analysis.

2.1.6. Statistical Analysis

We excluded SNPs from analysis if they had: (a) genotyping call rate <95%; (b) Hardy-

Weinberg equilibrium (HWE) P-value <0.002; or (c) duplicate sample genotype 

concordance <95%. Samples with poor DNA quality were identified and excluded if the 

sample yielded a SNP call proportion <90%.
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Differences in participant characteristics were assessed using Pearson’s Chi-square tests 

(categorical variables) or Student’s two-sample T-tests (continuous variables) to estimate 

reported P-values. We calculated adjusted odds ratios (ORs) and 95% confidence intervals 

(CIs) for the associations between miRNA-related SNPs and AIDS-NHL risk using 

conditional logistic regression. ORs were also calculated for AIDS-NHL subgroups by site, 

systemic versus primary central nervous system (CNS). We calculated genotype specific 

ORs, and ORs for a log-additive genetic model. Covariates were included in the models if 

they were historically associated with AIDS-NHL risk and included age, HIV-1 viral load at 

set-point (the time point at which there is a natural equilibrium between viral replication and 

viral clearance, and which is usually achieved several months after initial infection in 

individuals who are unexposed to anti-retroviral treatment), having a prior AIDS diagnosis, 

anti-retroviral therapy use, CD4+ T-cell count, race, and hepatitis C infection [9, 76–82]. 

Missing data for HIV-1 viral load at set-point (n=128) and CD4+ T-cell count (n=56) was 

imputed using the median values of the control group [83, 84]. The reference date for 

covariate values (age, CD4+ T-cell count, history of anti-retroviral therapy, and hepatitis C 

infection) was NHL diagnosis date (cases) or matched date reflecting infection-duration 

since first HIV-1-positive MACS study visit (controls). For comparison, unadjusted results 

are presented in Supplemental Table 1.

We used the semi-Bayes (SB) approach to minimize the reporting of false positive results. 

The SB approach is a shrinkage-based, penalized-likelihood method which regresses 

estimates toward zero in a manner inversely proportional to their prior variances and 

proportional to estimated variances [85–89]. Using this method, we augmented our dataset 

with a prior dataset of null association [β ~ N (0, 0.5)] to obtain posterior semi-Bayes 

estimates (OR) and 95% posterior CIs for each estimate [90]. The SB posterior estimates 

tended to be closer to the null than maximum likelihood estimates from the conditional 

logistic regression models, with narrower 95% posterior CIs [90]. We present the SB OR 

estimates and 95% posterior CIs for all miRNA-SNP NHL associations. To account for the 

possibility of population stratification, we also report SB OR estimates and 95% posterior 

CIs restricted to self-reported non-Hispanic Whites (NHW) for significant miRNA-SNP 

NHL associations found among the entire study population. We discuss results that remained 

statistically significant after SB correction, and note results that remained of marginal (i.e., 

borderline) significance.

To investigate the associations between SNPs within miRNA biogenesis genes and miRNA 

serum levels, we calculated mean ratios (MR) and 95% CIs using linear regression, adjusted 

for AIDS-NHL case status, race, and CD4+ T-cell count at date of serum sample collection. 

To estimate the mean ratio of miRNA serum levels by genotype, the mean natural log 

transformed (loge) miRNA serum level among those with one or more copies of the risk 

allele was compared to the mean loge(miRNA) serum level among those with the wild-type 

genotype, then exponentiated for interpretation. All analyses were conducted using SAS 

v9.1.3 software (SAS Institute, Cary NC).
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3.1. Results

All plated blank and water samples were confirmed as “no calls” using the Fluidigm 

Genotyping Analysis software. Genotype calls for positive control samples were 100% 

concordant with known genotypes. All genotyping call rates were above 98% and none of 

the SNPs in this study were in LD at an r2 value greater than 0.80 with any other included 

SNP (Table 1). Three SNPs (TAB3 rs3816757, WWOX rs12828 and DROSHA rs10719) 

and six study participants that did not meet the quality control thresholds were excluded. We 

investigated 22 SNPs genotyped from 709 MACS participants (180 cases and 529 matched 

controls).

Table 2 shows select characteristics of the study population. A higher proportion of Hispanic 

ethnicity and a lower proportion of NHWs were observed among cases than controls 

(P=0.02). Most NHL cases were diagnosed during the period 1984–1995, although 15% 

were diagnosed during 1996–2006. Cases tended to be older than controls (P=0.04). The 

CD4+ T-cell count was similarly distributed for cases and controls due to the matching 

criteria. A higher proportion of cases had a prior AIDS diagnosis compared to controls 

(P=0.01), although a similar proportion of cases and controls (6% and ~9%, respectively) 

were treated with a potent combination of anti-retroviral drugs. Cases had higher plasma 

HIV-1 RNA levels compared to controls (P=0.004). The majority of AIDS-NHL tumors 

were systemic (68.1%), most of which were diffuse large B-cell lymphomas. Fewer than 

50% of cases had adequate tumor tissue available for EBV testing; however the majority of 

tested NHLs (67%) were EBV positive.

Among SNPs located within miRNA coding regions, individuals with at least one copy of 

the minor allele (T) of microRNA-196a2 rs11614913 experienced a decrease in CNS AIDS-

NHL risk (CT vs. CC: OR=0.52; 95% CI: 0.27–0.99; Table 3). This result remained 

statistically significant among NHWs (CNS AIDS-NHL CT vs. CC: OR=0.46; 95% CI: 

0.23–0.94). While not statistically significant, individuals with one or more copies of the 

minor allele (C) of microRNA-27 rs895819 experienced a suggested elevation in AIDS-

NHL risk (OR=1.29 per minor allele; 95% CI: 0.97–1.73), which was attenuated in NHWs 

(OR=1.27 per minor allele; 95% CI: 0.92–1.75).

Among SNPs located within miRNA biogenesis genes, individuals with one or more copies 

of the minor (C) allele of DDX20 rs197412 were at increased risk of developing AIDS-NHL 

(OR=1.34 per minor allele; 95% CI: 1.02–1.75). These results remained similar, although 

not statistically significant, among NHWs (OR=1.33 per minor allele; 95% CI: 0.99–1.78). 

While not statistically significant, an increased risk was suggested between the minor (C) 

allele of GEMIN4 rs7813 and systemic AIDS-NHL (OR=1.26 per minor allele; 95% CI: 

0.92–1.72). This association became more pronounced among NHWs, reaching statistical 

significance (OR=1.47 per minor allele; 95% CI: 1.04–2.08).

Individuals with one or more copies of the minor (T) allele of HIF1A rs2057482 were at an 

increased risk of developing systemic AIDS-NHL (OR=1.73 per minor allele; 95% CI: 

1.12–2.67; NHWs OR=1.72 per minor allele; 95% CI: 1.06–2.79). A decreased risk of CNS 
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AIDS-NHL was evident in association with HIF1A rs2057482 (OR=0.49 per minor allele; 

95% CI: 0.25–0.94; NHWs OR=0.51 per minor allele; 95% CI: 0.26–1.02).

While IL15 rs10519613 did not reach a level of statistical significance in adjusted analyses, 

this miRNA-SNP was suggested to increase risk of AIDS-NHL in unadjusted analyses 

(uOR=1.40 per minor allele; 95% CI: 0.97–2.03; Supplemental Table 1); a result more 

pronounced among systemic AIDS-NHL cases (uOR=1.64 per minor allele; 95% CI: 1.08–

2.50). Last, the association between TP53INP1 rs896849 and systemic AIDS-NHL did not 

reach a level of statistical significance in adjusted analyses, however was suggested to 

increase risk of systemic AIDS-NHLs in unadjusted analyses (uOR=1.36 per minor allele; 

95% CI: 0.93–1.98).

The associations between select SNPs within miRNA biogenesis genes and miRNA-21, 

miRNA-122, miRNA-222, and miRNA-223 serum levels are presented in Table 4. The 

minor allele (C) of DDX20 rs197412 was associated with higher miRNA-21 serum levels, 

albeit not at a statistically significant level (MR=1.24 per minor allele; 95% CI: 0.97–1.59). 

Individuals with the homozygous minor genotype exhibited miR-21 relative expression 

levels of 17.9% compared to 10.8% relative expression in individuals with the homozygous 

major allele genotype (data not shown). Further, the minor allele (C) of DDX20 rs197412 

was associated with higher miRNA-222 serum levels; a result that neared statistical 

significance (MR=1.21 per minor allele; 95% CI: 0.98–1.49). Individuals with the 

homozygous minor allele genotype exhibited miR-222 relative expression levels of 13.2% 

compared to 7.5% relative expression in individuals with the homozygous major allele 

genotype (data not shown). Last, while not statistically significant the minor allele (C) of 

DDX20 rs197412 was also associated with higher miRNA-223 serum levels (MR=1.31 per 

minor allele; 95% CI: 0.96–1.78).

4.1. Discussion

We examined the association between 22 miRNA-SNPs and AIDS-NHL susceptibility, and 

miRNA serum levels. DDX20 rs197412 was associated with an increase in risk of AIDS-

NHL, and marginally (i.e., nearing a statistically significant level) associated with higher 

levels of miRNA-21, miRNA-222, and miR-223. DDX20 rs197412 is a non-synonymous 

miRNA-SNP resulting in a residue change within a RNA helicase gene in the DEAD-box 

protein family. These suggested associations are in support of growing literature 

demonstrating that germline variation within miRNA-biogenesis genes may contribute to 

tumorigenesis [16]. Indeed, miRNA-21, miRNA-222, and miR-223 serum levels have been 

previously associated with AIDS-NHL risk, and our results suggest that these may have an 

underlying inherited genetic component [44].

DDX20, also known as GEMIN3, directly binds to and negatively regulates p53, blocking 

normal tumor suppressive function. Further, DDX20 also directly binds to EBV nuclear 

antigen 2 and EBV nuclear antigen 3C [91]. Genetic variation in DDX20 has been shown to 

affect RNA transport, RNA metabolism and decay, ribosome biogenesis, and RNA 

translation [92–96]. Although bioinformatic algorithms such as PolyPhen-2 and SIFT 

suggest that DDX20 rs197412 is a “benign” and “tolerated” SNP (respectively) [97, 98], and 
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no other common SNPs appear to be in LD with it, there may be other functionality of this 

SNP or correlated (minor) SNPs that may be responsible for the observed associations.

The variant allele (T) of microRNA-196a2 rs11614913 was associated with decreased risk of 

CNS AIDS-NHL. In support of our finding, a recent meta-analysis investigating this 

miRNA-SNP across 32 studies observed a decrease in overall cancer risk associated with the 

variant (T) allele of miR-196a2 rs11614913 (T vs. C OR=0.89; 95% CI: 0.84–0.94) [99]. To 

our knowledge, no studies have investigated miR-196a2 rs11614913 in relation to 

lymphoma or AIDS-NHL. miR-196a2 is composed of two mature miRNA sequences 

processed from the same stem-loop, with microRNA-196a2 rs11614913 located within the 

precursor strand of what becomes the 3′ passenger strand of the primary and mature 

sequence [54]. A SNP in this location may interfere with the formation of the secondary 

stem-loop structure, resulting in less efficient miRNA biogenesis and maturation from the 

precursor miRNA [18]. In fact, prior studies have shown that the minor allele of 

microRNA-196a2 rs11614913 is associated with decreased mature miR-196a2 levels in vitro 
[54]. Given that this SNP decreases target gene regulation, lowers mature miR-196a2 levels, 

and is inversely associated with overall cancer development, the tumor suppressive potential 

of miR-196a2 rs11614913 to impact AIDS-NHL, as seen in our study, is biologically 

plausible. As with DDX20 rs197412, no common SNPs were identified to be in high LD 

with miR-196a2 rs11614913.

The minor (T) allele of HIF1A rs2057482 was positively associated with systemic AIDS-

NHL risk and inversely associated with CNS AIDS-NHL risk. Per the miRNA-SNP analytic 

tool PolymirTS-3.0, the minor allele of HIF1A rs2057482 creates novel miRNA binding 

sites for miR-196a-5p, miR-196b-5p and miR-921, among others, opening up the possibility 

for differential messenger RNA regulation across alleles [100]. Although associations have 

been suggested between this SNP and other cancers (lung, non-small cell lung, and rectal 

cancers), this SNP was not observed to have an overall cancer effect in a recent meta-

analysis [101]. HIF1A encodes a subunit of the heterodimeric transcription factor, hypoxia-

inducible factor 1 (HIF1) which is involved in oxygen homeostasis and activates the 

expression of over 60 genes, including BCL-XL, contributing to cell regulation, proliferation 

and survival [102–105]. In cancer cells an accumulation of genetic alterations are induced by 

HIF1A over-expression, suggesting that HIF1A may provide selective advantages for the 

survival and promotion of cancer cells [106–108]. As, HIF1A is over-expressed in 

lymphoma cells, it is plausible that AIDS-NHL susceptibility may be influenced by SNPs 

within HIF1A.

This study represents the largest composition of AIDS-NHL cases from a single cohort 

study, and the first investigation into miRNA-related SNPs and AIDS-NHL. However, an 

important shortcoming is the small number of cases that limited our power to detect modest 

associations with more rare SNPs, and to discern heterogeneous effects by tumor site and 

histology [109–111]. Given the modest sample size, there is the possibility that some of 

these findings could be due to chance. Due to these limitations, our findings need to be 

replicated in a larger validation cohort and follow-up with functional studies would be 

beneficial. Furthermore, we recognize that two covariates were imputed; however our results 

remained robust across analyses comparing estimates from the complete-case analysis, 
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median imputed analysis, and analyses not adjusting for the imputed covariates (data not 

shown).

The major strength of our study was the nested case-control design and the selection of 

AIDS-NHL cases and HIV-1-infected controls from an established, longitudinal prospective 

cohort with rich biological and epidemiological data. The ability for us to supplement our 

genotypic data with expression levels of miRNA further enhanced our result interpretation. 

Detailed covariate data collected at multiple time points helped to account for confounding 

factors. Last, despite our modest sample size, the application of the semi-Bayesian approach 

decreased biases due to sparse-data and multiple comparisons by pulling our findings toward 

the null, while adding confidence to the report of associations that remained statistically 

significant after this correction.

5.1. Conclusion

We observed a few miRNA-SNPs that were associated with AIDS-NHL susceptibility, and 

suggest that some SNPs within miRNA biogenesis genes may influence miRNA expression. 

As the processes of miRNA biogenesis, regulation and target determination are all critically 

dependent on sequence complementation, SNPs located within these regions have the ability 

to alter normal miRNA function through interrupting or impairing sequence interaction. 

Identification of miRNA-SNPs associated with cancer risk is relevant to define potential 

markers of susceptibility, and may lead to the development of a high-risk intervention 

strategy for the HIV-infected population.
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Highlights

• This study generated data on novel miRNA-related susceptibility loci 

for AIDS-NHL.

• DDX20 rs197412 in a miRNA biogenesis gene increases AIDS-NHL 

risk and miRNA serum levels.

• HIF1A rs2057482 creates a miRNA-196a2 binding site and influences 

AIDS-NHL risk.

• These results suggest biomarkers and miRNA pathways for AIDS-NHL 

risk stratification.
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Table II

Demographic Characteristics of AIDS-NHL Cases and HIV+ Controls in the Multicenter AIDS Cohort Study

All AIDS-NHL Cases HIV+ Controls P-valuea

Total, N 180 529

Reference Year, n (%)b

 1984–1989 47 (26.1) 144 (27.2)

 1990–1995 106 (58.9) 302 (57.1)

 1996–2000 21 (11.7) 62 (11.7)

 2001–2006 6 (3.3) 21 (4.0) 0.99

Study Site, n (%)

 Baltimore 44 (24.4) 119 (22.5)

 Chicago 44 (24.4) 129 (24.4)

 Pittsburgh 22 (12.2) 85 (16.1)

 Los Angeles 70 (38.9) 196 (37.1) 0.65

Age, n (%)c

 <30 13 (7.2) 33 (6.3)

 30–39 65 (36.1) 231 (43.7)

 40–49 70 (38.9) 211 (39.9)

 ≥50 32 (17.8) 54 (10.2) 0.04

Self-reported Race/Ethnicity, n (%)

 White, non-Hispanic 152 (84.4) 479 (90.6)

 Black, non-Hispanic 10 (5.6) 21 (4.0)

 White, Hispanic 18 (10.0) 25 (4.7)

 Other 0 (0.0) 4 (0.7) 0.02

AIDS diagnosis, n (%)d

 No 86 (47.8) 312 (59.0)

 Yes 94 (52.2) 217 (41.0) 0.01

HIV-1 RNA levels at set-point (log10 scale; VC/mL; n (%))e

 Less than 3 (VC/mL) 2 (1.1) 21 (4.0)

 3–5 (VC/mL) 108 (60.0) 362 (68.4)

 More than 5 (VC/mL) 26 (14.4) 62 (11.7)

 Missing 44 (24.4) 84 (15.9) 0.10

Mean HIV-1 RNA levels at set-point (log10 scale; VC/mL; mean, 
range; SD)e 4.5 (2.6–6.0; 0.6) 4.39 (2.5–5.8; 0.7) 0.004

CD4+ T-cell count (mean, range; SD)e 176.9 (2.0–923.0; 211.8) 184.1 (3.0–1361.0; 224.7) 0.78

HAART therapy, n (%)d

 Never 170 (94.4) 483 (91.3)

 Yes 10 (5.6) 46 (8.7) 0.26

Years from first HAART date to reference date, mean (range; SD) 3.8 (0.1–9.7; 3.0) 2.9 (0.1–9.5; 2.8) 0.29
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All AIDS-NHL Cases HIV+ Controls P-valuea

ART therapy, n (%)d

 Never 69 (38.3) 154 (29.1)

 Yes 111 (61.7) 375 (70.9) 0.02

Years from first ART date to reference date, mean (range; SD) 3.4 (0.1–15.7; 2.6) 3.2 (0.0–17.3; 2.9) 0.52

HCV infection, n (%)d

 Never 156 (86.7) 482 (91.1)

 Ever 24 (13.3) 47 (8.89) 0.09

NHL subtypes, n (%)

 Primary Central Nervous System Lymphoma 57 (31.7) -

 Systemic NHL 123 (68.3) -

  Diffuse Large B-Cell 36 (29.3) -

  Diffuse Large B-Cell, Immunoblastic 28 (22.8) -

  NHL/Lymphoma, Not Specified 32 (26.0) -

  Burkitt’s Lymphoma 21 (17.1) -

  Others 6 (5.9) -

Tumor tested for EBV infection, n (%)

 Tested 86 (47.8) -

 Not tested 87 (48.3) -

 Missing 7 (3.9) -

 Tumor tested positive for EBV infection, n (%) 58 (67.4) -

a
Pearson’s Chi-square test or Student’s T-test used to estimate P-values, as appropriate.

b
Reference Year: Year of NHL diagnosis in the cases and HIV-infection-duration matched time-point in the controls.

c
At NHL diagnosis or reference date (date of NHL diagnosis in the cases and HIV-infection-duration matched time-point in the controls).

d
Prior to NHL diagnosis or reference date.

e
Before HAART therapy.

VC/mL: Viral copies per milliliter; SD: standard deviation.
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